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ABSTRACT
In this paper we integrate priorities in sequent-based argumenta-

tion. The former is a useful and extensively investigated tool in the

context of non-monotonic reasoning, and the latter is a modular and

general way of handling logical argumentation. Their combination

offers a platform for representing and reasoning with maximally

consistent subsets of prioritized knowledge bases. Moreover, many

frameworks of the resulting formalisms satisfy common rationality

postulates and other desirable properties, like conflict preservation.
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1 INTRODUCTION
Logical (or structural) argumentation is a branch of argumentation

theory in which arguments have a specific structure. Among others,

it has been shown useful for reasoning about knowledge, beliefs,

goals and norms in agent and multi-agent systems (see, e.g., [18]

for a survey and further references). In logical argumentation, argu-

ments are expressed in terms of formal languages and acceptance

of arguments is determined by logical entailments. A wealth of

research has been conducted on formalizing this kind of argumen-

tation. This includes methods that are based on Tarskian logics, like

Besnard and Hunter’s approach [10], in which classical logic is the

deductive base (the so-called core logic). This approach was gen-

eralized to sequent-based argumentation [7], in which Gentzen’s

sequents [15], extensively used in proof theory, are incorporated for

representing arguments, and attacks are formulated by special infer-

ence rules called sequent elimination rules. The result is a generic

and modular approach to logical argumentation, in which any logic

with a corresponding sound and complete sequent calculus can be

used as the underlying core logic.

An important feature of reasoning in many contexts, including of

course multi-agent systems, is the use of priorities, e.g. to model the

agents’ preferences. For many existing argumentation frameworks

prioritized settings are already available, see, e.g. [2, 13, 19]. The

main contribution of this paper is that we extend some of those

settings to arbitrary propositional languages and logics, where

arguments and the attacks among them are captured in a more

moderated way. For this, we extend sequent-based argumentation

frameworks with a priority function on the well-formed formulas

of the core logic. By keeping the exact definition of the priority

function unspecified, we are able to create a general sequent-based
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framework that can handle different types of preferences, specified

in different languages and for various logics and purposes.

The adequacy of this prioritized version is shown by the validity,

for particular attack rules, of common rationality postulates [1,

12] and by the fact that in the obtained framework conflicts are

tolerated: any extension in the prioritized setting is conflict-free in

the flat (i.e, the non-prioritized) case. Moreover, the use of priorities

allows us to extend to the preferential case some recent results

(see [6, 8]) that sequent-based argumentation frameworks provide

a useful platform for representing and reasoning with maximally

consistent subsets of the premises [22].

The usefulness of our approach will be demonstrated (among

others) on the following toy example (to which we shall return in

the conclusion of the paper), involving agents and preferences.

Example 1.1. [5, 17] An agent, representing a flat owner, nego-

tiates the construction of a swimming pool (s), a tennis-court (t )
and a private car-park (p) with other agents, representing potential

tenants. It is known that any investment in two or more of these

facilities will increase the rent (r ), otherwise the rent will not be
changed. The tenants’ representatives do not have a particular pref-

erence among these options, but if they have to make a choice, they

prefer not to have two sport facilities (s and t ) and definitely do not

want to increase the rent. Based on these inputs, that flat owner’s

representative needs to reach a recommendation about the facility

(or facilities) to be constructed.

The remainder of the paper is organized as follows: the next

section is a survey of the most important notions of sequent-based

argumentation, followed by a section in which the general setting

for the preferences is introduced. In Section 4 we consider some

basic properties of the prioritized frameworks and show their ade-

quacy for defeasible reasoning. Then, in Section 5, we give some

representation results in terms of maximally consistent subsets of

the premises. In Section 6 we consider some related approaches

and conclude.

2 SEQUENT-BASED ARGUMENTATION
Throughout the paper we will consider propositional languages,

denoted by L. Atomic formulas are denoted by p,q, formulas are

denoted by γ ,δ ,ϕ,ψ , sets of formulas are denoted by S,T , and

finite sets of formulas are denoted by Γ,∆, all of which can be

primed or indexed.

Definition 2.1. A logic for a language L is a pair L = ⟨L, ⊢⟩,
where ⊢ is a (Tarskian) consequence relation for L, having the

following properties: reflexivity: if ϕ ∈ S, then S ⊢ ϕ; transitivity:
if S ⊢ ϕ and S′,ϕ ⊢ ψ , then S,S′ ⊢ ψ ; and monotonicity: if S′ ⊢ ϕ
and S′ ⊆ S, then S ⊢ ϕ.

Session 27: Argumentation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1105



We assume that the underlying language L contains the follow-

ing connectives:

• a ⊢-negation ¬: p ⊬ ¬p and ¬p ⊬ p, for every atom p,
• a ⊢-conjunction ∧: S ⊢ ϕ ∧ψ iff S ⊢ ϕ and S ⊢ ψ .

Other connectives L may contain are the following:

• a ⊢-disjunction ∨: S ⊢ ϕ ∨ψ iff S ⊢ ϕ or S ⊢ ψ ,
• a ⊢-implication ⊃: S,ϕ ⊢ ψ iff S ⊢ ϕ ⊃ ψ .

We shall abbreviate (ϕ ⊃ ψ ) ∧ (ψ ⊃ ϕ) by ϕ ↔ ψ , denote by
∧
Γ

(respectively, by

∨
Γ), the conjunction (respectively, the disjunction)

of all the formulas in Γ, and let ¬S = {¬ϕ | ϕ ∈ S}.

As usual in logical argumentation (see, e.g., [10, 20, 21, 23]),

arguments have a specific structure based on the underlying formal

language, the so-called core logic. In the current setting arguments

are represented by the well-known proof theoretical notion of a

sequent.

Definition 2.2. Let L = ⟨L, ⊢⟩ be a logic and S a set of L-

formulas.

• AnL-sequent (sequent for short) is an expression of the form
Γ ⇒ ∆, where Γ and ∆ are finite sets of formulas in L and

⇒ is a symbol that does not appear in L.

• An L-argument (argument for short) is an L-sequent Γ ⇒
ψ ,1 where Γ ⊢ ψ . Γ is called the support set of the argument

andψ its conclusion.
• An L-argument based on S is an L-argument Γ ⇒ ψ , where
Γ ⊆ S. We denote by ArgL (S) the set of all the L-arguments

based on S.

Given an argument a = Γ ⇒ ψ , we denote Sup(a) = Γ and

Con(a) = ψ . We say that a′ is a sub-argument of a iff Sup(a′) ⊆
Sup(a). The set of all the sub-arguments of a is denoted by Sub(a).

The formal systems used for the constructions of sequents (and

so of arguments) for a logic L = ⟨L, ⊢⟩, are sequent calculi [15],
denoted here by C. In what follows we shall assume that C is sound

and complete for L = ⟨L, ⊢⟩, i.e., Γ ⇒ ψ is provable in C iff Γ ⊢ ψ .
One of the advantages of sequent-based argumentation is that any

logic with a corresponding sound and complete sequent calculus

can be used as the core logic.
2
The construction of arguments from

simpler arguments is done by the inference rules of the sequent

calculus [15].

Argumentation systems contain also attacks between arguments.

In our case, attacks are represented by sequent elimination rules.
Such a rule consists of an attacking argument (the first condition of

the rule), an attacked argument (the last condition of the rule), con-

ditions for the attack (the conditions in between) and a conclusion

(the eliminated attacked sequent). The outcome of an application

of such a rule is that the attacked sequent is ‘eliminated’.
3
The

elimination of a sequent a = Γ ⇒ ∆ is denoted by a or Γ ̸⇒ ∆.

Definition 2.3. A sequent elimination rule (or attack rule) is a rule
R of the form:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n
Γn ̸⇒ ∆n

R

1
Set signs in arguments are omitted.

2
See [7] for further advantages of this approach.

3
That is, the eliminated sequent should not be used as a condition of later applications

of rules in the derivation, nor is it considered a valid conclusion of the derivation.

a1a4

a2a5

a6 a3

a7

a8

Figure 1: Part of the sequent-based argumentation graph for
S = {p,q,¬p ∨ ¬q} from Example 2.6

Let Γ ⇒ ψ , Γ′ ⇒ ψ ′ ∈ ArgL (S) and let R be an elimination rule.

If Γ ⇒ ψ is an instance of Γ1 ⇒ ∆1, Γ
′ ⇒ ψ ′ is an instance of

Γn ⇒ ∆n and all the other conditions of R are provable in C, we
say that Γ ⇒ ψ R-attacks Γ′ ⇒ ψ ′.

Example 2.4. We refer to [7, 24] for a definition of many sequent

elimination rules. Below are three of them (assuming that Γ2 , ∅):

Undercut (Ucut):

Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬
∧

Γ2 Γ2, Γ
′
2
⇒ ψ2

Γ2, Γ
′
2
̸⇒ ψ2

Direct Ucut (DUcut):

Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬γ γ , Γ′
2
⇒ ψ2

γ , Γ′
2
̸⇒ ψ2

Consistency Ucut (ConUcut):

⇒ ¬
∧

Γ2 Γ2, Γ
′
2
⇒ ψ

Γ2, Γ
′
2
̸⇒ ψ

A sequent-based framework is now defined as follows:

Definition 2.5. A sequent-based argumentation framework for a

set of formulas S based on a logic L = ⟨L, ⊢⟩ and a set AR of

sequent elimination rules, is a pairAF L,AR (S) =
〈
ArgL (S),AT

〉
,

where AT ⊆ ArgL (S) × ArgL (S) and (a1,a2) ∈ AT iff there is

an R ∈ AR such that a1 R-attacks a2.

In what follows, to simplify notation, we will omit the subscript

L and/or AR, when this is known or arbitrary.

Example 2.6. Let S = {p,q,¬p ∨ ¬q} and let AF L, {Ucut} (S) be
a framework for S, induced by classical logic CL, its corresponding
sound and complete sequent calculus LK, and Ucut as the only

attack rule. Some of the arguments are:

a1 = p ⇒ p a4 = p ⇒ ¬((¬p ∨ ¬q) ∧ q)
a2 = q ⇒ q a5 = q ⇒ ¬((¬p ∨ ¬q) ∧ p)
a3 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q a6 = p,q ⇒ p ∧ q
a7 = ¬p ∨ ¬q,q ⇒ ¬p a8 = ¬p ∨ ¬q,p ⇒ ¬q

See Figure 1 for a graphical representation of these arguments

and the attacks between them.

Given a (sequent-based) framework, Dung-style semantics [14]

can be applied to it to determine what combinations of arguments

(called extensions) can collectively be accepted from it.

Definition 2.7. Let AF L (S) =
〈
ArgL (S),AT

〉
be an argumen-

tation framework and S ⊆ ArgL (S) a set of arguments.

• S attacks an argument a if there is an a′ ∈ S such that

(a′,a) ∈ AT ;

• S defends an argument a if S attacks every attacker of a;
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• S is conflict-free if there are no arguments a1,a2 ∈ S such

that (a1,a2) ∈ AT ;

• S is admissible if it is conflict-free and it defends all of its

elements.

An admissible set that contains all the arguments that it defends

is a complete extension of AF L (S). Below are definitions of some

other extensions of AF L (S):
• a preferred extension of AF L (S) is a maximal (with respect

to ⊆) complete extension of ArgL (S);
• a stable extension of ArgL (S) is a complete extension of

ArgL (S) that attacks every argument not in it;

• the grounded extension of AF L (S) is the minimal (with

respect to ⊆) complete extension of ArgL (S).

In what follows we shall refer to either complete (cmp), grounded
(grd), preferred (prf) or stable (stb) semantics as completeness-based
semantics. We denote by Extsem (AF L (S)) the set of all the exten-
sions of AF L (S) under the semantics sem ∈ {cmp, grd, prf, stb}.
The subscript is omitted when this is clear from the context.

Definition 2.8. Given a sequent-based argumentation framework

AF L (S), the semantics as defined in Definition 2.7 induces corre-

sponding (nonmonotonic) entailment relations:
• Skeptical entailment: S |∼∩L,sem ϕ iff for every extension E ∈

Extsem (AF L (S)), there is Γ ⇒ ϕ ∈ E for Γ ⊆ S
• Credulous entailment: S |∼∪L,sem ϕ iff for some extension E ∈

Extsem (AF L (S)), there is Γ ⇒ ϕ ∈ E for Γ ⊆ S
• Weakly skeptical entailment: S |∼⋒L,sem ϕ iff there is an a ∈

ArgL (S) with Con(a) = ϕ such that a ∈ E for every E ∈

Extsem (AF L (S)).
4

Example 2.9. Consider again the framework of Example 2.6. It

holds that S |∼∪CL,prf p and S |∼∪CL,prf ¬p, while S |̸∼
⋆
CL,prf p and

S |̸∼⋆CL,prf ¬p for ⋆ ∈ {∩,⋒}. Moreover, S |∼CL,grd ψ if and only if

ψ is a tautology in classical logic. On the other hand, it is easy to

see that S ∪ {r } |∼CL,grd r and S ∪ {r } |̸∼CL,grd ¬r , since e.g. r ⇒ r
is in the grounded extension of S ∪ {r }.

3 PREFERENCE FUNCTIONS AND
PRIORITIZED ARGUMENTATION

We now formulate a general setting for prioritized sequent-based

argumentation, allowing to make preferences among different ar-

guments.

Definition 3.1. A priority function for a language L is a function

π : L 7→ N+. Given a set of L-formulas S, we denote: π (S) =
{π (ϕ) | ϕ ∈ S}.

We now use π for defining a preference relation ≤π on L-

sequents. The next example illustrates some ways of doing so. We

shall write a1 ≤π a2 to intuitively indicate that the sequent a1 is at
least as preferred as the sequent a2.

5

Example 3.2. The following are possible conditions for letting

a1 ≤π a2:
6

4
Since the grounded extension is unique, |∼∩L,grd , |∼

∪
L,grd and |∼⋒L,grd , are the same, and

will be denoted by |∼L,grd .
5
When a1 ≤π a2 we shall sometimes write a1 = a2 and a1 <π a2 to indicate,

respectively, that a2 ≤π a1 and that a2 ≰π a1 .
6
We let min(∅) = max(∅) = f (∅) = 0.

(1) min(π (Sup(a1))) ≤ min(π (Sup(a2))). In this case only the

most preferred formulas in the support of the sequents are

compared.

(2) max(π (Sup(a1))) ≤ max(π (Sup(a2))). Here, for every for-

mula in the support of a2 there is a more preferred formula

in the support of a1.
(3) max(π (Sup(a1))) ≤ min(π (Sup(a2))). In this case all the

formulas in the support of a1 are at least as preferred as the

formulas in the support of a2.
(4) min(π (Sup(a1) \ Sup(a2))) ≤ min(π (Sup(a2) \ Sup(a1))).

Like in the first item, the most preferred formulas are com-

pared, but now only the formulas that are not part of the

support of the other argument.

(5) f (Sup(a1)) ≤ f (Sup(a2)), where f is an aggregation func-

tion on Sup(ai ) (like the average, median, summation of the

π -values of the supports, or the max/min function on the

support, as in the previous items).

(6) Sup(a1) ⪯s Sup(a2) if either Sup(a1) = ∅ or Sup(a1) =
Sup(a2) or there is an i ∈ N, such that:

• {ψ ∈Sup(a1) |π (ψ )=i} ⊋ {ψ ∈Sup(a2) |π (ψ )=i},
• {ψ ∈Sup(a1) |π (ψ )= j}= {ψ ∈Sup(a2) |π (ψ )= j} for every
j < i .

(7) Sup(a1) ⪯c Sup(a2) if either Sup(a1) = ∅ or there is an

i ∈ N such that:

• |{ψ ∈Sup(a1) |π (ψ )=i}|> |{ψ ∈Sup(a2) |π (ψ )=i}|,
• |{ψ ∈ Sup(a1) | π (ψ ) = j}| = |{ψ ∈ Sup(a2) | π (ψ ) = j}| for
every j < i ,

or for every i ∈ N:
|{ψ ∈Sup(a1) |π (ψ )=i}|= |{ψ ∈Sup(a2) |π (ψ )=i}|.

Remark 1. The last two items of Example 3.2 are inspired by Brewka’s

approach to reasoning with preferred theories [11]. This approach

is adjusted to our case by viewing the arguments’ support sets as

stratified theories, where each stratification consists of the formu-

las with the same π -value. Accordingly ⪯s is a subset-inclusion

comparison, and ⪯c is a comparison by cardinality.

Remark 2. The Items 1, 2, 4, 6 and 7 of Example 3.2 are pre-orders,
that is: ≤π is reflexive (a ≤π a) and transitive (if a ≤π b and b ≤π c
then a ≤π c). Whether the relation in Item 5 is a pre-order depends

on the function f .
The orders in Items 1, 4, 6 and 7 and their strict counterparts are

also left monotonic: if a ≤π b (resp. a <π b) and Sup(a) ⊆ Sup(a′)
then a′ ≤π b (resp. a′ <π b).

Example 3.3. In Example 2.6, let π (p) = 1, π (q) = 2 and π (¬p ∨
¬q) = 3. Consider each of the seven instances for ≤π from Exam-

ple 3.2:

(1) When the most preferred supports are compared we have

that a1 <π a2 <π a3, a1 <π a7, a8 <π a2, a6 <π a3, and
a6 = a8.

(2) When the least preferred supports are compared we still

have a1 <π a2 <π a3, a1 <π a7 and a6 <π a3, but now
a2 <π a8 and only a6 <π a8.

(3) The max-min-comparison yields again a1 <π a2 <π a3,
a1 <π a7 and a6 <π a3, but this time a2 and a6 are ≤π -

incomparable with a8.
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Figure 2: Part of the sequent-based argumentation graph for
S = {p,q,¬p ∨ ¬q}, the prioritized case from Example 3.5

(4) Clearly, when the comparison takes place on restricted sup-

port sets, a1 <π a2 <π a3, a1 <π a7, a8 <π a2 and

a6 <π a3, since the restriction on the support set has no

effect here and thus is the comparison the same as the first

item. However, a6 <π a8, since π (p) < π (¬p ∨ ¬q),
(5) If f (Γ) = 1

|Γ |

∑
ϕ∈Γ π (ϕ), then a2 = a8 and a6 <π a8.

(6) According to ⪯s , we have that a8 <π a2 and a6 <π a8.
(7) Similarly, according to ⪯c , a8 <π a2 and a6 <π a8.

Definition 3.4. Let R be a sequent elimination rule as in Defi-

nition 2.3 and let ≤π be a preference order on L-arguments. We

say that R is ≤π -applicable if it is applicable in the standard (non-

prioritized) case and the instance a2 of the attacked argument that

is obtained by the application is not <π -smaller than (i.e., not <π -

preferred over) the instance a1 of the attacking argument that is

obtained by the same application. In this case we say that a1 R≤π -
attacks a2.7, 8

Remark 3. Note that the first item of Example 3.2 might lead to

some counter-intuitive situations. Consider for example the set

S = {p,¬p,q} where π (q) = 1, π (¬p) = 2 and π (p) = 3. Then

¬p ⇒ ¬p attacks p ⇒ p, which cannot defend itself, but q,p ⇒ p
attacks ¬p ⇒ ¬p, since q is preferred overp and ¬p. A possible solu-

tion would be to only consider compact arguments: an S-argument

Γ ⇒ ϕ is compact iff there is no S-argument Γ′ ⇒ ϕ for some

Γ′ ⊂ Γ. However, this places a restriction on the arguments of the

framework. Another solution is to restrict the parts of the support

that determine the strength of an argument, such as in Item 4 of

Example 3.2.

Example 3.5. Consider again Example 2.6. Figure 2 depicts a pri-

oritized version of Figure 1 for the π -assignment from Example 3.3

and the priority ordering in Item 6 of Example 3.2. In this case

a1 and a4 are no longer attacked, and while a4 and a7 R-attack
each other in the original framework, in the prioritized setting a4
R≤π -attacks a7 but not vice versa. Indeed, {p} = {ψ ∈ Sup(a4) |
π (ψ )=1} ⊋ {ψ ∈Sup(a7) |π (ψ )=1} = ∅.

Remark 4. Since we assume that an argument with empty support

has always priority value 0, according to each of the attack rules in

Example 2.4, sequents with empty support are maximally strong:

attacks by such sequents are always successful.

The definition of a sequent-based argumentation framework,

now with a priority function, is very similar to the one given in

Definition 2.5.

7
When π is clear from the context it will be omitted from ≤π .

8
Attacks that are based on priorities are sometimes called defeats, to distinguish them

from ‘pure’ attacks.

Definition 3.6. Let L = ⟨L, ⊢⟩ be a core logic, C a corresponding

sound and complete sequent calculus, AR a set of attack rules,

π a priority function on L, and ≤π a preference order on L-

sequents. The prioritized sequent-based argumentation framework
for the set S of formulas (induced by L, C, AR, and ≤π ), is a triple:
AF

≤π
L,AR (S) =

〈
ArgL (S),AT , ≤π

〉
, where AT ⊆ ArgL (S) ×

ArgL (S) and (a1,a2) ∈ AT iff a1 R≤π -attacks a2 for someR ∈ AR.

Like before, we will omit the subscripts L, AR and/or π if these

are known or arbitrary.

The Dung-style semantics from Definition 2.7 are defined equiv-

alently for AF ≤L (S) =
〈
ArgL (S),AT , ≤

〉
, now with respect to

both AT and ≤. Based on this, we define the entailment relations

for AF ≤L (S) with respect to the different semantics as in Defini-

tion 2.8. For a given semantics sem and ⋆ ∈ {∪,∩,⋒}, the relation
is denoted by |∼

⋆,≤
L,sem (super/subscripts are omitted when they are

clear from the context).

Example 3.7. The flat case (without priorities) ofAF ≤CL (S) with
S = {p,q,¬p ∨ ¬q} and Ucut as the sole attack rule is the same

as the framework of Example 2.6. The grounded extension only

contains sequents with empty support sets, since there are complete

extensions that contain only two of the arguments a1, a2 and a3.
When considering the priority function π from Example 3.3, in any

of the definitions for ≤π from Example 3.2, a1 cannot be attacked.
Thus S |∼≤CL,grd p. For q the result depends on the choice of ≤π .

• When using the first instance of ≤π from Example 3.2, a8 ≤π
a, for any a ∈ {Γ ⇒ ψ | ∅ ⊂ Γ ⊆ S}. Moreover, a6 and a8
attack each other, one can therefore construct two different

admissible sets, one in which a6 defends a and one in which

it does not. Therefore, S |≁≤CL,grd q.
• According to the fourth and sixth instance of ≤π from Exam-

ple 3.2, a8 does not attack a6, thus a6 is no longer attacked,

and so it defends a2. Hence S |∼
≤
CL,grd q in this case.

4 SOME BASIC PROPERTIES
Next, we consider some basic properties of prioritized argumenta-

tion frameworks and the entailment relations induced by them.

4.1 Conservativity
For every preferential ordering from Example 3.2, prioritized rea-

soning is a conservative extension of the flat case:

Proposition 4.1. If ≤π is degenerated (i.e., π is uniform) then
|∼⋆L,sem and |∼⋆,≤L,sem are the same for every ⋆ ∈ {∩,∪,⋒} and sem ∈
{grd, cmp, prf, stb}.

Proof. (Sketch) Immediate from Definition 3.4 of R≤π -attacks since

no arguments are ≤π -preferred over others, thus R≤π -attacks co-

incide with R-attacks. □

4.2 Rationality postulates
Caminada and Amgoud [1, 12] propose several postulates for ar-

gumentation reasoning. Below we consider those postulates using

the next definitions.

Definition 4.2. Let L = ⟨L, ⊢⟩ be a propositional logic and S a

set of L-formulas.
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• The transitive closure of S with respect to the logic L is the

set CNL (S) = {ψ | S ⊢ ψ }.
• S is L-consistent if there is no Γ ⊆ S such that ⊢ ¬

∧
Γ.

• A subset T ⊆ S is an L-minimal conflict of S, if it is not
L-consistent, but T \ {ψ } is L-consistent for everyψ ∈ T .

• Free(S) is the set of formulas that are not part of anyminimal

conflict of S.

Definition 4.3. [1, 12] The postulates below refer to a prioritized

sequent-based argumentation framework AF ≤L (S) = ⟨ArgL (S),
AT , ≤π ⟩, a semantics sem of it (i.e., one of those in Definition 2.7),

every extension E ∈ Extsem (AF ≤L (S)), and arbitrary argument

a ∈ ArgL (S).

• Closure of extensions: Con(E) = CNL (Con(E)).
• Closure under sub-arguments: if a ∈ E and b ∈ Sub(a) then
b ∈ E.
• Weak Closure under sub-arguments: if a ∈ E, b ∈ Sub(a) and
b ≤ a, then b ∈ E.
• Consistency: Con(E) is consistent.
• Exhaustiveness: if Sup(a) ∪ {Con(a)} ⊆ Con(E), a ∈ E.
• Weak exhaustiveness: if Sup(a) ⊆

⋃
b ∈E Sup(b), a ∈ E.

• Free precedence: ArgL (Free(S)) ⊆ E.

Below, we shall consider these postulates under the following

assumptions:

(1) The core logic is non-trivial (there is no ϕ such that both

⊢ ϕ and ⊢ ¬ϕ) and contrapositive (Γ ⊢ ¬
∧

∆ implies that

(Γ \ Γ′),∆′ ⊢ ¬
∧
((∆ \ ∆′) ∪ Γ′), for ∆′ ⊆ ∆ and Γ′ ⊆ Γ).

(2) The preferential order ≤π and its strict counterpart <π are

left monotonic: If a ≤π b (resp. a <π b) and Sup(a) ⊆
Sup(a′) then a′ ≤π b (resp. a′ <π b).

(3) Given a priority function π for L, we will consider prefer-

ence orders ⪯π on sets of L-formulas for which ⪯π and

≺π are monotonic, reflexive and transitive relations (as in

Items 1, 4, 6, and 7 in Example 3.2). We lift ⪯π to sequents

as follows: a ≤π b iff Sup(a) ⪯π Sup(b).

Proposition 4.4. Let AF ≤L (S) be a prioritized framework in
which the core logic and the preferential order satisfy the three condi-
tions specified above. Suppose also that DUcut is the attack rule. Then,
for every completeness-based semantics,AF ≤L (S) satisfies closure of
extensions, weak closure under sub-arguments, consistency, andweak
exhaustiveness. When ConUcut is also an attack rule,AF ≤L (S) sat-
isfies free precedence as well.

The following lemmas are required to prove Proposition 4.4.

Lemma 4.5. Let E be a complete extension ofAF ≤L (S). If (1) a =
∆⇒ δ ∈ E and b = Γ ⇒ γ ∈ E, ( 2) a < b, (3) Γ′ ⊆ Γ, (4) ∆, Γ′ ⊢ ψ ,
and (5) ∆ ∪ Γ′ is consistent, then Γ′,∆⇒ ψ ∈ E.

Proof. Suppose that d = Θ ⇒ ϕ attacks c = Γ′,∆ ⇒ ψ . Since
Γ′ ∪ ∆ is consistent (by Condition (5)), d DUcut attacks c . Hence
c ≮ d . By left monotonicity a ≮ d . Assume for a contradiction

that b < d . Since a < b (by Condition (2)), also a < d , which is

a contradiction. Thus, b ≮ d . Since d DUcut attacks c , there is a
β ∈ Γ′ ∪ ∆ for which both γ ⇒ ¬β and β ⇒ ¬γ are derivable. If

β ∈ ∆ then d DUcut attacks a. If γ ∈ Γ′ then d DUcut attacks b. By
the admissibility of E there is an f ∈ E that attacks d , and so f
defends c from d . □

Lemma 4.6. If a ≮ b and Sup(b) ⊆ Sup(b ′), then a ≮ b ′.

Proof. Suppose that a ≮ b and Sup(b) ⊆ Sup(b ′). Assume for

a contradiction that a < b ′. By reflexivity, b ≤ b, and so by left

monotonicity, b ′ ≤ b. By transitivity, a < b, which contradicts our

supposition. □

Lemma 4.7. Let E be a complete extension ofAF ≤L (S). If Γ ⇒ γ
and ∆⇒ δ are in E and Γ,∆⇒ ϕ ∈ ArgL (S), then Γ,∆⇒ ϕ is also
in E.

Proof. We start with assuming that DUcut is the only attack rule.

Suppose that a = Θ ⇒ τ ∈ ArgL (S) attacks b = Γ,∆ ⇒ ϕ. Then
⇒ τ ↔ ¬τ ′ is derivable in C for some τ ′ ∈ Γ ∪ ∆ and Γ ∪ ∆ ⊀π Θ.
By left monotonicity, also Γ ⊀π Θ and ∆ ⊀π Θ. Thus b ≮π a,
∆⇒ δ ≮π a, and Γ ⇒ γ ≮π a. Suppose, without loss of generality,
that τ ′ ∈ ∆. Then a attacks ∆ ⇒ δ . Since E is admissible there is

some a′ ∈ E that attacks a. This shows that E defends b and since

E is complete, b ∈ E.
Now, suppose that ConUcut is one of the attack rules and assume

for a contradiction that Γ,∆⇒ ϕ is ConUcut-attacked. In this case

Γ ∪∆ is inconsistent. We that have either ∆ ⊀ Γ or Γ ⊀ ∆. Without

loss of generality we suppose ∆ ⊀ Γ.
Since Γ ∪ ∆ is inconsistent, there is a maximal ∆′ ⊆ ∆ for which

Γ∪∆′ is consistent. (Note for this that Γ is consistent since otherwise
Γ ⇒ γ is ConUcut attacked and cannot be defended, which is

impossible since Γ ⇒ γ ∈ E. ) Thus, there is a δ ′ ∈ ∆ \∆′ for which
Γ,∆′ ⊢ ¬δ ′. Let d = Γ,∆′ ⇒ ¬δ ′ ∈ ArgL (S) and a = ∆ ⇒ δ . Note
that a ≮ d by Lemma 4.6. So, d DUcut attacks a.

Hence, there is a e = Θ⇒ ψ ∈ E that defends a from this attack

by attacking d . Note that e does not ConUcut-attack d since Γ ∪ ∆′

is consistent. Hence, d ≮ e and there is a β ∈ Γ ∪∆′ for which both

ψ ⇒ ¬β and β ⇒ ¬ψ are derivable.

We have two cases: (a) β ∈ Γ and (b) β ∈ ∆′. We now show that

both lead to a contradiction.

If (a) holds, then by left monotonicity b = Γ ⇒ γ ≮ e which

means that e attacks b in contradiction to the conflict-freeness of

E.

If (b) holds, then a < e , since otherwise e DUcut attacks a in

contradiction to the conflict-freeness of E. Since Θ ⊢ ¬β there is

a maximal Θ′ ⊆ Θ for which ∆ ∪ Θ′ is consistent and for which

∆ ∪ Θ′ ⊢ ¬α for some α ∈ Θ \ Θ′. By Lemma 4.5, a′ = ∆,Θ′ ⇒
¬α ∈ E. By left monotonicity a′ < e . But then a′ attacks e in

contradiction to the conflict-freeness of E. □

Proof of Proposition 4.4. We show each postulate:

Weak Closure under sub-argument: Suppose that a = Γ ⇒ ψ ∈
E and let b = ∆ ⇒ ψ ∈ Sub(a) and b ≤ a. Thus, ∆ ⊆ Γ. Suppose
some c attacks b. Thus, b ≮ c and since b ≤ a, also a ≮ c . Hence,
c also attacks a. Since E defends a, it attacks c and so also b is

defended by E. Since E is complete, b ∈ E.
Closure of extensions: Con(E) ⊆ CNL (Con(E)) holds by the re-

flexivity of L. For Con(E) ⊇ CNL (Con(E)), let ϕ ∈ CNL (Con(E)).
Since L is finitary, there are ϕ1, . . . ,ϕn ∈ Con(E) for which ϕ1, . . . ,
ϕn ⇒ ϕ is derivable in C. Thus, there are a1 = Γ1 ⇒ ϕ1, . . . ,an =
Γn ⇒ ϕn ∈ E. By n applications of cut, Γ1, . . . , Γn ⇒ ϕ ∈ E. Hence
ϕ ∈ Con(E).
Consistency: Suppose that Con(E) is inconsistent. Thus, there
are ϕ1, . . . ,ϕn ∈ Con(E) for which ⇒ ¬

∧n
i=1 ϕi is derivable in
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C. Since there are a1 = Γ1 ⇒ ϕ1, . . . ,an = Γn ⇒ ϕn ∈ E,
by Lemma 4.7 Γ1, . . . , Γn ⇒

∧n
i=1 ϕi ∈ E. By Contraposition∧n

i=1 ϕi ⇒ is derivable inC. Now, by Cut and Lemma 4.7, Γ1, . . . , Γn ⇒
∈ E. By Contraposition,Monotonicity and Lemma 4.7,b = Γ1, . . . , Γn ⇒
¬γ ∈ E where γ ∈ Γ1. Clearly, b attacks a1, which contradicts the

conflict-freeness of E.

Weak exhaustiveness: Suppose that a = ∆⇒ ψ ∈ ArgL (S) such
that ∆ ⊆

⋃
b ∈E Sup(b). Since ∆ is finite, there are b1, . . . ,bn ∈ E

such that ∆ = Sup(b1) ∪ . . . ∪ Sup(bn ). By n − 1 applications of

Lemma 4.7, a ∈ E.
Free precedence: Assume that ConUcut is part of the attack rules

as well. Let a = Γ ⇒ ϕ where Γ ⊆ Free(S). In particular, Γ is

consistent, and so a cannot be ConUcut-attacked. Suppose that

b = ∆ ⇒ δ attacks a. Then⇒ δ ↔ ¬γ is derivable in C for some

γ ∈ Γ. By Cut, ∆⇒ ¬γ is also derivable and Cut and Contraposition

again show that⇒ ¬
∧
(∆ ∪ {γ }) is derivable in C. Since γ is not a

member of a minimally inconsistent subset of S, there is a Θ ⊆ ∆
for which c =⇒ ¬

∧
Θ is derivable in C. Thus, b is attacked by c .

Since c has no attackers, c ∈ E. Thus, E defends a and thus a ∈ E
by the completeness of E. □

Some negative results are reported next:

(1) Exhaustiveness is not satisfied by every framework that

satisfies the requirements of Proposition 4.4 (just Weak ex-

haustiveness is satisfied):

Example 4.8. Let S = {p ∧ q,q, s,¬s, t ∧ (¬s ∨ ¬q),¬t } and
assume π (p ∧ q) = 1, π (q) = 3, π (s ) = π (¬s ) = π (t ∧ (¬s ∨
¬q)) = π (¬t ) = 2 where ≤π is as in Example 3.2 Items 1, 4,

5, or 6. Here, E = {⇒ ϕ | ⊢ ϕ} ∪ {p ∧ q ⇒ ϕ | p ∧ q ⊢ ϕ} is a
complete extension. Note that q ⇒ q < E. The reason is that

s, t ∧ (¬s ∨ ¬q) ⇒ ¬q attacks q ⇒ q, while no argument

in E attacks s, t ∧ (¬s ∨ ¬q) ⇒ ¬q. Moreover E does not

defend any other argument in ArgL (S) \ E.

(2) Consistency does not hold for Undercut:

Example 4.9. Consider the flat framework AF CL (S) of Ex-
ample 2.6, for S = {p,q,¬p ∨ ¬q}. It can be shown that

S = {a1,a2,a3,a4,a5} is admissible in AF CL (S), however,
Con(S) is inconsistent.

(3) Sub-argument closure for complete extensions does not hold

when ConUcut is part of the system:

Example 4.10. LetS = {p∧q, s, r , r ⊃ (¬p∧¬s )} and assume

π (p ∧ q) = 1, π (r ) = π (r ⊃ (¬p ∧ ¬s )) = 2 and π (s ) = 3

where ≤π is as in Example 3.2 Item 1. Note that there is

a complete extension with a = p ∧ q, s ⇒ s but without
b = s ⇒ s . This follows since the only attacker of a is

c = p ∧ q, r , r ⊃ (¬p ∧ ¬s ) ⇒ ¬s , but c is ConUcut-attacked
and thus cannot be defended.

9

4.3 Conflict preservation
An attack in a sequent-based argumentation framework AF L (S)
will not always be successful in the prioritized argumentation

framework AF ≤L (S), because the attacked argument might be

≤π -stronger than the attacking argument. This way, it might be

9
Given the result of Proposition 5.6, this is not a problem for preferred and stable

semantics.

that attacks and conflicts are lost. This is sometimes avoided by

requiring that attacks are always symmetric (see, e.g., [16]) or by

reversing the attacks and rejecting the attacking argument instead

of the attacked argument (see, e.g., [13]). In the ASPIC
+
frame-

work [19] this is handled taking the structure of arguments into

account.

The next proposition shows that argumentation frameworks

with priorities are conflict preserving: extensions of the prioritized

framework are conflict-free in the non-prioritized case.

Proposition 4.11. Let AF ≤L (S) =
〈
ArgL (S),AT , ≤

〉
be a pri-

oritized sequent-based argumentation framework with Ucut and/or
DUcut that satisfies the requirements of Proposition 4.4 and letAF L (S) =〈
ArgL (S),AT

〉
be the corresponding flat (i.e., preference-free) sequent-

based framework. For any completeness-based semantics sem (Defi-
nition 2.7), we have that:

(1) any E ∈ Extsem (AF ≤L (S)) is conflict-free in AF L (S),
(2) any E ∈ Extsem (AF L (S)) is conflict-free in AF ≤L (S).

Proof. Let sem ∈ {cmp, grd, prf, stb}.

(1) Let E ∈ Extsem (AF ≤L (S)). Suppose that there are a = Γ ⇒
γ and b = ∆ ⇒ δ in E such that (a,b) ∈ AT . Assume

first that DUcut is the attack rule. By Lemma 4.7 and the

monotonicity of L we have that a′ = Γ,∆ ⇒ γ ∈ E. Since
(a′,b) ∈ AT ≤ (by left monotoncity of ≤) this is a contra-

diction to E ∈ Extsem (AF ≤L (S)).
Suppose now that Ucut is the attack rule. Then ⇒ γ ↔
¬
∧

∆′ is derivable in C for some ∆′ ⊆ ∆. By Cut Γ ⇒
¬
∧

∆′ is derivable in C and by Contraposition and Mono-

tonicity also b ′ = ∆ ⇒ ¬
∧

Γ and a′ = Γ ⇒ ¬
∧

∆ are

derivable. Since a′ (resp. b ′) has the same attackers as a
(resp. b), also a′,b ′ ∈ E by the completeness of E. It is easy

to see that either (a′,b ′) ∈ AT ≤ or (b ′,a′) ∈ AT ≤ , a
contradiction to E ∈ Extsem (AF ≤L (S)).

(2) This follows immediately from the fact that every R≤-attack

is in particular an R-attack. □

By Proposition 4.11 any completeness-based extension of the

prioritized framework is still conflict-free in the flat case, and so no

conflicts are lost, although, as shown in Example 3.7, the extensions

in both frameworks are not the same.

An example, discussed in [19] for the ASPIC
+
framework, is the

following:

Example 4.12. Let AF ≤CL (S) =
〈
ArgCL (S),AT , ≤π

〉
be a pri-

oritized sequent-based argumentation framework based on classical

logic as the core logic, the attack rules DUcut and ConUcut, and the

formulas S = {p,q,¬p}, such that π (q) = 1, π (¬p) = 2, π (p) = 3.

Some of the arguments of ArgCL (S) are the following:

a1 = p ⇒ p a2 = q ⇒ q a3 = ¬p ⇒ ¬p
a4 = p,q ⇒ p a5 = p,q ⇒ q a6 = p,q ⇒ p ∧ q
a7 = ¬p,q ⇒ ¬p a8 = ¬p,q ⇒ q a9 = ¬p,q ⇒ ¬p ∧ q

The preference-based argumentation frameworks (PAFs) of [3, 4]

result in a stable extension that contains both a3 and a6, and so

consistency is not preserved by PAFs. In our case, when e.g., ≤π =⪯s
(the sixth item in Example 3.2) is taken as the preference ordering,

this problem is avoided, since every stable extension that contains
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a3 contains also a7, thus all the sequents whose supports sets are
{p} or even {q,p} are attacked by the latter.

10

5 REASONINGWITH MAXIMALLY
CONSISTENT SUBSETS

A well-known method for handling inconsistent sets of formulas is

by taking the maximally consistent subsets of this set [22]. In the

flat case, corresponding entailments are defined as follows:

Definition 5.1. Let L = ⟨L, ⊢⟩ be a propositional logic and S a set

of L-formulas. We denote byMCSL (S) the set of all the maximally

consistent subsets of S (with respect to ⊆).

• S |∼mcsψ if and only ifψ ∈ CNL (
⋂

MCSL (S)),
• S |∼∩mcsψ if and only ifψ ∈

⋂
T ∈MCSL (S) CNL (T ),

• S |∼∪mcsψ if and only ifψ ∈
⋃
T ∈MCSL (S) CNL (T ).

It has been shown that sequent-based argumentation is a useful

platform for representing and reasoning with maximally consistent

subsets [6, 8]. Here we extend these results to the prioritized case.

We continue to use ⪯π as a preference order, determined by π ,
on sets ofL-formulas. In what follows we shall abbreviate ⪯π [resp.

≤π ] by ⪯ [resp. ≤], and write T ≺ S to denote that T ⪯ S and

S ⪯̸ T . Accordingly, the set of the ⪯-most preferred maximally

consistent subsets of an S is defined as follows:

Definition 5.2. MCS⪯L (S) = {T ∈ MCSL (S) | ∄T ′ ∈ MCSL (S)
such that T ′ ≺ T }.

Example 5.3. Consider again the set S = {p,q,¬p ∨ ¬q} from
Example 2.6 and the priority assignment π from Example 3.3 on

S. We have that: MCSCL (S) = {{p,q}, {p,¬p ∨ ¬q}, {q,¬p ∨ ¬q}}.
When ≤π is the preference order as in Items 2, 4, 5 (when e.g. f is the

average function), 6 and 7 of Example 3.2, we get: MCS⪯πCL (S) =
{{p,q}}. When ≤π is as in Item 1 of Example 3.2 we have that

MCS⪯πCL (S) = {{p,q}, {p,¬p ∨ ¬q}}.

Now we can consider the prioritized versions of the entailment

relations from Definition 5.1.

Definition 5.4. For a propositional logic L = ⟨L, ⊢⟩, a set S of

L-formulas, and a priority function π on L, we define:

• S|∼⪯L,mcsϕ if and only if ϕ ∈ CNL (
⋂

MCS⪯L (S));

• S|∼⪯L,∩mcsϕ if and only if ϕ ∈
⋂
T ∈MCS⪯L (S)

CNL (T );

• S|∼⪯L,∪mcsϕ if and only if ϕ ∈
⋃
T ∈MCS⪯L (S)

CNL (T )

Example 5.5. In Example 5.3 we have that S |∼∪mcs ψ for every

ψ ∈ S, butS|∼⋆ϕ when⋆ ∈ {mcs,∩mcs} only ifϕ is aCL-tautology
(since

⋂
MCSCL (S) = ∅). In the prioritized case, when ≤π is as

defined in Items 2, 4, 5 (for e.g. the average function), 6 and 7 of Ex-

ample 3.2, we have that S |∼
⪯π
⋆ ϕ for every⋆ ∈ {mcs,∩mcs,∪mcs}

and ϕ ∈ {p,q}. If ≤π is as in Item 1 of Example 3.2, then S |∼⪯⋆ p for

⋆ ∈ {mcs,∩mcs} and S |∼⪯
∪mcs ϕ for ϕ ∈ S.

The main result of this section is given in the next proposition.

It extends the results in [6, 8] to the prioritized case.

Proposition 5.6. Let L = ⟨L, ⊢⟩ be a contrapositive propositional
logic, S a finite set of L-formulas, and π a priority relation on L.

10
As noted in [19], in ASPIC

+
this problem is avoided as well.

Let ⪯ be a monotonic and transitive preference relation on sets of
formulas that is induced by π , and let a ≤ b iff Sup(a) ⪯π Sup(b) be
the induced preference relation on arguments. Denote byAF ≤L (S) =〈
ArgL (S),AT , ≤

〉
the corresponding prioritized framework where

AT is based on the rules DUcut and ConUcut. Then:
(1) S |∼∩,≤L,stb ϕ iff S |∼∩,≤L,prf ϕ iff S |∼⪯L,∩mcs ϕ,

(2) S |∼⋒,≤L,grd ϕ iff S |∼⋒,≤L,stb ϕ iff S |∼⋒,≤L,prf ϕ iff S |∼⪯L,mcs ϕ,

(3) S |∼∪,≤L,stb ϕ iff S |∼∪,≤L,prf ϕ iff S |∼⪯L,∪mcs ϕ.

We sketch here the proof of the first item (the proofs of the other

items are similar). First, some lemmas.

Lemma 5.7. If T ∈ MCS⪯L (S) and S
′ ⊆ S is a consistent set,

then S′ ⊀ T .

Proof. Since S′ is consistent, there is a S′′ ∈ MCSL (S) such that

S′ ⊆ S′′. By the left monotonicity of ⪯, S′′ ⪯ S′. Since T ∈

MCS⪯L (S), S
′′ ⊀ T and by the transitivity of ⪯ also S′ ⊀ T . □

Lemma 5.8. If S is finite and T ∈ MCS⪯L (S), then ArgL (T ) ∈

Stb(AF ⪯L (S)).

Proof. Suppose that T ∈ MCS⪯L (S) and E = ArgL (T ). We show

that E is stable.

Assume for a contradiction that there are a = Γ ⇒ γ and b =
∆⇒ δ in E such that a attacks b. Then⇒ γ ↔ ¬δ ′, where δ ′ ∈ ∆,
is derivable in C. But then⇒ ¬

∧
(Γ ∪ {δ ′}) is derivable in C by

Cut and Contraposition. Since Γ ∪ {δ ′} ⊆ T this is a contradiction

to the consistency of T .

Suppose that b = Θ ⇒ τ ∈ ArgL (S) \ E. Thus, Θ \ T , ∅.
Suppose first that Θ is inconsistent. Then⇒¬

∧
Θ is derivable in

C, it attacks b and it is in E since it has no attackers.

Now suppose that Θ is consistent. By Lemma 5.7, Θ ⊀ T . Let

τ ∈ Θ \ T . Thus, there is a finite Γ′ ⊆ T for which Γ′ ⇒ ¬τ is

derivable. By monotonicity, a = T ⇒ ¬τ ∈ E.11 Since Θ ⊀ T , a
attacks b.

Thus, whether Θ is consistent or not, we have shown that E

attacks any argument in ArgL (S) \ E, and so E is stable. □

Lemma 5.9. If E ∈ Cmp(AF ≤L (S)), there is a T ⊆ S for which
E = ArgL (T ).

Proof. Let T =
⋃
a∈E Sup(a), Γ ⊆ T , and b = Γ ⇒ ϕ ∈ ArgL (S).

By weak exhaustiveness (Proposiotion 4.4), b ∈ E. Thus, E =
ArgL (T ). □

Lemma 5.10. If S is finite and E ∈ Prf (AF ≤L (S)), there is some
T ∈ MCS⪯L (S) for which E = ArgL (T ).

Proof. By Lemma 5.9 there is a T ⊆ S for which E = ArgL (T ).
Assume first for a contradiction that T is inconsistent. Thus, there

is a Γ ⊆ T for which a = ⇒ ¬
∧

Γ is derivable in C. By weak

exhaustiveness (Proposition 4.4), b = Γ ⇒
∧

Γ ∈ E. b is attacked

by a and cannot be defended, which is a contradiction to the fact

that E is admissible. Thus, T is consistent.

Suppose now for a contradiction that there is a T ′ ∈ MCS⪯L (S)
for which T ′ ≺ T . By Lemma 5.8, ArgL (T

′) ∈ Stb(AF ≤L (S)).

11
Note that, if S would be infinite, T might be infinite as well, in which case a would

not be a valid sequent.
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Since E ∈ Prf (AF ≤L (S)), ArgL (T ) \ArgL (T
′) , ∅, thus there is a

γ ∈ T \T ′. Then there is a ∆ ⊆ T ′ for which ∆⇒ ¬γ is derivable

in C. By monotonicity, also c = T ′ ⇒ ¬γ and d = T ⇒ γ are

derivable in C (note that γ ⇒ γ is derivable as well). Since T ′ ≺ T ,

c attacks d . Thus, there is a e = Θ ⇒ θ ∈ E which attacks c .
Hence, T ′ ⊀ Θ. By left monotonicity and since Θ ⊆ T , T ⪯ Θ.
By transitivity, T ′ ⪯ Θ, which is a contradiction. Altogether, this

shows that T ∈ MCS⪯L (S). □

Now we can show Proposition 5.6:

Proof.

(⇐) Suppose that S |∼⪯L,∩mcs ϕ and let E ∈ Prf (AF ≤L (S)). By

Lemma 5.10, there is a T ∈ MCS⪯L (S) for which E =

ArgL (S). By the assumption T ⊢ ϕ, hence T ⇒ ϕ ∈ E. This

shows that S |∼
∩,≤
L,prf ϕ, which also implies that S |∼

∩,≤
L,stb ϕ.

(⇒) Suppose thatS|∼
∩,≤
L,stbϕ and letT ∈ MCS⪯L (S). By Lemma 5.8,

E = ArgL (T ) ∈ Stb(AF ≤L (S)). Thus, there is a ∆ ⇒ ϕ ∈
E for which ∆ ⊆ T . Hence T ⊢ ϕ, which shows that

S |∼⪯L,∩mcs ϕ. □

Remark 5. Lemma 5.10 (and so Proposition 5.6) does not hold for

infinite sets (for instance, for the orderings in Example 3.2, Items 6

and 7). Here is an example: let AF ≤CL (S) =
〈
ArgCL (S),AT , ≤

〉
be a prioritized sequent-based argumentation framework, with CL
as core logic, DUcut and ConUcut as attack rules and S = {pi |
i ≥ 1} ∪ {q,¬q} where π (pi ) = 1 for all i ≥ 1, π (q) = 2 and

π (¬q) = 3. We have two MCSs, T = {pi | i ≥ 1} ∪ {q} and
T ′ = {pi | i ≥ 1} ∪ {¬q} where T ≺ T ′. Nevertheless, Arg(T ′) is
a stable extension of AF ≤CL (S).

12

6 CONCLUSION
Sequent-based argumentation frameworks provide general and

modular formalisms for representing arguments and reasoning

with them, using different kinds of languages, logics, and attacks.
13

The goal of this work is to carry these formalisms a step forward

and to incorporate external information in the form of priorities

that the reasoner might want to introduce for properly choosing

the arguments that can be mutually accepted. Once the priorities

have been decided, different orders may be defined for making

preferences among the underlying arguments, and accordingly

applying entailment relations for drawing conclusions from a given

set of assertions.

Clearly, the entailment relations that are induced by a prioritized

framework depend on many factors, among which are the choice

of the core logics, the attack relations, and the preferences among

the arguments. We have shown that in many cases these choices

provide the reasoner with a robust framework, satisfying rational-

ity postulates and enjoying other desirable properties, like conflict

preservation and strong links to reasoning with the most preferred

maximally consistent subsets of the premises, a well-studied ap-

proach for handling inconsistent information.

12
Note that for every s = Γ, q ⇒ ϕ ∈ ArgCL (S) \ ArgCL (T

′) (where Γ ⊆ {pi | i ≥
1}) the argument t ′ = Γ, pk , ¬q ⇒ ¬q ∈ ArgCL (T

′) (where pk < Γ) attacks s .
13
For a discussion of the advantages of this approach we refer to [6–8]

There are several other formalisms for supporting prioritized

data in the context of argumentation systems. A detailed compari-

son to some of these formalisms will be provided in the full version

of this work. Here we only mention one of them, the ASPIC
+
frame-

work [19], which also provides a general setting for (prioritized)

logical argumentation. Apart of the different representations of

objects (like arguments and attacks) in the two frameworks, a pri-

mary difference from ASPIC
+
is that our approach is more proof

theoretically oriented, using tools and methods (like sequents and

their derivations by proof systems) from proof theory. Among

others, in future work we plan to strengthen this characteristic

of our approach and provide dynamic proof systems [9] for non-

monotonically reasoning with the prioritized data in a proof-like

manner.

We conclude this paper by exemplifying some of the advan-

tages of our approach using the puzzle given in the introduction

(Example 1.1).

Example 6.1 (Example 1.1 continued). Recall the flat owner ne-
gotiating with potential tenants about the construction of a swim-

ming pool (s), a tennis-court (t ) and a private car-park (p). The
consideration that the rent (r ) increases if more than one facil-

ity is constructed can be represented by the formula ψ1 = r ↔
((s ∧ t ) ∨ (s ∧ p) ∨ (t ∧ p)). The preferences of the tenants not to
increase the rent and not to have two sport facilities are modeled

by ¬r and byψ2 = s ⊃ ¬t andψ3 = t ⊃ ¬s , respectively.
This situation may be represented by a prioritized sequent-based

frameworkAF ≤CL (S) =
〈
ArgCL (S),AT , ≤

〉
, induced by classical

logic, Ucut and ConUcut as attack rules, and set of formulas S =

{s, t ,p,¬r ,ψ1,ψ2,ψ3}, where π (¬r ) = 1, π (ψ1) = π (ψ2) = π (ψ3) =
2 and π (s ) = π (t ) = π (p) = 3. We take the preference relation by

the ⪯s comparison (Item 6 of Example 3.2).

• We have that ¬r ↔
(
¬(s ∧ t ) ∧ ¬(s ∧ p) ∧ ¬(t ∧ p)

)
classi-

cally follows fromψ1, which implies that ¬r ,ψ1 ⇒ ¬(x ∧ y)
is in ArgCL (S) for every distinct x ,y ∈ {p, s, t }. It follows
that every argument of the form x ,y ⇒ x ∧ y for such x ,y
(suggesting to construct two facilities) is Ucut-attacked by a

more preferred argument.

• Arguments such as s ⇒ s and t ⇒ t , which suggest to con-

struct a swimming pool and a tennis court are respectively

attacked by the more preferred arguments t ,ψ3 ⇒ ¬s and
s,ψ2 ⇒ ¬t .
• The argument a = p ⇒ p, suggesting to construct a car

park, is attacked by b = ¬r , s,ψ1 ⇒ ¬p. However, the argu-
ment a′ = p,¬r ,ψ1,ψ2,ψ3 ⇒ p for the same conclusion is

not attacked by b since a′ < b. In fact, a′ is only attacked

by arguments whose support set is classically inconsistent,

for instance S ⇒ ¬p. These attacks are counter ConUcut
attacked by the tautological argument ⇒ ¬

∧
S and so a′

is defended.

From the above considerations it follows that the only sequents of

the form Γ ⇒ x for some Γ ⊆ S and x ∈ {s, t ,p} that belong to the

grounded extension of the prioritized sequent-based argumentation

framework under consideration, are those in which x = p. That
is, based on the considerations and the preferences stated above,

according to the grounded semantics of the framework, the flat

owner should decide to build only a parking lot.
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