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ABSTRACT
In this paper we introduce hypersequent-based frameworks for the

modeling of defeasible reasoning by means of logic-based argu-

mentation. These frameworks are an extension of sequent-based

argumentation frameworks, in which arguments are represented

not only by sequents, but by more general expressions, called hyper-
sequents. This generalization allows to incorporate, as the deductive-
base of our formalism, some well-studied logics like the modal logic

S5, the relevant logic RM, and Gödel–Dummett logic LC, to which

no cut-free sequent calculi are known. In this paper we take S5 as
the core logic and show that the hypersequent-based argumentation

frameworks that are obtained in this case yield a robust defeasible

variant of S5 with several desirable properties.
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1 INTRODUCTION
Argumentation theory has been described as “a core study within ar-
tificial intelligence” [10]. Logical argumentation (sometimes called

deductive or structural argumentation) is a branch of argumen-

tation theory in which arguments have a specific structure. This

includes rule-based argumentation systems such as ASPIC
+
[36],

assumption-based argumentation (ABA) systems [13], defeasible

logic programming (DeLP) systems [24], and formalisms that are

based on Tarskian logics (e.g., [11]), in which classical logic is the

deductive base (the so-called core logic). The latter were general-
ized in [4] to sequent-based argumentation, where Gentzen’s se-

quents [25], extensively used in proof theory, are incorporated for

representing arguments, and attacks are formulated by special in-

ference rules, called sequent elimination rules. The result is a generic
and modular approach to logical argumentation, in which any logic

with a corresponding sound and complete sequent calculus can be

used as the underlying core logic.

In this paper, which is a companion paper of [14] (where the core

logic is the relevant logic RM), we further extend sequent-based

argumentation to hypersequents [6, 32, 34]. The latter, which may
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be regarded as disjunctions of sequents, turned out to be applicable

for a large variety of non-classical logics (see [20, 30, 31]), including

some well known logics, like S5, RM, and Gödel–Dummett LC,
to which no cut-free sequent calculi are known, but all of which

do have cut-free hypersequent calculi. Proof systems that admit

cut-elimination have multiple proof-theoretic benefits, e.g. they

allow for resolution, guarantee the strong normalization property,

and imply the subformula property. The latter, meaning that for

constructing/proving an argument only its subformulas have to be

taken into account, is essential for reducing the proof space when

looking for counter-arguments, in which case the cut rule should

be avoided.

The usefulness of logical argumentation with hypersequents is

demonstrated here on frameworks whose core logic is the well-

known modal logic S5. Modal logics have already been used as a

descriptive formalism for (abstract) argumentation frameworks (see,

for instance, [8, 18, 26, 27]). Here we take S5 and its hypersequential
calculus GS5 as ‘foundation stones’ that allow us to incorporate

modalities and advanced proof theoretical techniques in the con-

text of deductive argumentation. As a consequence, argumentation-

based methods can be applied to different areas where S5 has been
shown useful, like game theory, model checking, temporal reason-

ing, logics of actions, multi-agent systems and deontic logics for

handling conflicting norms.

The rest of the paper is organized as follows. The next two

sections contain some preliminary material: first, we review the

notions of sequents, hypersequents and the logic S5, and then

we recall some basic notions of sequent-based argumentation. In

Section 4 we extend sequent-based argumentation frameworks to

hypersequential ones, and in Section 5 we consider some properties

of these frameworks and their induced entailments, instantiated in

S5. In Section 6 we summarize the paper and conclude.

2 PRELIMINARIES
We start by reviewing some general background concerning se-

quents [25], hypersequents [6], and the modal logic S5.
Throughout the paper we will consider propositional languages,

denoted by L. Atomic formulas are denoted by p,q, formulas are

denoted by γ ,δ ,ϕ,ψ , sets of formulas are denoted by S,T , and

finite sets of formulas are denoted by Γ,∆, all of which can be

primed or indexed.

Definition 2.1. A logic for a language L is a pair L = ⟨L, ⊢⟩,
where ⊢ is a (Tarskian) consequence relation for L, satisfying, for

every T ,T ′ in L, the following properties:

Reflexivity if ϕ ∈ T , then T ⊢ ϕ;
Monotonicity: if T ′ ⊢ ϕ and T ′ ⊆ T , then T ⊢ ϕ;
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Transitivity (Cut): if T ⊢ ϕ and T ′,ϕ ⊢ ψ , then T ,T ′ ⊢ ψ .

In addition, a logic is assumed to be non-trivial (i.e., there is a non-
empty T and a formula ψ such that T ⊬ ψ ), and structural (i.e.,
closed under substitutions: for every substitution θ and every T

andψ , if T ⊢ ψ then {θ (φ) | φ ∈ T } ⊢ θ (ψ )).

We suppose that the languageL contains the following connectives:

• ⊢-negation ¬, satisfying p ⊬ ¬p and ¬p ⊬ p, for atomic p,
and

• ⊢-conjunction ∧, satisfying S ⊢ ϕ ∧ψ iff S ⊢ ϕ and S ⊢ ψ
for L-formulas ϕ,ψ and a set S of L-formulas.

In addition, L may also contain the following connectives:

• ⊢-disjunction ∨, for which S,ϕ ∨ ψ ⊢ Γ iff S,ϕ ⊢ Γ and

S,ψ ⊢ Γ,
• ⊢-implication ⊃, for which S,ϕ ⊢ ψ iff S ⊢ ϕ ⊃ ψ .

In what follows we shall abbreviate (ϕ ⊃ ψ ) ∧ (ψ ⊃ ϕ) by ϕ ↔ ψ ,
denote by

∧
Γ (respectively, by

∨
Γ), the conjunction (respectively,

the disjunction) of all the formulas in Γ, and let ¬S = {¬ϕ | ϕ ∈ S}.

Definition 2.2. Let L = ⟨L, ⊢⟩ be a logic and let S be a set of

L-formulas.

• CNL (S) denotes the closure of S (so CNL (S) = {ϕ | S ⊢ ϕ}).
• S is consistent (for ⊢), if there is no finite S′ ⊆ S such that

⊢ ¬
∧
S′.1

Definition 2.3. Let L = ⟨L, ⊢⟩ be a logic and let S be a set of

formulas in L. An L-sequent (a sequent for short) is an expression

of the form Γ ⇒ ∆, where Γ and ∆ are finite sets of L-formulas

and⇒ is a symbol that does not appear in L.

The formal systems used for the constructions of sequents for a

logic L = ⟨L, ⊢⟩, are called sequent calculi [25]. In what follows we

shall assume that a sequent calculus C is sound and complete for

its logic (i.e., Γ ⇒ ψ is provable in C iff Γ ⊢ ψ ).

2.1 Hypersequents and Their Inference Rules
Unfortunately, ordinary sequent calculi do not satisfactory capture

all the interesting logics. For some logics, which have a clear and

simple semantics, no cut-free sequent calculus is known. Notable

examples are the Gödel–Dummett intermediate logic LC, the rele-
vant logic RM and the modal logic S5. A large range of extensions

of Gentzen’s original sequent calculi have been introduced in the

last decades for providing decent proof systems for different non-

classical logics. As we indicated previously, in our context this is

very important, e.g., for reducing the proof space in a quest for

appropriate arguments and counter-arguments. Here we consider

a natural extension of sequent calculi, called hypersequent calculi.
Hypersequents were independently introduced by Mints [32], Pot-

tinger [34] and Avron [6], nowadays Avron’s notation is mostly

used (see, e.g., [7]). Intuitively, a hypersequent is a finite multiset

(or sequence) of sequents, which is true if and only if at least one

of its component sequents is true.

Definition 2.4. An L-hypersequent [7] is a finite multiset of se-

quents of the form Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n , where Γi ⇒ ∆i

1
Note that if S is consistent, then so are CNL (S) and S

′
for every S′ ⊆ S. If S is

inconsistent, then so is every superset of S.

(1 ≤ i ≤ n) are L-sequents and | is a new symbol, not appearing in

L.2 Each Γi ⇒ ∆i is called a component of the hypersequent.

Clearly, every ordinary sequent is a hypersequent. We shall

denote hypersequents by G,H , primed or indexed if needed. Given

a hypersequent H = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n , the support of H
is the set Supp(H ) = {Γ1, . . . , Γn } and the consequent of H is the

formulaConc(H ) =
∨

∆1∨. . .∨
∨

∆n . For a setΛ of hypersequents,

we let Concs(Λ) = {Conc(H ) | H ∈ Λ}.

Example 2.5. Like in Gentzen’s sequent calculi, hypersequent

axioms have the formψ ⇒ ψ . Consider the right implication rule of

Gentzen’s calculus LK for classical logic (the rule on the left below).

The corresponding hypersequent rule is similar, now with added

components (see the rule on the right below):

Γ,ϕ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ ⊃ ψ
(⇒⊃)

G | Γ,ϕ ⇒ ∆,ψ

G | Γ ⇒ ∆,ϕ ⊃ ψ
(⇒⊃)

For another example, the left negation rule of LK, presented on the

left below, is translated to the hypersequantial rule on the right

below:

Γ ⇒ ∆,ψ

Γ,¬ψ ⇒ ∆
(¬⇒)

G | Γ ⇒ ∆,ψ

G | Γ,¬ψ ⇒ ∆
(¬⇒)

2.2 S5 and the Hypersequent Calculus GS5
Most of the important systems in propositional modal logic (like K,
K4, T, and S4) have ordinary, cut-free Gentzen-type formulations.

The sequential system for S4, for example, is obtained from that

of classical logic by adding to it the following two rules for □,
3

where □Γ is a sequence of formulas that begin with □ (that is, if

Γ = {γ1, . . . ,γk } then □Γ = {□γ1, . . . ,□γk }):

Γ,ϕ ⇒ ∆

Γ,□ϕ ⇒ ∆
(□⇒)

□Γ ⇒ ϕ

□Γ ⇒ □ϕ
(⇒□)

The logic S5 is an important modal system for which no such

cut-free system is known. In its usual formulation the rule (⇒□)
of S4 is strengthened to:

□Γ ⇒ ϕ,□∆

□Γ ⇒ □ϕ,□∆
.

It is easy to see, however, that p ⇒ □¬□¬p is derivable in this

system using a cut on □¬p, but it has no cut-free proof.
4

As shown in [7] and [34], the problem of providing a cut-free

formulation for S5 can be a solved with the help of hypersequents.

In Figure 1 we recall the hypersequential calculus GS5, introduced
in [7].

5, 6, 7

2
The common, intuitive interpretation of the sign “ |” is disjunction.

3
For simplicity we deal only with□, taking ^ as a definable connective.

4
Only analytic cut (on subformulas of the proved sequent) suffice for the proof.

5
The structural rules of GS5 are abbreviated as follows: MS – modularized splitting,

IW – internal weakening, EW – external weakening, EC – external contraction.

6
Other hypersequential calculi for S5 are available, e.g., in [9] and [12].

7
In the presence of (MS ) the rule (⇒□) can be strengthened to the usual rule of S5,

in a hypersequential form:
G|□Γ⇒□∆,ϕ
G|□Γ⇒□∆,□ϕ .
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Axioms: φ ⇒ φ
Logical rules:

(∧⇒)

G | Γ, φ, ψ ⇒ ∆

G | Γ, φ ∧ψ ⇒ ∆
(∨⇒)

G | Γ, φ ⇒ ∆ G | Γ, ψ ⇒ ∆

G | Γ, φ ∨ψ ⇒ ∆
(⊃⇒)

G | Γ ⇒ φ, ∆ G | Γ, ψ ⇒ ∆

G | Γ, φ ⊃ ψ ⇒ ∆

(⇒∧)
G | Γ ⇒ φ, ∆ G | Γ ⇒ ψ , ∆

G | Γ ⇒ φ ∧ψ , ∆
(⇒∨)

G | Γ ⇒ φ, ψ∆

G |Γ ⇒φ∨ψ , ∆
(⇒⊃)

G | Γ, φ ⇒ ψ , ∆
G | Γ ⇒ φ ⊃ ψ , ∆

(¬⇒)

G | Γ ⇒ φ, ∆
G | Γ, ¬φ ⇒ ∆

(□⇒)

G | Γ, φ ⇒ ∆

G | Γ, □φ ⇒ ∆

(⇒¬)
G | Γ, φ ⇒ ∆

G | Γ ⇒, ¬φ, ∆
(⇒□)

G | □Γ ⇒ φ
G | □Γ ⇒ □φ

Structural rules:

(Cut)
G | Γ1 ⇒ φ, ∆ G | φ, Γ2 ⇒ ∆

G | Γ1, Γ2 ⇒ ∆
(MS)

G | □Γ1, Γ2 ⇒ □∆1, ∆2

G | □Γ1 ⇒ □∆1 | Γ2 ⇒ ∆2

(IW)
G | Γ1 ⇒ ∆1

G | Γ1, Γ2 ⇒ ∆1, ∆2

(EC)
G | s | s
G | s

(EW)
G

G | s

Figure 1: The hypersequent calculus GS5

Example 2.6. Below we show how ¬□ψ ⊃ □¬□ψ (known as

Axiom 5 in modal logic) can be proven in GS5:

□ψ ⇒ □ψ

□ψ ,¬□ψ ⇒
(¬⇒)

□ψ ⇒ | ¬□ψ ⇒
(MS)

⇒ ¬□ψ | ¬□ψ ⇒
(⇒¬)

⇒ □¬□ψ | ¬□ψ ⇒
(⇒□)

¬□ψ ⇒ □¬□ψ | ¬□ψ ⇒ □¬□ψ
(IW ×2)

¬□ψ ⇒ □¬□ψ
(EC)

⇒ ¬□ψ ⊃ □¬□ψ
(⇒⊃)

In [7] it is shown that GS5 admits cut-elimination and that it

corresponds to S5 in the following sense:

Theorem 2.7. Let H = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a hy-
persequent, where for each 1 ≤ i ≤ n, Γi = {γ i

1
, . . . ,γ imi

} and
∆i = {δ

i
1
, . . . ,δ ili

}. Then H is derivable in GS5 if and only if the

following formula τ (H ) is a theorem of S5: 8

τ (H ) = □
(
¬γ 1

1
∨ . . . ∨ ¬γ 1m1

∨ δ1
1
∨ . . . ∨ δ1l1

)
∨ . . .

∨□
(
¬γn

1
∨ . . . ∨ ¬γnmn

∨ δn
1
∨ . . . ∨ δnln

)
.

(1)

3 SEQUENT-BASED FRAMEWORKS
In logical argumentation, arguments have a specific structure ac-

cording to the underlying language (see [11, 33, 35, 38]). A natural

representation of such an argument is by a sequent [4] (Defini-

tion 2.3).

Definition 3.1. Let L = ⟨L, ⊢⟩ be a logic and let S be a set of

formulas in L.

• An L-argument (an argument, for short) is a single-conclusion
L-sequent Γ ⇒ ψ ,9 where Γ ⊢ ψ . Γ is called the support set
of the argument andψ its conclusion.

8
That is, the sequent⇒τ (H ) is derivable in a standard ordinary sequential formula-

tion of S5 (like the one described above).

9
Set signs in arguments are omitted.

• An L-argument based on S is an L-argument Γ ⇒ ψ , where
Γ ⊆ S. We denote by ArgL (S) the set of all the L-arguments

that are based on S.

One of the advantages of sequent-based argumentation is that

any logic with a corresponding sound and complete sequent calcu-

lus can be used as the core logic. Accordingly, the construction of

arguments from simpler arguments is done by the inference rules

of the sequent calculus.
10

Argumentation systems contain also attacks between arguments.

In our case, attacks are represented by sequent elimination rules.
Such a rule consists of an attacking argument (the first condition of

the rule), an attacked argument (the last condition of the rule), con-

ditions for the attack (the conditions in between) and a conclusion

(the eliminated attacked sequent). The outcome of an application

of such a rule is that the attacked sequent is ‘eliminated’. The elimi-

nation of a sequent s = Γ ⇒ ∆ is denoted by s or Γ ̸⇒ ∆.

Definition 3.2. A sequent elimination (or attack) rule is a rule R
of the form:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n
Γn ̸⇒ ∆n

R
(2)

Let L = ⟨L, ⊢⟩ be a logic with a sequent calculus C and let R be an

elimination rule as above. If

(1) Γ ⇒ ψ ∈ ArgL (S) is an instance of Γ1 ⇒ ∆1,

(2) Γ′ ⇒ ψ ′ ∈ ArgL (S) is an instance of Γn ⇒ ∆n , and
(3) all the other conditions of R (i.e., Γi ⇒ ∆i for i = 2, . . . ,n−1)

are provable in C,

we say that the argument Γ ⇒ ψ R-attacks the argument Γ′ ⇒ ψ ′.

10
See [4] for further advantages of the sequent-based approach.
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Example 3.3. We refer to [4, 39] for a definition of many sequent

elimination rules. Below are three of them (assuming that Γ2 , ∅):

Defeat (Def):

Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬
∧

Γ2 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Undercut (Ucut):

Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬
∧

Γ2 Γ2, Γ
′
2
⇒ ψ2

Γ2, Γ
′
2
̸⇒ ψ2

Consistency Undercut (ConUcut):

⇒ ¬
∧

Γ Γ, Γ′ ⇒ ψ

Γ, Γ′ ̸⇒ ψ

A sequent-based argumentation framework is now defined as

follows:

Definition 3.4. A sequent-based argumentation framework for a

set of formulas S based on a logic L = ⟨L, ⊢⟩ and a set ER of

sequent elimination rules, is a pair AFL,ER (S) =
〈
ArgL (S),A

〉
,

where A ⊆ ArgL (S) × ArgL (S) and (a1,a2) ∈ A iff there is an

R ∈ ER such that a1 R-attacks a2.

In what follows, to shorten a bit the notations, when the set ER
of the elimination rules is known or arbitrary, we shall omit it from

the notation of the argumentation framework at hand, and just

write AFL (S).

Example 3.5. Consider the set S = {□(p ∨q),□(p ∨¬q),□¬p, r }
of S5-formulas. Let AFS5, {Def } (S) =

〈
ArgS5 (S),A

〉
be the argu-

mentation framework for S, based on S5 and the attack rule Defeat.
The following ordinary sequent arguments are part of ArgS5 (S):

a0 = r ⇒ r

a1 = □(p ∨ q) ⇒ □(p ∨ q)

a2 = □(p ∨ ¬q) ⇒ □(p ∨ ¬q)

a3 = □¬p ⇒ □¬p

a4 = □(p ∨ ¬q),□¬p ⇒ ¬□(p ∨ q)

a5 = □(p ∨ q),□¬p ⇒ ¬□(p ∨ ¬q)

a6 = □(p ∨ q),□(p ∨ ¬q) ⇒ ¬□¬p

Figure 2 depicts a graphical representation of these arguments

and the attacks between them.

a0a1

a2 a6 a3

a4

a5

Figure 2: Part of the sequent-based argumentation graph for
S = {□(p ∨ q),□(p ∨ ¬q),□¬p, r } (Example 3.5)

Given a (sequent-based) argumentation framework AFL (S),
we can apply Dung-style semantics [23] to it, to determine what

combinations of arguments (called extensions) can collectively be

accepted from AFL (S). This is defined next.

Definition 3.6. Let AFL (S) =
〈
ArgL (S),A

〉
be an argumenta-

tion framework and let S ⊆ ArgL (S) be a set of arguments.

• S attacks an argument a if there is an a′ ∈ S such that

(a′,a) ∈ A;

• S defends an argument a if S attacks every attacker of a;
• S is conflict-free if there are no arguments a1,a2 ∈ S such

that (a1,a2) ∈ A;

• S is admissible if it is conflict-free and it defends all of its

elements.

An admissible set that contains all the arguments that it defends

is a complete extension of AFL (S). Below are definitions of some

particular complete extensions of AFL (S):

• the grounded extension of AFL (S) is the minimal (with re-

spect to ⊆) complete extension of ArgL (S),
11

• a preferred extension of AFL (S) is a maximal (with respect

to ⊆) complete extension of ArgL (S),
• a stable extension of AFL (S) is a complete extension of

ArgL (S) that attacks every argument not in it.

In what follows we shall refer to either complete (cmp), grounded
(gr), preferred (prf) or stable (stb) semantics as completeness-based
semantics. We denote by Extsem (AFL (S)) the set of all the exten-
sions of AFL (S) under the semantics sem ∈ {cmp, gr, prf, stb}.
The subscript is omitted when this is clear from the context.

Example 3.7. ConsiderAFS5, {Def } (S), the argumentation frame-

work from Example 3.5. Note that the argument a0 is not attacked.
Moreover, any attacker of a0 would have an inconsistent support,

and so it is counter-attacked by arguments of the form⇒r ∨ ¬r .
Therefore, a0 is in the grounded extension of AFS5, {def } (S).

Definition 3.8. Given a sequent-based argumentation framework

AFL (S), the semantics as defined in Def. 3.6 induce correspond-

ing entailment relations: S |∼∩sem ϕ (S |∼∪sem ϕ) iff for every (some)

extension E ∈ Extsem (AFL (S)), there is an argument Γ ⇒ ϕ ∈ E
for some Γ ⊆ S. Since the grounded extension is unique, |∼∩gr and

|∼∪gr coincide, so both of them can be denoted by |∼gr.

Example 3.9. In Example 3.7 we have that S |∼gr r , while S |≁grϕ
for any ϕ ∈ S \ {r }. Thus, for sem ∈ {cmp, prf, stb}, we have that
S|≁∩semϕ. On the other hand, for everyψ ∈ S, it holds thatS|∼∪semψ .

To define hypersequent-based argumentation frameworks, it

is not enough to simply take the hypersequent inference rules

to create arguments. A new definition of arguments is required

and sequent elimination rules should be turned into hypersequent

elimination rules. This is what we will do in the next section.

4 HYPERSEQUENT-BASED FRAMEWORKS
Given a logic L = ⟨L, ⊢⟩ with a sound and complete hypersequent

calculusH, in what follows an argument (or an L-hyperargument) is

an L-hypersequent (i.e., whose components are L-sequents) that is

provable inH. Since a sequent is a particular case of a hypersequent
and hypersequent calculi generalize sequent calculi, arguments

in the sense of the previous sections are particular cases of the

arguments according to the new definition.

An argument based on a set S (of formulas in L), is an L-
hyperargument H such that every Γ ∈ Supp(H ) is a subset of

11
It is well-known [23] that the grounded extension is unique for a given framework.

Session 27: Argumentation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1100



S. In what follows we shall continue to denote by ArgL (S) the set
of arguments that are based on S.

As before, arguments are constructed by the inference rules of

the hypersequent calculus under consideration. For the attack rules

we continue to denote byH the elimination of the hypersequent

H . The structure of such rules remains the same as before as well:

the first hypersequent in the conditions of the rule is the attacking

argument, the last hypersequent is the attacked argument, and the

rest of the conditions are to be satisfied for the attack to take place.

Example 4.1. Let G,H be two arguments, ∅ , ∆j ∈ {∆1, . . . ,

∆m } = Supp(H ) and ∆′j ⊆ ∆j . Below are hypersequential coun-

terparts of the elimination rules Defeat, Undercut and Consistency

Undercut in Example 3.3.

G ⇒ Conc(G) ⊃ ¬
∧
∆j H

H
DefH

G ⇒ Conc(G) ↔ ¬
∧
∆′j H

H
UcutH

⇒ ¬
∧m
i=1
∧
∆i H

H
ConUcutH

The notion of attack between hypersequents is the same as in

Definition 3.2, except that sequents are replaced by hypersequents

and the sequent calculusC is replaced by a hypersequent calculusH.
Now, a hypersequent-based argumentation framework can be de-

fined in a similar way as that of a sequent-based argumentation

framework (cf. Definition 3.4).

Definition 4.2. A hypersequent-based argumentation framework
for a set of formulasS based on a logic L = ⟨L, ⊢⟩ and a set ER of hy-

persequent elimination rules, is a pairAFL,ER (S) =
〈
ArgL (S),A

〉
,

where ArgL (S) a set of arguments (i.e., a set of L-hyperarguments),

A ⊆ ArgL (S) ×ArgL (S), and (H1,H2) ∈ A iff there is an R ∈ ER
such thatH1 R-attacksH2.

Like before, we will omit the subscript ER when the set of elimi-

nation rules is known or arbitrary.

Example 4.3. Recall the sequent-based argumentation frame-

work AFS5, {Def } (S) for the set S = {□(p ∨ q),□(p ∨ ¬q),□¬p, r }
and the arguments {a0,a1,a2,a3,a4,a5,a6} ⊆ ArgS5 (S). When

generalizing to hypersequents the following three arguments are

part of ArgS5 (S):

a7 = □(p ∨ ¬q) ⇒ ¬□(p ∨ q) | □¬p ⇒ ¬□(p ∨ q)

a8 = □(p ∨ q) ⇒ ¬□(p ∨ ¬q) | □¬p ⇒ ¬□(p ∨ ¬q)

a9 = □(p ∨ q) ⇒ ¬□¬p | □(p ∨ ¬q) ⇒ ¬□¬p

Moreover, by using DefH instead of Def as the attack rule, addi-

tional attacks are available as well. For the graphical representation

see Figure 3, in which the dashed part represents the ordinary

sequent-based framework and the solid part represents the new

arguments and attacks in the hypersequent-based framework.
12

12
In case of Undercut attacks, the arrows from a1 to a4 , from a2 to a5 , and from a3 to

a6 should be removed.

a0a1

a2 a6 a3

a4

a5

a7 a8 a9

Figure 3: Extension of Figure 2 (the dashed graph) to hyper-
sequents (Example 4.3).

Given a hypersequent-based argumentation frameworkAFL (S),
Dung-style semantics are defined in an equivalent way to those in

Definition 3.6, and so are the corresponding entailment relations

(cf. Definition 3.8).

Definition 4.4. Given a hypersequent-based argumentation frame-

work AFL (S), we denote S |∼
∩
H,sem ϕ (S |∼∪H,sem ϕ) iff for every

(some) E ∈ Extsem (AFL (S)) there is an argument H ∈ E such

that Conc(H ) = ϕ and

⋃
Supp(H ) ⊆ S.13

5 SOME PROPERTIES OF THE INDUCED
ENTAILMENT RELATIONS

In this section we consider some of the properties of the entailment

relations |∼∩H,sem and |∼∪H,sem defined in Definition 4.4. We start in

a general setting, taking a logic L = ⟨L, ⊢⟩, with its hypersequent

calculusH, as the core logic of a hypersequent-based argumentation

framework AFL (S), induced by the set of formulas S and the

attack rules ConUcutH together with either UcutH or DefH . In

what follows, we shall sometimes abbreviate |∼∩H,sem (for any sem ∈

{cmp, gr, prf, stb}) by |∼∩, and |∼∪H,sem by |∼∪.

Proposition 5.1. IfS is consistent or conflict-free, ⊢, |∼∩, and |∼∪

coincide.

Proof. It is easy to see that under either of the conditions of the

proposition ArgL (S) is conflict-free. The proof then follows from

the fact that in this case Extsem (AFL (S)) = {ArgL (S)}. □

Lemma 5.2. LetH be a hypersequent such that
⋃

Supp(H ) is not
consistent, and letE ∈ Extsem (AFL (S)) for some sem ∈ {cmp, gr, prf, stb}.
In the presence of ConUcutH , we have that:

a) H < E, and
b) E defends arguments from attacks byH .

Proof. Since ΓH =
⋃

Supp(H ) is inconsistent, G =⇒¬
∧

ΓH
is provable. Note that G cannot be attacked since it has an empty

13
Again, the subscript H will be omitted when this is clear from the context.
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support, and soG ∈ Extgrd (AFL (S)) ⊆ E.
14
Moreover,G ConUcutH -

attacks H , thus H < E (otherwise E is not conflict free), and E

defends any argumentH ′ that is attacked byH . □

Proposition 5.3. We say that |∼ is paraconsistent if it is not triv-
ialized in the presence of inconsistency: for all atoms p , q it holds
that p,¬p |≁ q. Then |∼∪ and |∼∩ are paraconsistent.

Proof. Let S = {p,¬p}. If S |∼∪ q then there is some E ∈

Extsem (AFL (S)) and some H ∈ E such that

⋃
Supp(H ) ⊆ S

and Conc(H ) = q. Since q does not share any atoms with S,

S ⊆
⋃

Supp(H ). However, then Supp(H ) is inconsistent and so,

by Lemma 5.2,H < E. Thus S |≁∪ q. Since |∼∩ ⊂ |∼∪, we have that
S |≁∩ q as well. □

Proposition 5.4. We say that |∼ is non-monotonic if it does not
satisfy monotonicity (Definition 2.1), i.e., there are S1, S2 and ϕ such
that S1 |∼ ϕ but S1,S2 |≁ ϕ. Then |∼∩ is non-monotonic.

Proof. Let S1 = {p} and S2 = {¬p}. Given a complete (and so

conflict-free) extension E of S1 ∪ S2, if a hypersequent H such

that Conc(H ) = p is in E, there is no hypersequent H ′ in E in

which Conc(H ) = ¬p and vice-versa. It follows that according to

skeptical semantics it is not possible to infer both p and ¬p from

S1 ∪ S2, although by Proposition 5.1 p follows from S1 and ¬p
follows from S2. □

Next, we consider the rationality postulates introduced in [1,

17] for having a quality measure for the different argumentation

frameworks in the literature. The next definitions allow us to adapt

those postulates to our notions and notations.

Definition 5.5. Let L = ⟨L, ⊢⟩ be a logic and let T be a set of

L-formulas. A subset C of T is a minimal conflict of T (w.r.t. ⊢),

if C is inconsistent and for any c ∈ C, the set C \ {c} is consistent.
We denote by Free(T ) the set of formulas in T that are not part of

any minimal conflict of T .

Definition 5.6. We say that an argument H ′ = Γ′
1
⇒ ϕ ′

1
| . . . |

Γ′m ⇒ ϕ ′m is a sub-argument of an argumentH = Γ1 ⇒ ϕ1 | . . . |
Γn ⇒ ϕn , if for each i ∈ {1, . . . ,m} there is a j ∈ {1, . . . ,n} such
that Γ′i ⊆ Γj . The set of sub-arguments ofH is denoted Sub(H ).

In our terms, then, the rationality postulates of [1, 17] are ex-

pressible as follows:

Definition 5.7. Given a hypersequent-based argumentation frame-

work AFL (S), the following properties refer to any extension

E ∈ Extsem (AFL (S)).
15

• closure of extensions: Concs(E) = CNL (Concs(E)).
• closure under sub-arguments: ifH ∈ E then Sub(H ) ⊆ E.
• consistency: Concs(E) is consistent.
• free precedence: ArgL (Free(S)) ⊆ E.

For the proofs of the rationality postulates, we consider the logic

S5 and its corresponding hypersequent calculus GS5 as the core
logic of a hypersequent-based argumentation frameworkAFS5 (S),
like above, induced by the set of formulas S and the attack rules

14
We identify here Extgrd (AFL (S)) with its single element.

15
Thus, the postulates are in fact relative to sem-extensions, but in what follows we

shall show them for every sem ∈ {cmp, gr, prf, stb}.

UcutH orDefH . For free-precedencewe shall also assumeConUcutH .

Below are modularized versions of some postulates.

Definition 5.8. Let E ∈ Extsem (AFS5 (S)) and let Γ ⊆ S. In
what follows we denote:

• Γ□ = {□γ | □γ ∈ Γ}
• E□ = {H ∈ E | H = □Γ1 ⇒ □∆1 | . . . | □Γn ⇒ □∆n }.

16

Definition 5.9. Given a hypersequent-based argumentation frame-

work AFS5 (S), the following properties refer to any extension

E ∈ Extsem (AFS5 (S)).

• modular closure:
□CNS5 (Concs(E□)) ⊆ Concs(E□) ⊆ CNS5 (Concs(E□)).
• modular consistency: Concs(E□) is consistent.

Proposition 5.10. AFS5 (S) with DefH or UcutH satisfies mod-
ular closure of extensions, closure under sub-arguments and modular
consistency. In the presence of ConUcutH , it satisfies free precedence.

Proof. The following facts about derivability in GS5 will be

(implicitly) used:

Lemma 5.11.

(1) If G1 | Γ1 ⇒ ϕ1 and G2 | Γ2,ϕ1 ⇒ ϕ2 are derivable in GS5,
then G1 | G2 | Γ1, Γ2 ⇒ ϕ2 is derivable in GS5.

(2) If G | Γ ⇒ ϕ ⊃ ψ ,∆ is derivable in GS5 then so is G | Γ,ϕ ⇒
ψ ,∆.

(3) If G | ∆ ⇒ ϕ is derivable in GS5 then so is G | ⇒ ¬ϕ ⊃
¬
∧

∆.
(4) If G | ⇒ ϕ ⊃ ¬

∧
Γ′ is derivable in GS5 then G | ⇒ ϕ ⊃

¬
∧

Γ is derivable in GS5 for Γ′ ⊆ Γ.
(5) If Γ1 ⇒ ϕ1 | . . . | Γn ⇒ ϕn is derivable in GS5 Γ1, . . . , Γn ⇒

ϕ1, . . . ,ϕn is also derivable in GS5.
(6) If G | Γ ⇒ □ϕ is derivable in GS5, then so is G | Γ ⇒ ϕ.

Suppose now that E ∈ Extcmp (AFS5 (S)).

Closure under sub-arguments: We show the claim for DefH
(the case for UcutH is left to the reader). Assume thatH ∈ E and

let G ∈ Sub(H ). We shall show that G ∈ E as well. Indeed, if G′

attacksG, then⇒ Conc(G′) ⊃ ¬
∧

ΓGi is derivable inGS5 for some

ΓGi ∈ Supp(G). But G ∈ Sub(H ), thus, ΓGi ⊆ ΓHj ∈ Supp(H ) and

by Lemma 5.11.4, ⇒ Conc(G′) ⊃ ¬
∧

ΓHj is derivable in GS5.
Hence, G′ attacks H as well. However, since H ∈ E, E defends

H and hence E also defends G. Since E is a completeness-based

extension, G ∈ E.

Modular closure of extensions: Clearly (see Definition 2.2), it
holds thatConcs(E□) ⊆ CNS5 (Concs(E□)). Suppose now thatϕ ∈
CNS5 (Concs(E□)). Then there are argumentsH1, . . . ,Hn ∈ E of

the formHi = □Γi
1
⇒ □ψ i

1
| . . . | □Γimi

⇒ □ψ i
mi

withϕi = □ψ i
1
∨

. . .∨□ψ i
mi

, and ϕ1, . . . ,ϕn ⊢S5 ϕ. It can be shown that the sequent

{□Γkj }k=1, ...,n, j=1, ...,mk ⇒ ϕ1 ∧ . . . ∧ ϕn is derivable in GS5, so

by transitivity the sequent {□Γkj }k=1, ...,n, j=1, ...,mk ⇒ ϕ is also

derivable in GS5. By (⇒□) we derive {□Γkj }k=1, ...,n, j=1, ...,mk ⇒

□ϕ, and so by (MS ) the hypersequent H = □Γ1
1
⇒ □ϕ | . . . |

□Γ1m1

⇒ □ϕ | . . . | □Γn
1
⇒ □ϕ | . . . | □Γnmn

⇒ □ϕ is provable

16
Recall that □Γ = {□γ | γ ∈ Γ }.
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in GS5. For both attack rules DefH and UcutH , any attacker ofH

is an attacker of one of the argumentsH1, . . . ,Hn , so E defends

H and since E is complete, H ∈ E. Thus H ∈ E□, and so □ϕ ∈
Concs(E□).

Modular consistency: Assume, towards a contradiction, that

Concs(E□) is not consistent. Then there are argumentsH1, . . . ,Hn ∈

E□ of the form Hi = □Γ
i
1
⇒ □ψ i

1
| . . . | □Γimi

⇒ □ψ i
mi

with

ϕi = □ψ
i
1
∨ . . . ∨ □ψ i

mi
and C = {ϕ1, . . . ,ϕn } is an inconsis-

tent set. Since C is inconsistent, ⇒ ¬
∧n
j=1 ϕ j is derivable. Let

ψ = ϕ1 ∧ . . .∧ϕn . By Lemma 5.11.5 and (⇒∨) it follows thatH ′i =

□Γi
1
, . . . ,□Γimi

⇒ ϕi are derivable, for all i ∈ {1, . . . ,n}. By mono-

tonicity and (⇒∧) onH ′i (i = 1, . . . ,n), we derive □Γ1
1
, . . . ,□Γ1m1

,

. . . ,□Γn
1
, . . . ,□Γnmn

⇒ ψ . By applying (∧⇒), (¬⇒) and (⇒¬)

it follows that ¬ψ ,□Γ1
1
, . . . ,□Γ1m1

, . . . ,□Γ
j
k−1,□Γ

j
k+1, . . . ,□Γ

n
1
, . . . ,

□Γnmn
⇒ ¬

∧
□Γ

j
k is derivable for any j ∈ {1, . . . ,n} and k ∈

{1, . . . ,mj }. So from now on we shall assume that □Γ
j
k is absent

from the left-hand side of the sequents, for a particular k and j. By
cut (Lemma 5.11.1) with ⇒ ¬ψ , we get □Γ1

1
, . . . ,□Γ1m1

, . . . ,□Γn
1
,

. . . ,□Γnmn
⇒ ¬

∧
□Γ

j
k and by applying (⇒□), □Γ1

1
, . . . ,□Γ1m1

, . . . ,

□Γn
1
, . . . ,□Γnmn

⇒ □¬
∧
□Γ

j
k . Now, by modalized splitting (MS ),

G′ = □Γ1
1
⇒ □¬

∧
□Γ

j
k | . . . | □Γ

1

m1

⇒ □¬
∧
□Γ

j
k | . . . | □Γ

n
1
⇒

□¬
∧
□Γ

j
k | . . . | □Γ

n
mn
⇒ □¬

∧
□Γ

j
k is derivable in GS5. By

Lemma 5.11.6 it follows that G = □Γ1
1
⇒ ¬

∧
□Γ

j
k | . . . | □Γ

1

m1

⇒

¬
∧
□Γ

j
k | . . . | □Γ

n
1
⇒ ¬

∧
□Γ

j
k | . . . | □Γ

n
mn
⇒ ¬

∧
□Γ

j
k is

derivable in GS5. Note that any attacker of G is an attacker of one

of the H1, . . . ,Hn , therefore G ∈ E. However, G attacks Hj , a

contradiction with the assumption that E is conflict-free.

Free precedence: Suppose that ConUcutH is one of the attack

rules. It can easily be shown that any of the considered attack

rules is conflict-dependent [1], namely: ifH ,G ∈ ArgS5 (S) andH
attacks G, then

⋃
Supp(H ) ∪

⋃
Supp(G) is inconsistent. Suppose

now that H = Γ1 ⇒ ϕ1 | . . . | Γn ⇒ ϕn ∈ ArgS5 (Free(S)).
Thus

⋃
Supp(H ) ⊆ Free(S). To see that H ∈ E assume that

G = ∆1 ⇒ ψ1 | . . . | ∆m ⇒ ψm ∈ ArgS5 (S) attacks H . Since the

attack rules are conflict-dependent, there is a minimal conflict C ⊆⋃
Supp(H ) ∪

⋃
Supp(G). But

⋃
Supp(H ) ⊆ Free(S), thus C ⊆⋃

Supp(G), and so Supp(G) is not consistent. By Lemma 5.2(b),

then,H is defended by E. Since G is arbitrary and E is complete,

H ∈ E. Thus ArgS5 (Free(S)) ⊆ E. □

We conclude this section by a short remark on the consistency

postulate. As noted e.g. in [2, 19], in logical argumentation the

deductive closure of extensions according to Dung-style semantics

(Definition 3.6) may not be consistent in some cases. As the next

example shows, this phenomenon carries on to hypersequential

frameworks, so the consistency postulate may be violated in our

case as well.

Example 5.12. Consider the set S′ = {p ∨ q,p ∨ ¬q,¬p, r }, ob-
tained from the setS of Example 3.5 by omitting the appearances of

the modal operator □. The arguments of Example 3.5, now without

the □’s, belong to AFS5 (S
′). These arguments, and the attacks

between them, can be represented as in Figure 2. Note that these

arguments, viewed as hypersequents, cannot be split up, since (MS )

is applicable only to formulas with the □-operator. It follows that
E ′ = {a′

1
,a′

2
,a′

3
} (where a′i denotes the argument ai from Exam-

ple 3.5 without the □-operator) is admissible in AFS5 (S
′), but

Conc(E ′) is not consistent.

The last example demonstrates the necessity to trade the consis-

tency postulate for its modularized version (see Proposition 5.10).

Indeed, when switching to hypersequential frameworks with mod-

ular operators, consistency can be guaranteed for arguments in the

form of the elements of E□ (see Definition 5.8). This is intuitively

explained by the introduction of new arguments (and so new at-

tacks), which are obtained by the modularized splitting rule (MS ),
as is illustrated in the next example.

Example 5.13. Unlike the situation described in Example 5.12, in

the hypersequent-based argumentation framework of Example 4.3

(Figure 2) S = {a1,a2,a3} cannot be part of a complete extension

of AFS5 (S). Indeed, a complete extension E, such that S ⊆ E, has
to defend a2 from the attack by a8. In order to do so, E must be

extended with an argument like a4, a6, a7 or a9, but then the new

extension is not conflict-free anymore.

6 CONCLUSION AND FURTHERWORK
In this paper we have generalized sequent-based argumentation

to hypersequents. Hypersequential argumentation, like sequential

argumentation, allows for a great flexibility in defining arguments

and attack rules, and avoids some limitations of other approaches

to deductive logical argumentation, like the requirement that the

arguments’ support sets should be consistent and minimal, or the

adherence to classical logic as the sole core logic (see, e.g., [2, 11]).

Hypersequential frameworks are particularly useful for logics

that lack a decent sequent calculus and so cannot be successfully

applied for sequent-based argumentation. Such a logic is the modal

logic S5, which lacks a cut-free Gentzen-type proof system. It was

shown that hypersequential frameworks that are based on this logic

together with some standard attack rules (formalized for hyper-

sequential arguments) have some interesting properties, among

others modular closure and modular consistency, which are other-

wise not available. This opens up possibilities to integrate further

modal logics and extended frameworks to capture, for instance,

deontic and temporal logics.

Another interesting application of our setting is within the con-

text of agent-based modeling with structured arguments. Indeed,

modal logics serve as a foundation for different multi-agent systems

(see [40]), and the use of modal logics together with structured ar-

gumentation in multi-agent systems was already investigated in

the literature. For instance, in [28] beliefs or information states of

an agent are represented in a modal language, and their interac-

tions are studied from the point of view of argumentation theory,

by means of dialogues, to obtain further information about argu-

ments and attacks. A multi-agent setting where agents reason about

knowledge and/or beliefs of other agents, represented as modality-

based arguments, can also be found e.g. in [37]. A recent modeling

of a multi-agent system based on abstract argumentation theory

can be found in [16], where agents represent scientists that have to

explore an argumentative landscape, consisting of several scientific

theories, and the theory that has the most acceptable arguments is

determined by Dung’s semantics. Our setting is particularly useful
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for a similar purpose, since S5 is considered an important epis-

temic logic [22], (see [21] for a recent overview of the research in

this direction), and so S5 is a basis of both single and multi-agent

logical systems. In that respect, we intend to extend the dynamic

proof theory introduced in [5] from sequent-based frameworks

to hypersequent-based ones, so that the S5-based hypersequential

frameworks presented here will allow an agent to automatically

reason about knowledge, beliefs, obligations, and arguments, de-

pending on the interpretation of the modalities.

Another interesting direction for future work is to further in-

crease the expressive power of the frameworks by adding prefer-

ences among the arguments. Note that to some extent this may be

done already in the current setting. Indeed, when e.g S = {□p,¬p}
is taken as (part of) the set of premises, the argument □p ⇒ □p
defeats ¬p ⇒ ¬p (this is so since □p ⊃ p is an S5-axiom and double-

negation elimination holds in S5), but not vice versa. For a more

fine-grained approach one would probably need to incorporate a

priority function for expressing preferences among arguments , or

introduce a preference criterion, based on the number of modalities

in a formula, as is done in other contexts of prioritized or probabilis-

tic argumentation frameworks (see, e.g., [3, 29] for some discussions

and further references). In both cases, the attack rules, like those

in Example 4.1, would remain the same, but their application will

be determined by the relative strengths of the attacking and the

attacked arguments (that is, the attacking argument should not be

weaker than the attacked argument [3, 15]).
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