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ABSTRACT
In the traditional maximum-flow problem, the goal is to transfer

maximum flow in a network by directing, in each vertex in the

network, incoming flow to outgoing edges. The problem corre-

sponds to settings in which a central authority has control on all

vertices of the network. Today’s computing environment, however,

involves systems with no central authority. In particular, in many

applications of flow networks, the vertices correspond to decision-

points controlled by different and selfish entities. For example, in

communication networks, routers may belong to different compa-

nies, with different destination objectives. This suggests that the

maximum-flow problem should be revisited, and examined from a

game-theoretic perspective.

We introduce and study multi-player flow games (MFGs, for

short). Essentially, the vertices of anMFG are partitioned among the

players, and a player that owns a vertex directs the flow that reaches

it. Each player has a different target vertex, and the objective of each

player is to maximize the flow that reaches her target vertex. We

study the stability of MFGs and show that, unfortunately, an MFG

need not have a Nash Equilibrium. Moreover, the Price of Anarchy

and even the Price of Stability of MFGs are unbounded. That is,

the reduction in the flow due to selfish behavior is unbounded. We

study the problem of deciding whether a given MFG has a Nash

Equilibrium and show that it is ΣP
2
-complete, as well as the problem

of finding optimal strategies for the players (that is, best-response

moves), which we show to be NP-complete. We continue with

some good news and consider a variant of MFGs in which flow

may be swallowed. For example, when routers in a communication

network may drop messages. We show that, surprisingly, while this

model seems to incentivize selfish behavior, a Nash Equilibrium

that achieves the maximum flow always exists, and can be found in

polynomial time. Finally, we consider MFGs in which the strategies

of the players may use non-integral flows, which we show to be

stronger.
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1 INTRODUCTION
A flow network is a directed graph in which each edge has a capacity,
bounding the amount of flow that can go through it. The amount

of flow that enters a vertex equals the amount of flow that leaves

it, unless the vertex is a source, which has only outgoing flow, or a

target, which has only incoming flow. The fundamental maximum-
flow problem gets as input a flow network with a source vertex

and a target vertex and searches for a maximum flow from the

source to the target [5, 12]. The problem was first formulated and

solved in the 1950’s [10, 11]. It has attracted much research on

improved algorithms [6, 7, 13] and variant settings [8, 22], and

has been applied in many application domains, including traffic in

road or rail systems, fluids in pipes, currents in an electrical circuit,

packets in a communication network, and many more [2].

All studies of flow networks so far assume that all the vertices

in the network are controlled by a central authority. Indeed, the

maximum-flow algorithm finds a flow that directs the flow in all

vertices of the network. In many applications of flow networks,

however, the vertices correspond to decision-points controlled by

different entities. For example, in communication networks, routers
may belong to different companies, with different destination ob-

jectives, and in software defined networks (SDNs), vertices may be

SDN switches, programmed by different entities [1, 23]. Likewise,

hostile entities may try to direct the flow to alternative targets or

to locations where flow gets stuck. The above examples suggest

that the maximum-flow problem should be revisited, and exam-

ined from a game-theoretic perspective. Beyond the applications,

such a study is interesting from a theoretical point of view. Indeed,

both the maximum-flow problem and algorithmic game theory

are fundamental topics in theoretical computer science, and their

combination involves interesting ideas and tools from both topics.

We introduce and study multi-player flow games (MFGs, for

short).
1
Essentially, the vertices of an MFG are partitioned among

the players, and a player that owns a vertex directs the flow that

reaches it. Each player has a different target vertex, and the objec-

tive of the players is to maximize the flow that reaches their target

vertices. A strategy for a player advises her how to direct flow

that enters vertices under her control. Formally, for each vertex

u, let Eu�
denote the set of edges outgoing from u. Also, for each

edge e , let c(e) ∈ IN denote its capacity. Then, for each vertex u
controlled by the player, a strategy for the player includes a policy

fu : IN→ IN
Eu�

that maps every incoming flow x ∈ IN to a func-

tion describing how x is partitioned among the edges outgoing from

u. For each incoming flow x ∈ IN and edge e ∈ Eu�
, we require

that fu (x)(e) ≤ c(e) and
∑
e ∈Eu� fu (x)(e) = min{x ,

∑
e ∈Eu� c(e)}.

Thus, fu (x) assigns to each edge outgoing from u a flow that is

1
Not to confuse with games in which players cooperate in order to construct a sub-

graph that maximizes the flow in the traditional setting, which are also termed flow

games (c.f., [14]).
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bounded by its capacity. Also, when the incoming flow is larger

than the capacity of the outgoing edges (which bounds the out-

going flow), then flow is lost and the outgoing flow is lower than

the incoming flow. In addition, an initial-flow function assigns an

initial flow to some of the vertices. The game is played among k
players. Each Player i ∈ {1, . . . ,k} has a target vertex ti , and the

goal of Player i is to maximize the flow that enters ti . Note that
the definition of flow in an MFG is different from the traditional

definition of maximum flow, which corresponds to the case where

all vertices belong to a single player, and in which the “flow con-

servation” property is respected in all vertices. Indeed, in the game

setting, flow may get lost when it reaches vertices whose outgo-

ing capacity is smaller than the incoming flow. We assume that

the network is acyclic. Then, given strategies for the players, it is

possible to calculate the flow by following a topological ordering

of the vertices.

Example 1.1. Consider the MFG G appearing in Figure 1. The

game is played between two players. The vertices of Player 1 are

circles, and those of Player 2 are squares. An initial flow of 2 arrives

to vertex s , and the targets of the players are t1 and t2. We can view

G as a communication network with routers operated by companies

with different targets. Unless outgoing channels are filled, a router

does not drop packets that reach it, and it can direct the packets

however it chooses.

s

u t2

v t1

2

1

1

1

1

1

2

1

Figure 1: The MFG G
No matter how Player 1 directs the flow in vertex s , a flow of at

least 1 reaches t1. Indeed, if Player 1 directs 1 tov , then it continues

from there to t1. Also, if Player 1 directs 2 to u, then Player 2 directs

at most 1 to t2, and directs the rest, namely at least 1, to v (from

where it is directed to t1) or to t1. Note that Player 2 may direct no

flow to t2, in which case a flow of 2 reaches t1, yet Player 2 has no

incentive to do so. Moreover, if Player 1 directs 1 to v and 1 to u,
and Player 2 directs 1 from u to v , then flow gets lost in v , as the
capacity of edges outgoing from v is only 1. �

In [16], the authors introduced and studied flow games. Flow
games are played on flow networks with a single source and a

single target. The vertices in the network are partitioned between

two players, max and min. Player max corresponds to the network

authority, whose goal is to maximize the flow from the source to

the target, while min corresponds to a hostile environment, whose

goal is to minimize this flow. The authors studied the problem of

finding a strategy for max that maximizes the flow against every

strategy of min, and showed that the problem is ΣP
2
-complete. They

also studied some theoretical properties of flow games, in particu-

lar a restriction to strategies that ensures no loss of flow, and an

extension to strategies that allows non-integral flows, which were

proved to be stronger. While flow games are strongly related to

two player MFGs, they cannot model two-player MFGs, as min

does not have a target vertex, and her only goal is to minimize the

flow that max directs to the target. Dually, MFGs cannot model

flow games. In particular, adding a target vertex for min to which

flow may be directed does not work, as, by the definition of flow in

MFGs, flow may be directed to this target only after outgoing edges

to other vertices are saturated. More importantly, as we elaborate

below, the questions on MFGs that we study here originate from its

game-theoretic nature, and are very different from those studied in

[16].

In order to describe our contribution, we first need some no-

tations. A profile in an MFG is a tuple of strategies, one for each

player. Primary questions about games in traditional game-theory

applications concern their stability. The most common criterion

for stability is the existence of a Nash equilibrium (NE, for short)

[18]: a profile in which no (single) player can benefit from unilat-

erally changing her strategy.
2
It is well known that decentralized

decision-making may lead to stable profiles that are sub-optimal

from the point of view of society as a whole. Formally, a profile is a

social optimum (SO, for short) if it maximizes the flow to all target

vertices together. An SO thus corresponds to a maximum flow in

a network obtained from the MFG by adding a source vertex in

which the initial flow is generated, and a target vertex to which

all target vertices are connected. The inefficiency incurred due to

selfish behavior of the players is measured by the price of anarchy
(PoA) [15, 20] and price of stability (PoS) [4] measures. The PoA is

the worst-case inefficiency of an NE (that is, the ratio between the

flow in an SO and in a worst NE, namely one in which minimum

flow reaches all targets). The PoS is the best-case inefficiency of a

Nash equilibrium (that is, the ratio between the flow in an SO and a

best NE). Another important question in game-theory applications

is that of finding a best-response move, namely a strategy that max-

imizes the utility of a given player (that is, the flow to her target,

in the case of MFGs), given the strategies of the other players. The

absence of regulation by some central authority is a driving theme

of algorithmic game theory, cf. [19], inspired by the open nature of

today’s computing environments.
3

We start with some bad news about the stability of MFGs. We

show that there are simple (in fact, two-player) MFGs in which

no NE exists. Moreover, the PoA and even the PoS of MFGs are

unbounded. That is, for every threshold x ≥ 1, there is an MFG

Gx such that the SO in Gx is x (that is, when cooperating, the

players can direct x units of flow to their targets), whereas a best

NE in Gx is 1 (that is, in all stable profiles, only 1 flow unit reaches

a target vertex). Also, the problem of deciding whether a given

MFG has an NE is ΣP
2
-complete, which essentially suggests that we

have to go over all possible profiles and deviations from them. We

continue with the best-response problem and show that it is NP-

complete. The high complexity is not surprising, and corresponds

to the known computational price when moving from a nondeter-

ministic setting to a game-based one, for example the increase from

PSPACE to 2EXPTIME when moving from temporal satisfiability

[17] to temporal realizability [21].

We continue with some good news and consider a variant of

MFGs in which flow may be dropped (MFGD, for short). Thus, an

2
Throughout this paper, we consider pure strategies. Unlike mixed strategies, pure

strategies may not be random or drawn from a distribution.

3
Different aspects of networks have already been extensively studied from the per-

spectives of algorithmic game theory. This includes, for example, network formation

games [4] or incentive issues in interdomain routing and the BGP protocol [9]. We are

the first, however, to consider the maximum-flow problem from this perspective.
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owner of a vertex may choose not to direct some of the incoming

flow. In particular, when Player i owns a vertex from which her

target cannot be reached, then she has no incentive not to drop

the flow. We show that, surprisingly, while this model seems to

incentivize the above selfish behavior, it is actually stable, and with

no stability inefficiency. Thus, MFGDs always have an NE, and their

PoS is 1. Moreover, such an NE that is also an SO can be found

in polynomial time. Our algorithm is based on a careful choice of

augmenting paths in the Ford-Fulkenson method [11], chosen in a

way that guarantees that no player has an incentive to deviate from

the profile that induces the maximum flow found by the algorithm.

We show that this careful choice is acute, as the PoA of MFGs with

drops is unbounded.

Recall that the capacities in anMFG are integral and the strategies

of the players can assign only integral flows. Integral-flow MFGs

arise naturally in settings in which the objects we transfer along

the network cannot be partitioned into fractions, as is the case

with cars, packets, and more. Sometimes, however, as in the case

of liquids, flow can be partitioned arbitrarily. In the traditional

maximum-flow problem, it is well known that when the capacities

are integral, then there exists an integral maximum flow. We study

an extension of MFGs to non-integral strategies. We show that,

interestingly, non-integral strategies are stronger, in the sense they

can guarantee strictly greater outcomes. Despite the richness of

non-integral strategies, we can show that our results are carried

over to the non-integral case.

2 PRELIMINARIES
For k ≥ 1, let [k] = {1, . . . ,k}. A multi-player flow game (MFG)

is G = ⟨k,V ,E, c, (ti )i ∈[k], init, owns⟩, where k is the number of

players, V is a set of vertices, E ⊆ V ×V is a set of directed edges,

and c : E → IN is a capacity function, assigning to each edge an

integral amount of flow that the edge can transfer. For a vertex

u ∈ V , let E�u
and Eu�

be the sets of incoming and outgoing

edges to and from u, respectively. That is, E�u = (V × {u}) ∩ E and

Eu� = ({u} ×V ) ∩ E. A sink is a vertex u with no outgoing edges,

thus Eu� = ∅. For each i ∈ [k], the vertex ti ∈ V is a target vertex

for Player i . We assume that the targets ti are distinct, i.e., ti , tj
for all i , j, and that ti is a sink for all i ∈ [k]. Let T = {t1, . . . , tk }.
The function init : V → IN is an initial-flow function, assigning

to each vertex an initial flow. Finally, the function owns : V → [k]
assigns to each vertex a player that owns it. We assume that for

all i ∈ [k], we have that owns(ti ) = i , and we use Vi to denote the

set of vertices owned by player i , thus Vi = {v : owns(v) = i}. We

assume that the capacities and the initial flows are given in unary.

When drawing two-player MFGs, we use circles and squares to

describe the vertices of Player 1 and 2, respectively, and use dark

filled circles to describe sinks (ownership of sinks is not impor-

tant). The function init is described by edges entering vertices, each
labeled with the corresponding initial flow.

A policy for a vertex u ∈ V \T is a function that distributes an

incoming flow to the outgoing edges. Formally, a policy for u is

a function fu : IN → IN
Eu�

such that for every flow x ∈ IN and

edge e ∈ Eu�
, we have fu (x)(e) ≤ c(e) and

∑
e ∈Eu� fu (x)(e) =

min{x ,
∑
e ∈Eu� c(e)}. Thus, fu (x) assigns to each edge outgoing

from u a flow that is bounded by its capacity. Also, when the in-

coming flow is larger than the sum of the capacities of the outgoing

edges (which bounds the outgoing flow), then flow leaks and the

outgoing flow is lower than the incoming flow. In practice, leaks

correspond to either actual leaks – fluid in a pipe system that is lost

when the system is overflowed, or to packets that are dropped by

routers all of whose outgoing channels are filled. Note that this is

different from the traditional definition of flow in a network, which

corresponds to the case where all vertices belong to a single player,

and in which the “flow conservation" property is respected. Note

that as the capacities and initial flows are given in unary, a policy

is polynomial in the size of the MFG.

A flow in an MFG is a function f ∈ INE
that assigns to each edge

the flow that travels in it. We require that for every edge e ∈ Eu�
,

we have f (e) ≤ c(e), and for every vertex u ∈ V \ T , we have∑
e ∈Eu� f (e) = min{init(u) +

∑
e ∈E�u f (e),

∑
e ∈Eu� c(e)}. That

is, the flow in each edge is bounded by its capacity, and the flow

that leaves each vertex is the minimum of the flow that enters the

vertex, by the initial flow or from its neighbors, and the sum of the

capacities of edges outgoing from it. We focus on the case where

the graph ⟨V ,E⟩ is acyclic. Then, given policies fu for all vertices

in u ∈ V \T , we can calculate the flow in the game as follows. First,

we order the vertices in a topological ordering. If a vertex v2 can

be reached from a vertex v1 along some path, then v2 appears after

v1 in the topological ordering. We start from the first vertex u in

the topological ordering, and use fu to assign a flow to each edge

in Eu�
. Now, we continue to the next vertex in the topological

ordering. Whenever we reach a vertex v , the incoming flow to v ,
denoted x , has already been calculated. We then use fv (x) to assign
a flow for each edge in Ev�

, and continue along the topological

ordering until we reach all targets in T . Since the flow that enters

a vertex u depends only on the sub-game that reaches u, it is easy
to see that the calculation above is independent of the topological

ordering. Indeed, if u1 and u2 are not ordered, then flow that leaves

u1 does not reach u2, and vice versa.

A strategy of Player i is a collection of policies, one for each

vertex inVi \{ti }. A profile P = ⟨π1, . . . ,πk ⟩ is a vector of strategies,
one for each player. For a profile P and a strategy π of Player i ∈ [k],
let P[i ← π ] denote the profile obtained from P by replacing the

strategy of Player i in P by π . Given a profile P , the flow in which

the players follow their strategies in P is denoted f P and can be

calculated as described above. Given a profile P , the outcome of
Player i , denoted outcomei (P), is the amount of flow that reaches

her target ti , thus outcomei (P) =
∑
e ∈E�ti f

P (e). The outcome of a
game for profile P is then outcome(P) =

∑k
i=1

outcomei (P), namely

the flow that reaches all the targets in T .
A profile of strategies is a Nash equilibrium (NE, for short) if

no (single) player can increase her outcome by unilaterally chang-

ing her strategy. Given an MFG G, the set of NEs of G is denoted

by NE(G). A social optimum (SO, for short) is a profile in which

the outcome of G is maximized. An NE need not be an SO. The

standard measures to quantify the inefficiency caused due to the

selfish behavior of the players is to compare the outcome of the

NEs with that of the SO. Specifically, the price of stability (PoS) is

the ratio between the SO and the outcome of a best NE; formally,

PoS(G) = minP ∈NE(G) outcome(SO)/outcome(P), and the price of
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anarchy (PoA) is the ratio between the SO and the outcome of a

worst NE; formally, PoA(G) = maxP ∈NE(G) outcome(SO)/outcome(P).
We note that since the objective in MFGs is to maximize the out-

come, the PoS and PoA ratios have the outcome of the SO in the

numerator, as opposed to games in which the outcome is associated

with costs and the objective is to minimize it.

3 EQUILIBRIA IN MFGS
In this section we study equilibria and its inefficiency in MFGs. Our

results are negative: An MFG need not have a Nash Equilibrium,

and deciding the existence of an NE in a given MFG is ΣP
2
-complete.

Moreover, the Price of Anarchy and even the Price of Stability of

MFGs are unbounded.

Theorem 3.1. There exists an MFG with no NE.

Proof. Consider the MFG G = ⟨2,V ,E, c, (t1, t2), init, owns⟩ ap-
pearing in Figure 2. The edges for which the capacity is not specified

have capacity 1.

v1 v2

v3

v4

v5

t1 t2
2

v6

2

Figure 2: An MFG with no NE

We claim that there is no NE in G. Consider a profile P . First,
if outcome1(P) < 2, then we claim that Player 1 has a beneficial

deviation that increases her outcome to 2. Indeed, let fv2
be the

policy of Player 2 inv2, and letx3,x4, andx5 be the flow that Player 2

directs to v3,v4, and v5, respectively, when a flow of 2 reaches v2.

Formally, x3 = fv2
(2)(⟨v2,v3⟩), x4 = fv2

(2)(⟨v2,v4⟩), and x5 =

fv2
(2)(⟨v2,v5⟩). A strategy of Player 1 that ensures an outcome of

2 then directs all the initial flow into v2, thus fv1
(2)(⟨v1,v2⟩) = 2,

and directs the flow inv4 so that the incoming flow into bothv3 and

v5 is 1. Since x3,x4,x5 ∈ {0, 1} and x3 +x4 +x5 = 2, this is possible.

Specifically, if x3 = x4 = 1, then the flow in v4 is directed to v5;

dually, if x5 = x4 = 1, then the flow in v4 is directed to v3, and if

x3 = x5 = 1, then the policy in v4 is irrelevant. Now, when Player 1

directs the flow in v3 and v5 to t1, then each of them contributes 1

to the flow, thus the flow reaching t1 is 2, and we are done.

Now, if outcome1(P) = 2, then we claim that Player 2 has a

beneficial deviation that increases her outcome from 0 to 1. First,

note that in order for outcome1(P) to be 2, it must be that Player 1

directs all the initial flow tov2. Also, since outcome1(P) = 2, it must

be that outcome2(P) = 0. Moreover, the flow of 2 that gets to t1 must

arrive fromv3 andv5. Let fv4
be the policy of Player 1 inv4, and let

x3 and x5 be the flow that Player 1 directs tov3 andv5, respectively,

when a flow of 1 arrives to v4. Formally, x3 = fv4
(1)(⟨v4,v3⟩) and

x5 = fv4
(1)(⟨v4,v5⟩). Consider a strategy for Player 2 in which the

policy at v2 is such that when an incoming flow of 2 arrives, then 1

is directed to v4, and in addition, if x3 ≥ x5, then 1 unit is directed

to x3, and if x3 < x5, then 1 is directed to x5. The above policy

ensures that one of the vertices v3 or v5 has an incoming flow of 2.

Accordingly, even a policy of Player 1 that first saturates the edges

to t1 has to direct 1 into t2, and we are done.

v1 v2

v3

v4

v5

t2v0t1
2r (n +m)

Gθ
22r (n +m)

2r (n +m) − 2

Figure 3: An NE exists iff θ is satisfiable
It follows that in each profile at least one player has an incentive

to change her strategy, thus no profile is an NE. �

Theorem 3.1 gives rise to the exists-NE problem, namely deciding,

given an MFG G, whether G has an NE.

Theorem 3.2. The exists-NE problem for MFGs is ΣP
2
-complete.

Proof. We start with the upper bound. Recall that a strategy

for Player i is a collection of policies fu : IN → IN
Eu�

, for all

u ∈ Vi . Clearly, the policy has to refer only to incoming flow that is

smaller or equal to the sum of the capacities of the edges in E�u

and the initial flow assigned to u by init. Thus, since we assume

that capacities are given in unary, the description of strategies is

polynomial in the input. Given a profile P , checking whether there

exists a beneficial deviation for some player is in NP. Consequently,

deciding whether there exists a profile P from which no player

has a beneficial deviation can be solved by a nondeterministic

polynomial-time Turing machine with an NP oracle.

We continue to the lower bound and describe a reduction from

QBF2: satisfiability for quantified Boolean formulas with 2 alter-

nations of quantifiers, where the most external quantifier is “ex-

ists". Letψ be a Boolean propositional formula over the variables

x1, . . . ,xn ,y1, . . . ,ym and let θ = ∃x1 . . . ∃xn∀y1 . . . ∀ymψ . We

assume that ψ is in positive normal form in which every literal

appears r times.

We are going to use as a black box the following reduction, a

variant of which is proven in [16].

Lemma 3.3. Given a QBF2 formula θ = ∃x1...∃xn∀y1...∀ymψ in
which every literal appears r times, we can construct a two-player
MFG Gθ with targets t1 and v0 and an initial flow of 2r (n +m), such
that if θ is satisfiable, then Player 1 has a strategy that ensures that a
flow of 1 reaches t1 and a flow of 2r (n +m) − 1 reaches v0, and if θ is
not satisfiable, then Player 2 has a strategy that ensures that no flow
reaches t1 and a flow of 2r (n +m) reaches v0.

Consider the MFG G appearing in Figure 3. Note that G com-

bines the MFG Gθ from Lemma 3.3 with the "no-NE" example from

Theorem 3.1. We prove that G has an NE iff θ is satisfiable. Assume

first that θ is satisfiable. Then, by Lemma 3.3, Player 1 can ensure

that a flow of 1 reaches t1 and a flow of 2r (n + m) − 1 reaches

v1. Consider a strategy of Player 2 in which she directs a flow of

2r (n +m) − 2 from v1 to t2 and the remaining flow of 1 to v2. Argu-

ing, in the same way as in Theorem 3.1, we can see that Player 1 has

a strategy such that now a total flow of 2 units reaches t1 and the

remaining flow of 2r (n +m) − 2 units reaches t2. We claim that this

profile is an NE. In the game Gθ , Player 1 can ensure a maximum

flow of 1 to t1 while the remaining flow of 2r (n +m) − 1 reaches v0

which is forwarded tov1. If Player 2, now forwards a flow of 1 tov2

from v1, Player 1 can ensure that this 1 unit of flow reaches t1 and

thus a total flow of 2 units reaches t1. Hence given the strategy of
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Player 2, Player 1 does not have a strategy to ensure that more flow

reaches t1. Now we show that Player 2 also cannot deviate from

her current strategy and increase her flow. In particular, Player 2

can change her policy in v1 and send 2 units of flow to v2 while the

remaining flow of 2r (n+m)−3 is sent to t2. Even in this case, out of

the 2 units of flow reaching v2, no more than a flow of 1 can reach

t2 and hence Player 2 does not have a deviation from her strategy

that increases her flow.

Assume now thatθ is not satisfiable. Then, by Lemma 3.3, Player 2

can ensure that a flow of 2r (n +m) reaches v1. The only policy of

Player 2 at v1 is to send a flow of 2r (n +m) − 2 units to t2 and the

remaining flow of 2 units to v2. The same arguments used in the

proof of Theorem 3.1 imply that the profile we have is not an NE.

Further, when θ is unsatisfiable, we note that for every strategy of

Player 1, Player 2 has a strategy such that a flow of 2r (n +m) − 1

reaches t2 while the remaining flow of 1 reaches t1 and for every

strategy of Player 2, Player 1 has a strategy such that a flow of 2

units reaches t1, and hence an NE cannot exist. �

We continue to study the PoA and PoS, for the cases where an

NE exists, and show that they are both unbounded.

Theorem 3.4. The PoA in MFGs is unbounded.

Proof. Consider the two-player MFG Gx appearing in Figure 4.

v1 t1

t2

x

v2

1

x −
1

x

Figure 4: An MFG with unbounded PoA
The outcome of an SO of Gx , namely the maximum flow to t1

and t2 together, is x , obtained when Player 1 directs all the initial

flow to t1 and t2. On the other hand, consider a profile in which

Player 1 directs to t1 only a flow of 1 and directs to the sink v2 a

flow of x − 1. The profile is an NE, yet its outcome is only 1. Thus,

PoA(Gx ) ≥ x . Since x can be unbounded, we are done. �

Theorem 3.4 is not too surprising, as the PoA considers worst

NEs. We now show that the PoS is unbounded too. Here, we have

to bound the best NE, which is technically much more challenging.

Theorem 3.5. The PoS in MFGs is unbounded.

Proof. Consider the MFG Gx appearing in Figure 5. For sim-

plicity, we assume that x is even.

It is easy to see that the maximum flow to t1 and t2 together,

namely the outcome of an SO, is x . We show that Gx has an NE,

yet no NE has an outcome of more than 1. Consider the profile P
in which Player 1 directs a flow of 1 from a to b and the policy of

Player 2 in b for an incoming flow of y ≥ 1 is as follows: a flow of 1

is directed to c1 and a flow of y − 1 is directed to v2. It is not hard

to see that the profile P is an NE.

Now we show that no NE has an outcome of more than 1 in

G. Consider a profile P such that outcome(P) > 1. Then, there

must be a flow of y > 1 from b. If outcome2(P) > 0, in which case

outcome1(P) < y, then Player 1 can change her strategy and ensure

that the entire flow of y reaches t1. Indeed, no matter how Player 2

a b

c1

c x
2

u1

m1

d1

u x
2

m x
2

d x
2

t1 t2
x

v2

v1

x

x x

2

2

...

Figure 5: An MFG with unbounded PoS

directs the flow from b and from the c j vertices, Player 1 can direct

all of it to t1. On the other hand, if outcome2(P) = 0, then Player 2

has the following beneficial deviation. Inb, she directs a flow greater

than 1 to some c j , for j ∈ [
x
2
], and in c j , she directs the flow so

that either uj or dj have incoming flow greater than 1. Thus, if the

policy of Player 1 inmj is to direct the flow to uj , then Player 2

directs a flow of 1 to uj and a positive flow tomj . Now, since from

uj Player 1 can direct only a flow of 1 to t1, then a positive flow

reaches t2. It follows that no NE with an outcome greater than 1

exists.

Since x , and hence the SO, is unbounded, so is the PoS. �

4 THE BEST-RESPONSE PROBLEM
Given an MFG G with k players, a profile P , and an index i ∈ [k],
a strategy πi of Player i is a best response with respect to P if

outcomei (P[i ← πi ]) ≥ outcomei (P[i ← π ′i ]) for all strategies π
′
i

of Player i . That is, πi is a strategy that maximizes the outcome of

Player i assuming the other players do not change their strategies

in P . In this section we study the computational complexity of the

best-response problem, namely the question of deciding, given P , i ,
and a threshold λ ∈ IN, whether there exists a strategy πi of Player i
such that outcomei (P[i ← πi ]) ≥ λ.

Theorem 4.1. The BR problem for MFGs is NP-complete.

Proof. Membership in NP is easy. Given a profile P in an MFG,

a strategy πi of Player i , and a threshold λ, it can be checked in

polynomial time whether outcomei (P[i ← πi ]) ≥ λ.
We prove NP-hardness by a reduction from CNF-SAT. We con-

sider a normal form for propositional formulas in which all literals

appear the same number of times. Consider a propositional formula

ψ over n variables x1, . . . ,xn . We assume thatψ hasm clauses and

every literal appears in exactly r clauses. It is not hard to see that

every CNF formula can be translated in polynomial time to one that

satisfies the above assumption. We construct, in polynomial time, a

two-player MFG Gψ and a strategy π2 of Player 2 such that Player 1

has a best response π1 with outcome1(⟨π1,π2⟩) ≥ (m − r ) · n iff ψ
is satisfiable.

A scheme of the MFG Gψ appears in Figure 6. The MFG has

three types of vertices: (1) Variable vertices v1, . . . ,vn , (2) Literal
vertices x1,x1, . . . ,xn ,xn , and (3) Clause verticesC1, . . . ,Cm . Since

we examine the best response of Player 1, the target vertex of

Player 2 is not important, and can be one of the sinks.

For a literal l and a clauseCj , we have an edge ⟨l ,Cj ⟩ iff the literal

l does not appear in the clause Cj in ψ . Since there arem clauses

and each literal appears in exactly r clauses, then each literal vertex
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l has outgoing edges tom − r clause vertices and an outgoing edge

to a sink. Consider the strategy π2 of Player 2 in which for each

literal vertex, if the incoming flow is exactlym − r , then the entire

flow is directed to the clause vertices, and otherwise the flow is

directed to the sink. We claim there is a best response π1 such that

outcome1(⟨π1,π2⟩) = (m − r ) · n iffψ is satisfiable.

Assume first that ψ is satisfiable. Consider a satisfying assign-

ment toψ . Let π1 be the strategy for Player 1 that directs the initial

flow ofm − r in each variable vertex to the corresponding literal

vertex that is assigned true. Thus, n of the 2n literal vertices have an

incoming flow ofm − r each, while the remaining n literal vertices

have an incoming flow of 0. Since every clauseCj is satisfied in the

assignment, at least one of the literals appearing in Cj is assigned

true. Let l be such a literal. By the construction, the edge ⟨l ,Cj ⟩ does

not appear in Gψ . Thus, the maximum incoming flow toCj is n − 1.

The strategy π1 directs all the incoming flow to Cj to the target

vertex t1, and thus no flow is lost. Hence, if ψ is satisfiable, then

Player 1 has a strategy π1 such that outcome1(⟨π1,π2⟩) = (m−r ) ·n.

v1

x̄1

x1 C1

C2

vn

x̄n Cm

xn

t1
...

...

...

m − r

m − r

m
−
r

m
−
r

m
−
r

m
− r

m
−r

m
−
r

m
−r

m
−
r

n − 1

n − 1

n − 1

Figure 6: NP hardness of the BR problem
Assume now thatψ is not satisfiable. Then, for every assignment

of the variables, there is a clause Cj that is not satisfied. Thus,

none of the literals that appear in Cj is assigned true. Recall that

corresponding to a literal l not appearing in Cj , there is an edge

⟨l ,Cj ⟩ in Gψ . Thus, each literal l ′ that is assigned true has an edge

⟨l ′,Cj ⟩, implying that the incoming flow to Cj is n, whereas the
capacity of the outgoing edge from Cj is n − 1. Hence, there is a

flow loss in Cj , implying that outcome1(⟨π1,π2⟩) < (m − r ) · n. �

5 MFGS WITH DROPS
Recall that in MFGs, flow is lost only if it reaches a vertex whose

outgoing capacity is lower than its incoming flow. In this section

we study multiplayer flow games with drops (MFGD, for short),

where incoming flow is allowed to be dropped whenever the player

chooses, even if the outgoing capacity is not full. Thus, the players

have full control on their vertices and they may drop flow if they

wish. This setting is useful, for example, in switched networks

in which routers can choose to drop packets. Formally, a policy

for a vertex u is a function fu : IN → IN
Eu�

such that for every

flow x ∈ IN and edge e ∈ Eu�
, we have fu (x)(e) ≤ c(e) and∑

e ∈Eu� fu (x)(e) ≤ x .
Note that when Player i owns a vertex from which her target

cannot be reached, then she has no incentive not to drop the flow.

Thus, the MFGD model seems to be less optimal for the society as

a whole. We show that, surprisingly, it is actually stable, and with

no stability inefficiency.

Theorem 5.1. Every MFGD has an NE. Furthermore, The PoS in
MFGD is 1, and an NE that is also an SO can be found in polynomial
time.

Proof. Consider an MFGD G = ⟨k,V ,E, c, (ti )i ∈[k], init, owns⟩.
We show an algorithm for finding an SO that is also an NE. Consider

the flow network G′ obtained from G by adding a source vertex

s from which the initial flow is directed, and a target vertex t to
which all target vertices may direct their flow. Formally, G′ =

⟨V ′,E ′, c ′, s, t⟩, whereV ′ = V ∪{s, t}, E ′ = E∪({s}×V )∪(T ×{t}),
and the capacities are c ′(e) = c(e), for e ∈ E, c ′(⟨s,u⟩) = init(u),
for u ∈ V , and c ′(⟨ti , t⟩) = C , for some large C , for ti ∈ T . Our
algorithm follows the Ford-Fulkerson method [5, 11] (FF method,

for short) for finding a maximum flow from s to t in G′, where the
augmenting paths are chosen in a way that would guarantee the

stability of the induced profile.

Before we describe the algorithm, let us briefly review the FF

method. We start with a flow function f for which f (e) = 0 for all

edges e ∈ E, giving an initial flow value of 0. At each iteration, we

improve the flow f in G′ by finding an augmenting path in an as-

sociated residual network G′f . The residual network G
′
f consists of

edges with capacities that represent how we can change the flow f
in G′. Essentially, these are either edges of G′ that are not saturated

in f , in which case their capacity in G′f is the difference between

their capacity and the flow that f assigns to them, indicating it

can be increased in this amount, or reverse of edges to which f
assigns a positive flow, in which case their capacity in G′f is this

flow, indicating that it can be decreased in this amount. Once we

find an augmenting path from s to t in G′f , we can identify the edges

in G′ for which we can change f and obtain an improved flow. We

repeat this process until the residual network has no augmenting

path, which implies we have reached a maximum flow.

We use a variant of the FF method in which after an augmenting

path is found, the improved flow is obtained by transferring a flow

of 1 in it. Thus, in each iteration, the value of the flow increases

by 1. In addition, the residual path is found as follows: For a subset

H ⊆ V ′ and two vertices u,v ∈ V , we say that v is H -reachable
from u if there is a path from u to v that visits only vertices in H
(in particular, u,v ∈ H ).

In each iteration of our algorithm we start with a current flow f
in G′ and find a simple path ρ from s to t in G′f . Then, we check

for every vertex u ∈ ρ, by the order of ρ, whether the player that
owns u can “take control of" the path. That is, if u ∈ Vi , then we

check whether ti is Vi -reachable from u in G′f . If the answer is yes,

then we change the path ρ to a path ρ ′ that is the concatenation of

the subpath of ρ from s to u with a simple path from u to t through
ti that visits only vertices in Vi . We use ρ ′ as the augmenting path.

If no player can take control of ρ, then we use ρ as the augmenting

path. Clearly, this algorithm follows the FF method and thus it

gives a maximum flow from s to t in G′. We denote this flow by

f : E ′ → IN.

Let P be the profile of strategies induced from f as follows.

Consider a vertex u ∈ V . Let xu be the incoming flow to u in f .
The policy for u is then fu (y)(e) = f (e), for every y ≥ xu and
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e ∈ Eu�
, and fu (y)(e) = 0, for every y < xu and e ∈ Eu�

. Thus, if

the incoming flow to u is at least the flow that enters u in f , then
the flow in Eu�

according to fu agrees with f . Otherwise, namely

if the incoming flow to u is strictly smaller than the flow that enters

u in f , then all the incoming flow is dropped. Note that outcome(P)
is the value of f , and thus P is an SO. We now show it is an NE.

Consider a player i ∈ [k]. We show that Player i has no beneficial
deviation from P . LetG′i = ⟨V

′
i ∪{s

′
i },E

′
i , c
′
i , s
′
i , ti ⟩ be a flow network

induced by G′, where V ′i is the vertices u ∈ Vi such that ti is Vi -
reachable in G′ fromu, and s ′i is a new source vertex. Note that ti ∈
V ′i . The flow network G′i contains the edges e ∈ E

′∩(V ′i ×V
′
i )with

capacities c ′i (e) = c ′(e), and edges from s ′i to V
′
i . For every vertex

v ∈ V ′i , we define c
′
i (⟨s
′
i ,v⟩) =

∑
u ∈V ′\({s }∪V ′i )

f (⟨u,v⟩) + init(v).
Note that by changing her strategy in the MFGD G, Player i cannot
direct to a vertex v ∈ V ′i an incoming flow of more than c ′i (⟨s

′
i ,v⟩)

from outside ofV ′i , since the incoming flow tov from a vertexu ∈ Vj
for j , i is bounded by f (⟨u,v⟩) according to the strategy of Player j ,
and the initial incoming flow to v is init(v). Let | fi | be maximum

flow in G′i . In order to prove that Player i has no beneficial deviation
from P , we prove that | fi | = outcomei (P). Thus, Player i cannot
increase the incoming flow to a vertex u ∈ V ′i from outside of V ′i
beyond c ′i (⟨s

′
i ,u⟩), and under this restriction she cannot increase

the flow that reaches ti .
In order to prove that | fi | = outcomei (P), we describe a run of

the FF method on G′i that is induced by the run on G′ described

above. Intuitively, if an augmenting path in the residual graph of G′

visits V ′i , then each time it enters V ′i , it either reaches ti , in which

case it induces a path from s ′i to ti in the residual graph of G′i , or it

leaves V ′i , in which case it induces a path in the residual graph of

G′i from s ′i to some other vertex. According to the way we chose the

augmenting paths in the residual graphs of G′, if an augmenting

path leaves V ′i then ti is not V
′
i -reachable from the vertices in this

augmenting path. We partition the set V ′i in the residual graph of

G′ to a subset H ⊆ V ′i that contains the vertices from which ti
is V ′i -reachable, and a subset H ′ = V ′i \ H . Note that there are no

edges from H ′ to H in the residual graph. Also, according to the

way we choose the augmenting paths, it is not possible that a path

visits a vertex in H and moves to a vertex in H ′. Thus, ti is not
V ′i -reachable from the vertices in H ′ in the residual graphs of G′

also in the subsequent iterations of the algorithm since an edge

from H ′ to H in a subsequent residual graph may appear only if

we use an augmenting path that traverses from H to H ′. Consider
a run of the FF method on G′i where the augmenting paths are

induced by the augmenting paths in the run of the FF method on

G′ that reach ti . We ignore augmenting paths in the run on G′ that

do not reachV ′i , and also ignore subpaths that enter and then leave

V ′i . Recall that we use a variant of the FF method in which after an

augmenting path is found, the next residual graph is obtained by

transferring a flow of 1 in the augmenting path, even if the residual

capacity of this path is greater than 1.

We show that in every iteration, the subgraph induced by the

vertices from which ti is V
′
i -reachable in the residual graph of G′

is similar to the subgraph induced by the vertices from which ti is
V ′i -reachable in the residual graph of G′i . This property follows by

an induction as follows. Note that a subpath inV ′i of an augmenting

path in G′ that enters and leavesV ′i visits only vertices from which

ti is not V
′
i -reachable and does not induce an augmenting path in

G′i . A subpath in V ′i of an augmenting path in the residual graph

of G′ that visits vertices from which ti is V
′
i -reachable induces an

augmenting path in G′i and affects both residual graphs similarly.

In order to show that the FF run that we described on G′i is valid,

we show that after the last iteration, there is no augmenting path in

the residual graph of G′i . Assume that there is a simple augmenting

path τ in the residual graph of G′i after the last iteration and let

⟨s ′i ,u⟩ be the first edge in τ . We denote the residual graphs ofG′ and

G′i after the last iteration byG
′′
andG′′i respectively.We denote the

flow obtained for G′i by д : E ′i → IN, thus, G′′i is the residual graph

of G′i for the flow д. Since ti is V
′
i -reachable from u in G′′i then it

is also V ′i -reachable from u in G′′. Hence, ti is also V
′
i -reachable

from u in the residual graphs in all the iterations of the runs on G′

and G′i . Every augmenting path that reaches u in the run on G′ in-

duces an augmenting path in the run on G′i . Therefore, д(⟨s
′
i ,u⟩) =∑

v ∈(V ′\V ′i )
f (⟨v,u⟩) = f (⟨s,u⟩)+

∑
v ∈(V ′\(V ′i ∪{s }))

f (⟨v,u⟩). Since

ti is reachable from u in G′′ and there are no augmenting paths

in G′′ then f (⟨s,u⟩) = c ′(⟨s,u⟩) = init(u). Thus, д(⟨s ′i ,u⟩) =
init(u) +

∑
v ∈(V ′\(V ′i ∪{s }))

f (⟨v,u⟩) = c ′i (⟨s
′
i ,u⟩). Therefore, we

have reached a contradiction to the assumption that τ is an aug-

menting path in G′′i that starts with the edge ⟨s ′i ,u⟩.
Note that the augmenting paths in the run on G′i correspond to

the augmenting paths in the run on G′ that reach ti . Hence, the
maximum flow in G′i equals the incoming flow to ti according to
f , which equals the flow that reaches ti in the MFGD G with the

profile P .
We now analyze the complexity of the algorithm. In each itera-

tion of the FF run, finding the augmenting path can be done in linear

time by solving reachability problems. The number of iterations is

the value of the maximum flow, which is bounded by

∑
v ∈V init(v).

Since init is given in unary, the time complexity of the algorithm is

polynomial. �

As in the case of MFGs, the PoA for MFGDs is unbounded, and

the BR problem for MFGDs is NP-complete. The proofs are similar

to these of Theorems 3.4 and 4.1.

Theorem 5.2. The PoA in MFGDs is unbounded.

Theorem 5.3. The BR problem for MFGDs is NP-complete.

6 NON-INTEGRAL MFGS
Recall that the capacities in an MFG are integral and that a pol-

icy for a vertex can assign only integral flows. As discussed in

Section 1, integral-flow MFGs arise naturally in settings in which

the objects we transfer along the network cannot be divided into

fractions. Moreover, sometimes, as in the cases of messages or

other information packages, objects can be split up to a known

granularity. It is easy to see that by multiplying all capacities by a

factor γ and solving an integer-flow game in the obtained game,

we get a solution that involves strategies with fractions of
1

γ in the

original game. In the traditional maximum-flow problem, which

corresponds to the SO, it is well known that when the capacities are

integral, then there exists an integral maximum flow. In this section

we study an extension of MFGs to non-integral strategies. Let IR+
denote the set of non-negative real numbers. A non-integral policy
for a vertex u ∈ V is a function fu : IR+ → IR

Eu�

+ such that for
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every flow x ∈ IR+ and edge e ∈ Eu�
, we have fu (x)(e) ≤ c(e) and∑

e ∈Eu� fu (x)(e) = min{x ,
∑
e ∈Eu� c(e)}. We say that a strategy

is a non-integral strategy if it contains non-integral policies. We

first show that, interestingly, non-integral strategies are stronger,

in the sense they can guarantee strictly greater outcomes. Formally,

for a strategy πi of Player i and a threshold λ > 0, we say that πi
guarantees outcome λ if for every profile P in which Player i uses
πi , we have that outcomei (P) ≥ λ.

Theorem 6.1. There is an MFG with integral capacities and initial
flow, and a threshold λ, such that no integral strategy of Player i
guarantees outcome λ, yet Player i has a non-integral strategy that
guarantees outcome λ.

u

v1

v0

v2

t1 t2
2

Figure 7: Player 1 can guarantee a flow of 1.5 that cannot be
guaranteed using integral strategies

Proof. Consider the MFG G appearing in Figure 7. Note that

init(u) = 2, and the capacity of every edge is 1. Consider the follow-

ing strategy π1 of Player 1. In verticesv1 andv2, if the incoming flow

is more than 1, the policy is to direct a flow of 1 to t1 and the remain-

ing incoming flow to t2. If the incoming flow is less than or equal

to 1, then the policy is to direct the entire flow to t1. The policy in

v0 is to split an incoming flow equally between v1 and v2 Formally,

fv1
(x)(⟨v1, t1⟩) = min{1,x} and fv1

(x)(⟨v1, t2⟩) = max{0,x − 1},

and similarly for v2. Also, fv0
(x)(⟨v0,v1⟩) = fv0

(x)(⟨v0,v2⟩) =
x
2
.

It is not hard to see that π1 guarantees a flow of 1.5. Also, an in-

tegral strategy cannot guarantee a flow of 1.5. To see this, note

that for every candidate integral strategy π1 of Player 1, Player 2

can respond with a strategy that would cause the incoming flow to

either v1 or v2 to be 2, forcing Player 1 to direct a flow of 1 to t2.
Note that we could take two copies of G and obtain an example

with a threshold of 3. Thus, the superiority of non-integral strategies

applies to both integral and non-integral thresholds. Note also that

just multiplying all capacities by 2 is not sufficient for getting an

example with threshold 3. �

Theorem 6.1 motivates the study of Non-Integral MFGs (NIMFGs,

for short), where players may use non-integral strategies. Note that

the capacity of the edges and the initial flow assigned by init are
still integral. We first show that the bad news about the stability of

MFGs are carried over to NIMFGs:

Theorem 6.2. There exists an NIMFG with no NE. The PoA and
PoS of NIMFGs are unbounded.

Proof. We start with the first claim and show that the MFG

with no NE described in the proof of Theorem 3.1 does not have an

NE even when we allow non-integral strategies. In fact, the proof

there stays valid, except that now x3,x4, and x5 are in [0, 1] rather

than {0, 1}. Similarly, the examples for the unbounded PoA and PoS

for MFGs, described in the proofs of Theorems 3.4 and 3.5 apply

also to NIMFGs. �

On the positive side, since the SO involves integral flows, and

the profile described in the proof of Theorem 5.1 is resistant also to

deviations by non-integral strategies, the good news about the PoS

of MFGDs being 1 stays valid in the non-integral case.

Finally, since the policies in NIMFGs should refer to uncountably

many possible incoming flow values, there is no finite representa-

tion of strategies. Since the BR problem gets a profile as an input, it

is not well defined for NIMFGs. As we elaborate in Section 7, the

challenge is to find a finite representation of non-integral strategies

to which attention can be restricted.

7 DISCUSSION
Today’s computing environment involves systems with no central

authority. This calls for a game-theoretic examination of classical

algorithmic problems. We introduced and studied MFGs, which

capture settings in which the vertices of a flow network are owned

by entities with different destination objectives. While the results

regarding the stability and efficiency of MFGs are negative, we

show that allowing the players to drop flow makes the game much

more stable and efficient: an MFGD always has an SO that is an

NE, and that can be found in polynomial time. This positive result

implies that even networks that are controlled by many different

entities can reach a stable SO. Also, when considering networks

that are controlled by different entities, allowing them to drop flow

is recommended in order to improve stability and efficiency.

Unlike the traditional maximum-flow problem, where an integral

maximum flow always exists, in MFGs players can benefit from

using non-integral strategies. The need to consider real-valued

flows gives rise to the challenge of finite representation of strategies.

One way to cope with it is to prove a sufficient-granularity property,

bounding the granularity to which unit flows should be divided.

Anotherway is to develop a specification formalism for non-integral

strategies, say “saturate the edge to v1 and divide the remaining

flow evenly betweenv2 andv3”. A finite representation of strategies

would make it possible to reason about a best-response dynamics

in NIMFGs, and may simplify the witnesses used in the NP and

ΣP
2
algorithms for MFGs. A related future work is an extension of

MFGs to a probabilistic setting, where policies in vertices specify

for each outgoing edge the probability that an incoming flow would

be directed to it. Thus, profiles induce a distribution over possible

flows, and the objective of a player is to increase the flow expected

to reach her target vertex. While the probabilistic setting may seem

more stable, our negative results in the non-integral case may carry

over to it, as strategies that break an integral flow to fractions in

[0, 1] have a lot in common with strategies that direct this integral

flow according to probabilities in [0, 1].

Finally, MFGs motivate problems around network design, where

the goal is to design stable networks. In particular, in MFG repair,
we are given an MFG and we are asked to modify it in order to

achieve stability or reduce the PoS or PoA (see [3], for a similar

study in the context of repairingmulti-agent systemswithω-regular
objectives). Allowed modifications may increase or decrease the

capacity of edges, change ownership of vertices, possibly assigning

some vertices to an authority. Each such modification has a cost,

and the goal is to understand the trade-off between the budget we

have for repairs and the achieved stability.
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