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ABSTRACT
We propose a set of novel ranking-based semantics based on a

measure of the sensitivity of each argument in an abstract argu-

mentation framework. The sensitivity index is an indicator of how

sensitive the label assigned to an argument by an argumentation

semantics is, and it is derived from the topology of the graph via

a subgraphs analysis coupled with the postulates of the chosen

semantics. Using the total rank on arguments induced by such in-

dicator, we propose two ranking-based semantics. We compare the

behaviour of our semantics with recent proposals and a widespread

set of properties identified in literature. A key feature of our seman-

tics is that the attack relation between arguments keeps the same

meaning as found in Dung’s abstract semantics. By still relying on

Dung’s semantics we can soundly deal with any graph configura-

tion, minimize the addition of ad-hoc postulates and provide a clear

interpretation of the ranking of arguments.
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1 INTRODUCTION
An abstract argumentation framework [15] consists of a direct

graph where nodes represent arguments and arrows represent an

attack relation among arguments. A semantics is used to evaluate

arguments’ acceptability. In the labelling approach [7], this evalua-

tion is done by assigning to each argument a label in, out or undec ,
meaning that the argument is considered consistently acceptable,

non-acceptable or undecided (i.e. no decision can be taken on ar-

guments’ acceptability). In Dung’s original work, arguments are

either fully asserted or not asserted at all, and as a consequence the

classical three-value labelling in,undec,out defines an order over

the arguments that is often too coarse to support decisions. There

is no distinction between arguments with the same label, even if

arguments might be in very different positions in the graph.

In order to address this problem, ranking-based semantics were

introduced to equip argumentation semantics with a more fine-

grained ability to classify arguments. Common to these approaches

is the fact that a numerical score is computed for each argument by

considering exclusively the topology of the graph. No explicit mea-

sure of strength is attached to arguments, and this is the key feature
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that differentiates these works from probabilistic ([19][13][22]) or

fuzzy argumentation systems ([20][14][12]).

In this paper we propose a topology-based numerical score for

arguments called sensitivity index and a set of ranking semantics

based on the total rank induced by it.

The idea is to measure how sensitive the label assigned to an

argument by a given semantics is by considering how the label

changes when the argumentation graph is perturbed. Perturbations

are represented by the removal of one or more arguments from the

starting graph, modelling the situation in which an argument might

be retracted or defeated by the arrival of new evidence. The sensi-

tivity index of argument a is computed by analysing the behaviour

of the label assigned to a over the vertex-induced subgraphs of the

complete graph. Informally, the sensitivity index of argument a
and label l is the portion of subgraphs where a is labelled l . Using
the sensitivity index, it is possible to quantify the propensity of an

argument to move to a more favourable label, keep the same one

or move to a less favourable label if the graph is changed.

We then define a ranking-based semantics based on a combina-

tion of Dung’s semantics and our sensitivity index. Our ranking-

based semantics is first built on the idea of maintaining the coarse

ordering identified by the three labels in,undec,out . Then, if two ar-
guments have the same label, the sensitivity index is used to decide

how arguments are ranked: the argument with higher propensity

of moving to a more favourable label is ranked first.

Our sensitivity index is able to capture minimal changes in the

graph. The topology of the graph is fully examined by relying

on the subgraphs analysis, and the argumentation semantics are

applied without changing their rules or adding extra assumptions.

Arguments are still abstract symbolic entities and the notion of

attack keeps the samemeaning as in Dung’s abstract argumentation,

limiting the need for added postulates.

The paper is organized as follows. The next section describes the

required background of abstract argumentation. Section 3 describes

our sensitivity index, while section 4 introduce two ranking-based

semantics defined using grounded semantics. Section 5 illustrates

their properties, while Section 6 describes the extension to preferred

semantics. Section 7 contains a discussion of the key features and

novelties of our semantics and a comparison with the state of the

art. Section 8 concludes the paper.

2 GROUNDED AND PREFERRED SEMANTICS
In this sectionwe describe the required concepts of abstract grounded

and preferred semantics introduced by Dung [15].

Definition 1.An argumentation frameworkAF is a pair ⟨Ar ,R⟩,
where Ar is a non-empty finite set whose elements are called ar-

guments and R ⊆ Ar × Ar is a binary relation, called the attack

relation. If (a,b) ∈ R we say that a attacks b. Two arguments a,
b are rebuttals iff (a,b) ∈ R ∧ (b,a) ∈ R, i.e. they define a sym-

metric attack. An argument a is initial if it is not attacked by any

arguments, including itself.
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An abstract argumentation semantics identifies a set of argu-

ments that can survive the conflicts encoded by the attack relation

R. Dung’s semantics require a group of acceptable arguments to

be conflict-free (we cannot accept at the same time an argument

and its attacker) and admissible (the set of arguments defends itself

from external attacks).

Definition 2. (conflict-free). A set Arд ⊆ Ar is conflict-free iff
∀a,b ∈ Arд, (a,b) < R.

Definition 3. (admissible set, complete set). A set Arд ⊆ Ar
defends an argument a ⊆ Ar iff ∀b ∈ Ar such that (b,a) ∈ R,∃c ∈

Arд such that (c,b) ∈ R. The set of arguments defended by Arд
is denoted F (Arд). A conflict-free set Arд is admissible if Arд ⊆

F (Arд) and it is complete if Arд = F (Arд)
We follow the labelling approach of [7], where a semantics as-

signs to each argument a label in, out or undec .
Definition 4. (labelling). Let AF = (Ar ,R). A labelling is a to-

tal function L : Ar → {in,out ,undec}. We write in(L) for {a ∈

Ar |L(a) = in}, out(L) for {a ∈ Ar |L(a) = out}, and undec(L) for

{a ∈ Ar |L(a) = undec}.
Definition 5. (from [7]). Let AF = (Ar ,R). A complete la-

belling is a labelling such that for every a ∈ Ar holds that:

1. if a is labelled in then all its attackers are labelled out ;
2. if a is labelled out then it has at least one attacker that is

labelled in;
3. if a is labelled undec then it has at least one attacker labelled

undec and it does not have an attacker that is labelled in.

Definition 6. (grounded and preferred labelling [7]) GivenAF =
(Ar ,R), L is the grounded labelling iff L is a complete labelling

whereundec(L) is maximal (w.r.t. set inclusion) among all complete

labellings of AF . L is the preferred labelling iff L is a complete

labelling where in(L) is maximal (w.r.t. set inclusion) among all

complete labellings of AF .

Figure 1: Two Argumentation GraphsG1 (left) andG2 (right)

Referring to Figure 1, the grounded labelling assigns the undec
label to all the arguments ofG1. Regarding the preferred semantics,

there are two complete labellings that maximise the in(L) set: one

with in(L1) = {b}, out(L1) = {a, c}, undec(L1) = ∅ and the other

with in(L2) = {a, c}, out(L2) = {b}, undec(L2) = ∅. Regarding

G2, there is only one complete labelling (thus representing both

the grounded and preferred labelling), where argument a is in (no

attackers), b is out and c is in. Note how a reinstates c .

2.1 Subgraphs notation and labellings
Given AF = ⟨Ar ,R⟩ with |Ar | = n, and the graph G identified by

Ar and R,a ∈ Ar , we consider the set S of all the vertex-induced

subgraphs ofG . We are interested in sets of subgraphs, i.e. elements

of 2
S
. We call A and A respectively the set of subgraphs where

argument a is present and the complementary set of subgraphs

where a is absent.

If Ar = {a1, ..,an }, a single subgraph s is expressed by an in-

tersection of n sets Ai or (Ai ) (i ≤ n) depending on whether the

ith argument ai is or is not contained in s . A set of subgraphs is

expressed by combining some of the sets A1, ...,An ,A1, ..Ai with
the connectives {∪,∩}. We write AB to denote A∩ B and A+ B for

A∪ B. For instance, in Figure 1 left the single subgraph with only b

and c present is denoted with ABC , while AB denotes a set of two

subgraphs (ABC and ABC) where arguments a and b are present

and the status of c (not in the expression AB) is not specified.
Given AF = ⟨Ar ,R⟩, a ∈ Ar , we define the set of arguments

relevant to a, called Cn (a), as the set including argument a and all

the arguments x ∈ Ar for which there is a directed path from x to a.
For instance, in graph G1, Cn (a) = {a,b, c},Cn (b) = Cn (c) = {b, c}.

Based on Cn (a), we define the portion of argumentation frame-

work relevant to argument a, called AFa .

Definition 2.1. Given AF = ⟨Ar ,R⟩ and a ∈ Ar , the argumen-

tation framework relevant to a, called AFa , is an argumentation

framework composed only by arguments in Cn (a), that is AFa =
⟨Cn (a),Ra⟩, where Ra = R ∩ (Cn (a) ×Cn (a)).

The labelling of a subgraph s ∈ S follows the rules of the chosen

semantics. For each argument a, AI N ,AOUT ,AU are the sets of

subgraphs of AFa where a is present and labelled in, out , undec .
Note how in general the three sets are not disjoint. For instance, if

we consider graph G1 and grounded semantics, argument a is la-

belled in in all the subgraphs where a is present and b is not present

(and c becomes irrelevant), i.e. AI N = AB (a set of 2 subgraphs). It

is undec when all the arguments are present (the single subgraph

AU = ABC) while a is out when b is present and c is not present,

i.e. AOUT = ABC .

3 SENSITIVITY INDEX OF ARGUMENTS
The sensitivity index of an argument is a quantification of how

sensitive the label assigned to each argument is when the argumen-

tation graph is perturbed. We require the sensitivity index to verify

the directionality property [3]. This means that the computation

of the sensitivity index is entirely based on the set of arguments

relevant to a, i.e. Cn (a). We first define the sensitivity index for

semantics for which a unique labelling always exists. The idea is to

count the portion of subgraphs of AFa where a has a specific label

l . We remind that the set Al represents the set of subgraphs of AFa
where argument a is present and labelled l by the chosen semantics.

The number of subgraphs of AFa containing argument a is equal

to 2
|Cn (a) |−1

. For semantics that generate exactly one labelling for

each subgraph, the sensitivity index for an argument and label is

computed as follows.

Definition 3.1. Let us consider AF = ⟨Ar ,R⟩. Given a label l ∈
{i(= in),o(= out),u(= undec)}, the sensitivity index of argument

a ∈ Ar , label s and semantics x is:

Sxl (a) =
|Al |

2
|Cn (a) |−1

(1)

that is the number of subgraphs ofAFa where argument a is labelled
l over the total number of subgraphs.

Since Sxl (a) is a proportion, it is 0 ≤ Sxl (a) ≤ 1. In this paper,

the semantics analysed are grounded and preferred, and therefore

x ∈ {д,p}
We call the sensitivity index of an argument the triple Sx (a) =

⟨Sxi (a), Sxu (a), Sxo (a)⟩. The following is a straightforward funda-

mental property for unique status semantics where a labelling

always exists.

Property 1. Given AF = ⟨Ar ,R⟩, for each a ∈ Ar it is:

Sxi (a) + Sxu (a) + Sxo (a) = 1 (2)
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3.1 Sample Computations
Initial Argument. If a is an initial argument, we can prove the

following lemma:

Lemma 3.2. Given AF = ⟨Ar ,R⟩, for each complete semantics x it
holds that ∀a ∈ Ar , Sx (a) = ⟨1, 0, 0⟩ if and only if a is initial.

Proof. If a is initial, then AFa is reduced to ⟨{a}, ∅⟩ and a is

labelled in in the only subgraph (that is the complete graph with

only a present). Therefore Sxi (a) =
|Ain |
2
|{a}|−1 = 1, while Sxu (a) =

Sxo (a) = 0. If a is not initial, then it is not labelled in at least in

the subgraph where a is present, one of its attackers b is present

(note how a can also attacks itself) and all the other arguments are

absent, and therefore Sxi (a) < 1. �

Example. Let us compute the sensitivity index for the two

graphs G1 and G2 in Figure 1 using grounded semantics. Table

1 summarizes the results.

In G1, argument a has Cn (a) = {a,b, c}. a is labelled undec in
the full graph. It is labelled in when b is removed (2 subgraphs) and

out when c is removed but b is present. Therefore Sд(a) = ⟨ 1
2
, 1
4
, 1
4
⟩.

Arguments b and c are symmetrical rebuttals, and therefore we

have Sд(b) = Sд(c). Considering b, it is Cn (b) = {c,b}. Argument

b is in when c is removed, and undec when c is present. Therefore
Sд(b) = Sд(c) = ⟨ 1

2
, 1
2
, 0⟩ .

Regarding graph G2, argument a is initial and therefore Sд(a) =
⟨1, 0, 0⟩. Argument b has two arguments connected and therefore

4 subgraphs to be analysed. Argument b is in when both a and c
are not present, it is out if a is present (2 subgraphs, the presence

of c is irrelevant) and it is undec when a is absent and c is present.
Therefore Sд(c) = ⟨ 1

4
, 1
4
, 1
2
⟩. Regarding c , it is in when b is not

present or a is present to defeat b (a total of 3 subgraphs) and it is

undec when b is present and a is not. Therefore Sд(b) = ⟨ 3
4
, 1
4
, 0⟩

Table 1: sensitivity index for graphs G1 and G2

Arд Cn (a) Arдin Arдu Arдout Sд(Arд)

G1

a {a,b,c} AB (2) ABC (1) ABC (1) ⟨ 1
2
, 1
4
, 1
4
⟩

b {b, c} BC (1) BC (1) ∅ ⟨ 1
2
, 1
2
, 0⟩

c {b,c} CB (1) BC (1) ∅ ⟨ 1
2
, 1
2
, 0⟩

G2

a {a} A (1) ∅ ∅ ⟨1, 0, 0⟩

b {a,b, c} BAC (1) ABC (1) BA (2) ⟨ 1
4
, 1
4
, 1
2
⟩

c {a,b, c} CB +ABC (3) ABC (1) ∅ ⟨ 3
4
, 1
4
, 0⟩

Exteme cases. Figure 2 shows the extreme cases for grounded

semantics, where Sдi , Sдo and Sдu have the maximum unitary value.

We already showed how an initial argument has Sд(a) = ⟨1, 0, 0⟩.

The graph in the middle represents an argument attacked by n
unattacked arguments bi . Argument a is labelled in only in the

single subgraphwhere all then attackers are removed, and therefore

Sдi (a) =
1

2
n that goes asymptotically to zero for n → ∞. Since the

graph is acyclic, we have Sдo (a) = 1 − Sдi (a) ≈ 1 for n → ∞. The

graph on the right represents an argument rebutted byn unattacked

arguments bi . Argument a is labelled in only in the single subgraph

where all the n attackers are removed, and it is labelled undec in all

the other subgraphs. Therefore Sдu (a) = 1 for n → ∞. Note how

also a self-attacking isolated argument has Sдu (a) = 1.

Figure 2: Extreme cases: Si (a) = 1, So (a) ≈ 1, Su (a) ≈ 1.

4 TWO RANKING-BASED SEMANTICS BASED
ON THE SENSITIVITY INDEX

A ranking-based semantics ranks arguments of an argumentation

framework. It is defined as follows.

Definition 4.1. Given AF = ⟨Ar ,R⟩, a ranking-based seman-
tics σ associates toAF a ranking ≽σAF onAr , where ≽σAF is a reflex-

ive and transitive relation on Ar . a ≽σAF b means that a is at least

acceptable as b. a ≻σAF b is a shortcut for a ≽σAF b and b �σAF a.

By ordering the sensitivity index triples ⟨Sдi , Sдu , Sдo ⟩ of all

arguments using the lexicographic order we define a total order on

arguments, and therefore we identify a ranking-based semantics

called σSIx , where x indicates the semantics used. For instance, in

G1 we obtained that b and c had the same sensitivity index (they

have symmetrical positions in the graph) and they ranked higher

than a. This is intuitive, since b and c rebut their attackers, while
a does not. For the graph G2, a had Sд(a) = ⟨1, 0, 0⟩. Argument b

had Sд(b) = ⟨ 3
4
, 1
4
, 0⟩, lower than a, while c was the lowest-ranked

argument with Sд(c) = ⟨ 1
4
, 1
4
, 1
2
⟩. This is also intuitive: a is initial

and therefore ranked first, b is rebutted by c and therefore ranked

after a but before c that is rebutted by b but also attacked by a.
However, since the sensitivity index is computed by analysing

the subgraphs of an argumentation framework, its value is not

linked to the label assigned by the semantics to an argument in the

full starting graph. It is possible to have an out labelled argument

that has a higher sensitivity index than an in labelled argument (an

example is given in Section 5, Table 2, case 7 versus 14).

Since our aim was to equip Dung’s semantics with a more fine-

grained additional way of ranking arguments, it is desirable to

define a ranking-based semantics that keeps the order defined by

the labels in ≻ undec ≻ out . Note how this chosen order is an

acceptability-focused order and it is only one of the possible orders

over labels (see section 7 for further discussion). Therefore we also

propose a second ranking-based semantics only partially based

on the sensitivity index. In order to rank arguments, we consider

the label assigned to each argument by the semantics in the full

argumentation graph, and we first order arguments using the labels

in, undec , out . This means that an in labelled argument is always

ranked higher than an undec labelled argument and an out labelled
one. If two arguments have the same label, the sensitivity index

is used to decide what argument is ranked first. While Dung’s

semantics identifies the acceptability status of an argument, the

sensitivity index measures the propensity of an argument to move

to a more favourable label. We call σLSIx this second ranking-based

semantics combining label l and sensitivity index. The ranking of

σLSIx is defined by the lexicographic order of the following 4-tuple

LSx (a), called the semantic index of a:

LSx (a) = ⟨l , Sxi (a), Sxu (a), Sxo (a)⟩ (3)

where l is the label assigned by the semantics to a and Sxi (a), Sxu (a),
Sxo (a) are the values of the sensitivity index triple.
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4.1 The Grounded case: σLSIд and σSIд
semantics.

The ranking-based semantics σLSIд and σSIд are identified by the

sensitivity index and grounded semantics. Their behaviour is anal-

ysed with a series of examples listed in Table 2, covering key sit-

uations in abstract argumentation such as attack, reinstatement,

rebuttals and accrual. The graphs are ranked by the semantic index

LSд(a). The last column on the right is explained in section 6.

Reinstatement. If an argument a is attacked by b that in turn is

attacked by c , c might reinstate a and restore its in label. Reinstate-

ment happens in the σLSIд semantics, first of all because it happens

for Dung’s grounded semantics. However, also the sensitivity index

of a is improved. If a is attacked by an initial argument (case 14),

its sensitivity index is Sд(a) = ⟨ 1
2
, 0, 1

2
⟩. If a third argument rein-

states a by unidirectionally defending it (case 5), the value of Sдi is

increased from
1

2
to

3

4
and Sдo is consequently decreased. However,

Sдi is not reinstated to the full value of an initial argument. The

reinstatement is therefore always partial. If we increase the length

of the odd-length reinstatement chain the value of Sдi decreases

(for a chain of 5 arguments Sдi is
11

16
< 3

4
) and it goes to

2

3
with an

infinite chain of arguments.

The longer the chain, the less the argument is reinstated. In

general, arguments closer toa have a higher impact on its sensitivity

index. For instance, let us consider argumenta attacked by a chain of
4 arguments b, c,d, e (b the nearest). There are 2

4 = 16 subgraphs to

be assigned.Whenb is removed,a is labelled in and three arguments

(c,d, e) are disconnected from a and therefore their presence (or

absence) in the graph is irrelevant to label a. Therefore a set of

2
3 = 8 subgraphs (half of the total) is assigned to the set Ain in one

step, and
1

2
added to Sдi .

Accrual. In theσLSIд andσSIд semantics the effect of arguments

accrue. Case 1 shows the effect of reinstating argument a with two

arguments compared to one (case 5). Argument a has a higher Sд(a)
in case 1 than in case 5. The same is for two attacking arguments

(case 15) compared to a single attack (case 14), since Sд(a) is lower
in case 15.

Attack. Case 15 shows the effect of an attacking argument. The

value of Sдi is diminished and transferred to Sдo .
Cases 6 and 7 are interesting. Argument a has a stronger se-

mantics (and sensitivity) index in case 6, where a single argument

reinstates a by attacking all the three attackers. The reason is be-

cause a in case 6 is slightly more stable than in case 7, since in case

7 the removal of one of the three arguments is enough to change

the label of a, while in case 6 there is only one way to change the

label of a, that is the removal of the only defender present in the

graph. An agent willing to change the label of a would have three

ways to do so in case 7 and only one in case 6.

Rebuttals. Two rebuttal arguments are shown in case 8. The

semantic index is ⟨un, 1
2
, 1
2
, 0⟩, and therefore both the semantics and

the sensitivity index are higher than argument a unidirectionally

attacked by b (case 14). Therefore rebuttal attacks have less impact

than unidirectional attacks.

Case 4 is interesting. It is a reinstatement chain where argument

a also rebuts its attacker. The fact that argument a rebuts its attacker
should place a in case 4 in a better position than case 5. This is the

case, and the value of Sдo of case 5 is transferred to Sдu in case 4.

The comparison of case 10 and case 5 is also interesting. In case

10 argument a is reinstated by an argument rebutting the attacker of

Figure 3: Lemma 5.2: partitioning the argumentation graph

a rather than unidirectionally attacking it (as in case 5). Therefore,

we expect that the reinstatement on a will be weaker. Indeed, in case
10 the semantics index is ⟨un, 1

2
, 1
4
, 1
4
⟩ as compared to ⟨in, 3

4
, 0, 1

4
⟩

for case 4. Not only the label moves from in to undec , but also Sдi
is diminished since part of it is now assigned to Sдu .

The grounded semantics strength is not able to distinguish be-

tween cases 8 and 9, that is a single rebuttal versus a chain of 3

rebuttals. The reinstatement with rebuttals does not happen since,

as it happens with grounded semantics, the extra rebutting argu-

ment is not able to label out the attacker of a.
Triads. Cases 11 to 13 describe the combinations of three ar-

guments. Case 11 (cycle of 3 arguments) and case 13, known as

the floating assignment, will be analysed when we introduce the

preferred semantics index in section 6. The comparison between

cases 8 and 12 also shows that rebuttal attacks accrue since some

of the value of Sдi of case 8 is transferred to Sдu in case 12.

5 PROPERTIES OF σSIд AND σLSIд
We anlyse the properties of our two semantics with respect to

a subset of properties identified by [5] in their recent survey of

ranking-based semantics. We first recall some definitions due to

Cayrol [9] and used by [5] in their analysis.

Definition 5.1. Given AF = ⟨A,R⟩, a ∈ A, we define R−(a) =
{b ∈ A|R(b,a)} the set of all the direct attackers of a. We call

indirect attackers of a all the arguments for which there is a path

P(b,a) from b to a and the length of the path is odd. The defenders
of a are all the arguments for which there is an even- and non-zero

length path from b to a.

We also provide this useful lemma:

Lemma 5.2. Let us consider AF = ⟨A,R⟩, argument a ∈ A and its
set of relevant arguments Cn (a). If the graph identified by Cn (a) can
be divided into two graphsC1 andC2 both containing a and such that
C2 ∪C1 = Cn (a),C2 ∩C1 = a and there are no attacks fromC1 toC2

and vice-versa except for attacks to a, then
Sдi (a) = S1дi (a)S

2

дi (a)

Sдo (a) = S1дo (a) + S
2

дo (a) − S1дo (a)S
2

дo (a)

Sдu (a) = S1дu (a)S
2

дu (a) + S
1

дo (a)S
2

дu (a) + S
1

дu (a)S
2

дo (a)

where S1д(a) (and respectively S2д(a)) is the sensitivity index of
argument a considering only the subgraph C1 (respectively C2).

Lemma 5.2 can be used when a set of relevant arguments is

added to argument a, and the new added arguments and the old

ones do not interact. Lemma 5.2 guarantees that the semantic index

of argument a is always decreased by the new addition.

A set of properties analysed in this section is based on the def-

inition 5.1 of attackers and defenders. However, the definition of

attackers and defenders of argument a does not distinguish between
arguments for which there are multiple paths to a, some of them

odd-length and some even-length. Moreover, being an indirect at-

tacker or defender does not reveal how far the argument is from a.
Finally, both a rebuttal of a and a unidirectional attacker of a are

both direct attackers, but they should not be treated in the same
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Table 2: The Behaviour of σLSIд and σLSIp . In case of acyclic graph, the label in means insk as well

R AF Comment σLSIд σLSIp

1 Two reinstating arguments ⟨in, 7
8
, 0, 1

8
⟩

2 Chain of n arguments ⟨in,
2k+1≤n∑
k=0

1

2
2k+1 , 0, 1 −

2k+1≤n∑
k=0

1

2
2k+1 ⟩

3 Chain of 5 arguments ⟨in, 11
16
, 0, 5

16
⟩

4 Reinstatement and rebuttal attack ⟨in, 3
4
, 1
4
, 0⟩ ⟨insk ,

7

8
, 0, 1

8
⟩

5 Reinstatement ⟨in, 3
4
, 0, 1

4
⟩

6 A single defender and multiple attacks ⟨in, 9
16
, 0, 7

16
⟩

7 Multiple reinstatement chains ⟨in, 27
64
, 0, 37

64
⟩

8 Rebutting arguments ⟨un, 1
2
, 1
2
, 0⟩ ⟨insk ,

3

4
, 0, 1

4
⟩

9 Chain of rebuttals arguments ⟨un, 1
2
, 1
2
, 0⟩ ⟨incr ,

3

4
, 0, 1

4
⟩

10 Reinstatement with rebuttal attack ⟨un, 1
2
, 1
4
, 1
4
⟩ ⟨incr ,

5

8
, 0, 3

8
⟩

11 Cycle of three attacking arguments ⟨un, 1
2
, 1
4
, 1
4
⟩ ⟨unsk ,

1

2
, 1
4
, 1
4
⟩

12 Two rebuttal attacks ⟨un, 1
4
, 3
4
, 0⟩ ⟨incr ,

5

8
, 0, 3

8
⟩

13 Floating assignment ⟨un, 1
4
, 1
4
, 1
2
) ⟨outsk ,

1

4
, 0, 3

4
⟩

14 Single attack ⟨out , 1
2
, 0, 1

2
⟩

15 Accrual of attacks ⟨out , 1
4
, 0, 3

4
) ⟨outsk ,

1

4
, 0, 3

4
⟩

way, since they might have different impact on a. For these reasons,
the majority of the properties based on direct/indirect attackers are

not generally valid for our semantics, but more specific versions

are. Table 3 shows the properties considered and which ones are

satisfied by Dung’s grounded semantics (columnGr ), the sensitivity
index alone (σSIд ) and the semantic index (σLSIд ).

The abstraction property (Abs) requires the ranking to be

fully defined from the graph topology. Both σSIд and σLSIд satisfy

it, since both grounded semantics and our sensitivity index do.

The independence property (Ind) states that the ranking of

two arguments a and b should be independent of any argument

that is neither connected to a nor b. Again, this is true for both
grounded semantics and our definition of sensitivity index (and

therefore for the semantics index as well).

The void preference (VP) property states that an unattacked

argument is ranked strictly before an attacked one. Both our se-

mantics satisfy this, since an argument has the highest score if and

only if it is initial (lemma 3.2).

Our semantics satisfy both the total (Tot) property (since all

the arguments are ranked), and the non-attacked equivalence
(NaE), since all the initial arguments are ranked the same.

Table 3: Properties of our Ranking-based semantics

Property Gr σSIд σLSIд Property Gr σSIд σLSIд

Abs X X X Ind X X X
VP × X X DP × × ×

Tot X X X NaE X X X
AvsFD X × X SC × × ×

CP × × × QP X × ×

⊕DB × × ×

+AB × X X +DB × × ×

↑AB × X(*) X(∗) ↑DB × X(*) X(∗)
CT × × × SCT × × ×

(*) Only if ≽ is used instead of ≻

The cardinality precedence (CP) states that if |R−(a)| > |R−(b)|
then b ≻ a. The property is not verified by our two semantics,

since the semantics index of a depends on the semantics index of

each attacker and not on the number of attackers. The defence
precedence (DP) states that if |R−(a)| = |R−(b)| but a has at

least one defender while b has none, then a ≻ b. The property

is not verified, since b might be without defenders but attacked
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by rebuttal arguments as in the graph in Figure 5. Here a and

b have the same number of direct attackers and a is defended,

but LSд(b) = ⟨un, 1
2
, 1
2
, 0⟩ ≻ LSд(a) = ⟨un, 1

2
, 1
4
, 1
4
⟩. The self-

contradiction (SC) property states that a self-attacking argument

should be ranked lower than a non-self-attacking one, and it is not

verified by any of our semantics since, for instance, an isolated self-

attacking argument is ranked higher than an argument attacked by

an initial argument.

The quality precedence (QP) property considers the rank of

the direct attackers, and it is formalized as follows:

∃c ∈ R−(b)s .t .∀d ∈ R−(a), c ≻ d =⇒ a ≻ b (4)

The property states that if b is attacked by c and c is ranked higher

than all the direct attackers d of a, then a is ranked higher than b.
This is verified by grounded semantics, but it is not verified by our

two semantics. Indeed a direct attacker c can be stronger than d , but
c could be a rebuttal and d a unidirectional attack, so that the effect

of d is stronger than c . This is exemplified in Figure 4, where a and

b are both labelled undec , and LSд(c) = ⟨un, 1
2
, 1
2
, 0⟩ ≻ LSд(d) =

⟨un, 1
4
, 3
4
, 0⟩ but LSд(b) = ⟨un, 1

2
, 1
2
, 0⟩ ≻ LSд(a) = ⟨un, 1

2
, 3
8
, 1
8
⟩.

Figure 4: A counter-example for Quality Precedence

A defence branch of argument a is an even-length chain of

arguments ending with a, while an attack branch is an odd-length

chain of arguments ending with a.
The strict addition of a defence branch (⊕DB) states that

adding a defence branch to an argument improves its ranking. This

is not verified for lemma 5.2 (Sдi (a) strictly decreases). The more

specific addition of a defence branch (+DB) states that adding
a defence branch to any attacked argument improves its ranking.

This property is not verified, again for lemma 5.2. The same lemma

proves the addition of an attack branch (+AB) property, that
states that adding an attack branch will decrease the ranking of a.

The ↑AB property states that increasing the length of an at-
tack branch (that is not also a defence branch) of a will increase

the ranking of a. If we call b the argument ending the attack branch

before the addition of new arguments, for lemma 5.2 b will decrease

its ranking and consequently a could have its ranking improved,

unchanged (for instance, in case of a chain of rebuttal attacks) but

not decreased. So the property is verified if we use ≽ rather than ≻.

The same argument is used to prove that increasing the length
of a defence branch (that is not an attack branch) of a decreases

the ranking of a (property ↑DB).
The counter-transitivity (CT) property states that if the at-

tackers of b are as numerous and acceptable (=of higher rank) than

the attackers of a, then a ≽ b. In the strict counter-transitivity
(SCT) property only the direct attackers are considered. None of

the properties is verified, again for the presence of potential rebuttal

attacks. The graph in Figure 5 exemplifies this. Arguments a and b
have the same number of direct attackers with the same semantic

strength. However, LSд(b) = ⟨un, 1
2
, 1
2
, 0⟩ ≻ LSд(a) = ⟨un, 1

2
, 1
4
, 1
4
⟩.

The attack vs. full defence (AvsFD) property states that in an

acyclic graph an argument a without any attack branch is ranked

higher than an argument b only attacked by one non-attacked

argument. This is verified by σLSIд since a is labelled in and b out ,

Figure 5: A counter-example for properties DP and CT

but not for σSIд since the sensitivity index does not satisfy it. For

instance argument a in Table 2 case 14 (a attacked by an initial

argument) has a higher Sд than case 7 (a fully defended).

6 EXTENSION TO PREFERRED SEMANTICS
A preferred labelling is a complete labelling that maximizes the set

of in labelled arguments. It might produce more than one labelling

for the same argumentation graph, and therefore an argument a
might be labelled in different ways in the same subgraph. In abstract

argumentation we distinguish between a label l assigned sceptically
(=a is labelled l in all the valid labellings) and credulously (=a is

labelled l in at least one valid labelling).

The question is therefore how to count subgraphs in the compu-

tation of the preferred sensitivity index Sp in presence of multiple

labellings. Two proposals are possible. Given a label l and an argu-

ment a, we could use the credulous assignment to count the sub-

graphs where a has a given label. Under this proposal, the same sub-

graph s could be counted for more than one label if a has different

labels in different labellings of s , with the consequence that property
1 is no more guaranteed and in general Spi (a)+Spu (a)+Spo (a) ≥ 1.

If we use the sceptical label assignment, an argument could not

have a sceptically assigned label in some subgraphs and therefore

these subgraphswill not be counted in the computation, and Spi (a)+
Spu (a) + Spo (a) ≤ 1.

Our proposal applies the insufficient reason principle to com-

pute a value for Sp (a) that still satisfies property 1. Let us presume

that there are n valid labellings for the same subgraph s , and in

nin labellings argument a is labelled in , in nun labellings is undec
and in nout labellings is out . It is n = nin + nout + nun . Since all
the labellings are equal for the semantics, the insufficient reason

principle suggests to equally split the contribution of the subgraph

s between Spi (a), Spo (a), Spu (a) proportionally to the number of la-

bellings where a is respectively labelled in, out , undec . For instance,
the subgraph will contribute to Spi (a) with a value of

nin
n .

The definition of the sensitivity and semantics index is modified

as follows. Given AF = ⟨A,R⟩, a ∈ A, we first define a function
P(s, l ,a) : S × {in,un,out} × A → R that for each subgraph s ∈ S,

label l and argument a returns the quantity
nl
n , the proportion of

labellings contributing to the label l for argument a in the subgraph

s . The sensitivity index for preferred semantics is:

Sp (a) =

∑
s ∈S

P(s, l ,a)

2
|Cn (a) |−1

(5)

Note how this definition is also valid for unique status semantics,

where P(s, l ,a) will be either one or zero.
As we did for the grounded case, we define two ranking-based

semantics σSIp and σLSIp for the preferred case. The preferred sen-

sitivity index Sp is used to define the semantics of σSIp , while σLSIp
is defined using the preferred semantics index LSIp .

The semantics index for preferred semantics has still the same

shape ⟨l , Si , Su , So⟩ but now the label l has the form lacc , where
l ∈ {in,undec,out} and acc ∈ {sk, cr } for sceptical and credulous

label assignment. Arguments are ranked by their label in ≻ undec ≻

out , but the sceptical assignments are now ranked higher than the
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credulous ones. Since an argument can be credulously accepted

and rejected in the same subgraph, by definition we consider the

most favourable label for each argument.

If two arguments have the same label lacc , the preferred sensi-

tivity index Sp (a) is used to rank arguments.

6.1 The behaviour of σSIp and σLSIp semantics
If the graph is acyclic σSIp and σLSIp coincide with σSIд and σLSIд .
For cyclic graphs, the preferred values might differ significantly.

Rebuttals. In case of two rebuttal arguments a and b, there are
two subgraphs to be considered for the computation of Sp (a) and
LSp (a). In the subgraph s1 with only argument a present, a is la-

belled in, while in the complete graph s2 there are two symmetrical

labellings: l1 where a is in and l2 where a is out . Therefore it is

P(s2, in,a) = P(s2,out ,a) =
1

2
and half of the subgraph is assigned

to Spi and half to Spo .

The Semantics index is therefore LSp (a) = ⟨incr ,
3

4
, 0, 1

4
⟩. In the

grounded case it was LSд(a) = ⟨un, 1
2
, 1
2
, 0⟩, and therefore Sдu =

1

2

is equally split between Spi and Spo .
Note also how a rebutting argument under preferred seman-

tics has a semantics strength ⟨incr ,
3

4
, 0, 1

4
⟩ similar to a reinstated

argument ⟨insk ,
3

4
, 0, 1

4
⟩, with the only difference of the sceptical

assignment. This is in line with the behaviour of preferred seman-

tics where an argument can defend (=reinstate) itself by rebutting

attacking arguments.

Graph G1 (Figure 1). The result of the computation of LSp
for graph G1 is displayed in Table 4. Note how in each subgraph

s where the rebutting cycle of argument b and c is present, the

subgraph is equally split between the in and out label since it is
P(s, in,b) = P(s,out ,b) = P(s, in, c) = P(s,out , c) = 1

2
(this is the

meaning of the
1

2
beside some of the subgraphs in Table 4). The

ranking induced by σLSIp agrees with σLSIд , since arguments b
and c are ranked before a.

Table 4: Preferred sensitivity index for graph G1

Arд Arдin Arдun Arдout LSp (Arд)

a AB (2) + ABC ( 1
2
) ∅ ABC ( 1

2
) +

ABC (1)

⟨incr ,
5

8
, 0, 3

8
⟩

b BC (1) + BC ( 1
2
) ∅ BC ( 1

2
) ⟨incr ,

3

4
, 0, 1

4
⟩

c CB (1) + BC ( 1
2
) ∅ BC ( 1

2
) ⟨incr ,

3

4
, 0, 1

4
⟩

We now reconsider Table 2 examples. The last column displays

the value of σLSIp for each case. Both of the semantics are not able

to distinguish between case 8 (a rebutting b) and case 9 (a chain

of 3 rebuttals a, b, c). The reinstatement with rebuttal attacks does

not happen. Under grounded semantics, this is because the third

rebuttal c is not able to defeat b and reinstate a, under preferred
semantics because a and b are able to defend themselves.

Cases 11-13 describe the combinations of three arguments. As

it happens with Dung’s semantics, there is no difference between

the grounded and preferred index for case 11 (cycle of three argu-

ments). Case 13 is known as the floating assignment example. Here

argument a is sceptically labelled out , even if its attackers are cred-

ulously accepted (but, in turn, they defeat a in each labelling). The

example shows how both the grounded sensitivity and semantic

index can have a value greater than the preferred counterparts.

Figure 6: a and b are ranked differently by σLSIд and σLSIp

6.2 Properties
The following is a simple property linking Sд(a) and Sp (a).

Lemma 6.1. For every argument it holds that: Sдi ≤ Spi , Sдo ≤ Spo ,
Sдu ≥ Spu .

The proof is straightforward. Every time grounded semantics

assigns a label in or out , the same label is also assigned by the

preferred semantics (since we are dealing with an acyclic portion

of the graph), while when the grounded semantics assigns the label

undec , the preferred semantics can assign any label sceptically or

credulously (see for instance the floating assignment example).

We also checked if there is a bijective function between σLSIд
and σLSIp , that is if the two rankings always agree. The answer is

negative, since it is possible to build cases where σLSIд and σLSIp
differ. Referring to Figure 6, we consider argument a andb. We have,

Sд(a) = ⟨un, 1
4
, 1
4
, 1
2
⟩ ≻ Sд(b) = ⟨out , 1

4
, 1
8
, 5
8
⟩ while in the pre-

ferred case it is Sp (a) = ⟨outsk ,
1

4
, 0, 3

4
⟩ ≺ Sp (b) = ⟨outsk ,

5

16
, 0, 11

16
⟩.

The example shows that σSIд and σSIp differ as well.

7 DISCUSSION
In this section we discuss the features and the novelty of our se-

mantics with reference to the state-of-the-art.

Keeping Dung’s semantics and minimizing ad-hoc postu-
lates. The computation of a ranking-based semantics is a combi-

nation of topology analysis and a set of ad-hoc postulates. Our

approach is not different. However, we claim that our semantics

keep the postulates to a minimum by relying on an unchanged

version of Dung’s semantics. Arguments are symbolic entities and

we do not change the original meaning of the attack relation. Each

subgraph is an argumentation framework where Dung’s semantics

are applied. By relying on Dung’s semantics, not only we minimize

the introduction of ad-hoc postulates, but we can soundly deal with

any graph configuration.

A clear interpretation. We also claim that our ranking seman-

tics has a clear meaning and an intuitive interpretation. The sensi-

tivity index has a clear definition: it is the proportion of subgraphs

where an argument label holds.

Our ranking has also an intuitive meaning. Given two arguments

with the same label, the stronger argument is the one that has a

higher chance to move to a more favourable label when the graph

configuration changes. Since arguments are defeasible, the removal

of an argument represents a common dynamic situation where

arguments are retracted or defeated by new arguments.

Interpretation and ad-hoc postulates in the state-of-the-
art. In all the ranking-based semantics arguments are still symbolic

entities. However, attacks have the effect of diminishing an argu-

ment acceptability status. Postulates are added to capture intuitions

about how arguments should diminish their acceptance given a

graph topology. Postulates model this diminishing effect by consid-

ering the number of direct and/or indirect attackers, their strength
and by defining functions to aggregate and combine arguments

(see for instance [1][24][2][4][18][21][17]).
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For instance, [24] quantifies the diminishing effect by consid-

ering the number of direct attackers, [1] compares arguments by

counting the number of paths ending to them, [23] assigns strength

to arguments based on the results of the equilibrium of a two-person

game, [21] computes an argument score as the solution to a sys-

tem of equations, where each equation describes supporters and

attackers of each argument.

However, the nature of what is diminished is not clear, since

arguments are still symbolic entities with no strength attached.

Moreover, it could be hard to fit sensible postulates to the poten-

tially intricated shape of an argumentation framework and to keep

a clear interpretation of the numerical scores inducing the ranking.

The score is somehow described as a degree of acceptability, a proxy
for the strength of an argument. However, it is problematic to in-

terpret these ad-hoc numerical scores as a proxy for the strength

of arguments resulting from the argumentation. None of these

numerical scores can be somehow mapped to other quantitative

approaches to reasoning, such as degrees of truth or probabilities.

Their non-probabilistic nature limits their usefulness in decision-

making, since it is possible to build a Dutch Book argument [10] [25]
against an agent deciding on the base of those numerical scores.

What can be safely said about these numerical scores is that they

quantify a topology-based property. Our sensitivity index is not

different, however it is fully based on Dung’s semantics and it has

also a probabilistic interpretation.

Probabilistic interpretation. The sensitivity index quantities

Sx are probability measures. Indeed, they represent the portion of

subgraphs where a has a specific label. Given an argument a, if we
consider the probabilistic argumentation framework defined over

the relevant graph AFa , where p(a) = 1, every other argument has

the same probability
1

|Cn (a) |−1
and all the arguments are indepen-

dent, then Sx is the probability that a is labelled x , as computed

by the constellation approach [22]. p(a) = 1 is set to guarantee

that argument a is present in all the subgraphs of the probabilistic

argumentation framework. Note how the probability distribution

over arguments inCn (a) is the maximum entropy distribution, and

reflects the fact that we only know the topology of the graph and

all arguments are equal.

Properties. Our ranking-based semantics handle challenging

cases without assuming complicated axioms by still relying on

Dung’s abstract semantics. We consider again the properties listed

in section 5 and we argue that some of them fail to capture the

complexity of an argumentation framework, resulting too specific

and with little justification.

The properties working with attackers and defenders fail to con-

sider the presence of rebuttal attacks, the distance between the

attacking and the attacked argument a and the potential simul-

taneous presence of odd- and even-length paths from attacking

arguments to a. The properties regarding the addition of a defence

or attack branch (+AB +DB), are in our opinion counter-intuitive.

By adding a new set of arguments to a, a direct attacker b is always

added. Independently from the length of the branch added, b is not

fully defeated (since there is no full reinstatement in any ranking-

based semantics analysed) and therefore b will have an impact on

a, potentially decreasing its ranking. The properties regarding the

increase of a branch fail to discriminate between rebuttal attacks

and the presence of odd and even paths from b to a. The cardinality
precedence is a naive local property not considering the quality of

the attacks, but the quality of the attacks property, as stated, fails
again to consider rebuttal attacks.

Computational issues. The computation of our indices shares

the same challenges as probabilistic argumentation. It has above-

polynomial complexity, but it can benefit from studies in that area,

including approximation and optimization algorithms by [16], the

recursive computation by [13] and the subgraph-based analysis by

[11]. In [13], the set Al needed to compute our sensitivity index

is found by traversing the transpose graph (a graph with reversed

arrows) from a down to its attackers, propagating the constraints of

the grounded labelling. A merit of using this recursive algorithm is

that the values of our sensitivity index would be seen as propagating
over the argumentation graph from attackers to attacked arguments,

rather than be the result of an analysis of unrelated subgraphs as

the definition suggests.

Variations. A first variation is considering the removal of indi-

vidual attack links as well, producing an even more fine-grained

ranking. Another variation would be to consider other kinds of

graph perturbation beyond the removal of argument. For instance,

rather than be removed (equivalent to be out-labelled), an argument

could be made undecided, modelling the situation where a rebuttal

argument is added to it.

A deeper conceptual variation concerns the order induced by the

labels assigned to arguments. We have assumed the in ≻ undec ≻

out order. This is an acceptability-focused order that is just one

of the possible orders. In an information-focused context, the fact

that an argument is labelled in or out is equally important, while

the label undec is superseded by the two other labels. Even if the

generic framework proposed in this paper is abstract enough to

accommodate this alternative ranking, the properties of the result-

ing ranking might vary substantially. Moreover, other labellings

beyond the classical three values labelling have been proposed

([6]) and could be explored. Finally, Dung’s framework has been

extended in numerous ways, for instance by introducing attacks

on attacks or the relation of support between arguments ([8]). The

generalization of our framework to these extensions is a challenge

for future works, including the possibility of dealing with partial

orders on arguments rather than total orders.

8 CONCLUSIONS
In this paper we proposed a set of ranking semantics based on

the concept of sensitivity index. The index is an indicator of how

sensitive a label assigned to an argument by an argumentation

semantics is. This numerical indicator is derived from the topology

of the graph via a subgraph analysis, coupled with the postulates

of the chosen semantics. A key feature of our ranking-based se-

mantics is that the attack relation between arguments keeps the

same meaning as found in Dung’s semantics. By still relying on

Dung’s semantics, we can soundly deal with any graph configura-

tion without additional ad-hoc postulates. We believe the numerous

examples illustrated, the comparison with recent proposals and a

widespread set of properties identified in literature have shown the

soundness of the ranking produced by our semantics.
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