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ABSTRACT
In today’s interconnected world, people interact to a unprecedented
degree through the use of digital platforms and services, forming
complex ‘social machines’. These are now homes to autonomous
agents as well as people, providing an open space where human and
computational intelligence can mingle—a new frontier for distri-
buted agent systems. However, participants typically have limited
autonomy to define and shape the machines they are part of.

In this paper, we envision a future where individuals are able to
develop their own Social Machines, enabling them to interact in a
trustworthy, decentralized way. To make this possible, development
methods and tools must see their barriers-to-entry dramatically
lowered. People should be able to specify the agent roles and inte-
raction patterns in an intuitive, visual way, analyse and test their
designs and deploy them as easy to use systems.

We argue that this is a challenging but realistic goal, which
should be tackled by navigating the trade-off between the accessi-
bility of the design methods –primarily the modelling formalisms–
and their expressive power. We support our arguments by drawing
ideas from different research areas including electronic institutions,
agent-based simulation, process modelling, formal verification, and
model-driven engineering.
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1 INTRODUCTION
As an increasing share of human interactions have become medi-
ated by software systems, a new class of socio-technical systems
has emerged, sometimes called Social Machines [45, 46] or Human-
Machine networks [14]. Examples include Wikipedia, Twitter, da-
ting applications, citizen science platforms, Q&A sites, MOOCs, and
many more. Autonomous agents are slowly acquiring meaningful
roles in this space – one can think of the proliferation of bots on
Wikipedia, Twitter, or Facebook, and many platforms are specifi-
cally aiming to support agents via rich APIs as part of their design
(e.g. the Slack messaging platform or the Github code repository).

In a nutshell, we are witnessing the rise of open multi-agent
systems on the Web, including both human and software agents,
communicating via Web technologies.

The original conceptualisation of social machines was that ma-
chines would do the administration while humans were free to
carry out creative goals, with an intention that this should give rise
to “new forms of social process”[5, pp. 172–175]. This drive towards
new forms of social process can be seen around the edges of plat-
forms: when hashtags on Twitter emerge as coordination artefacts
for sharing scientific knowledge (as in the case of #icanhazpdf1), or
when blog comments become a vehicle for carrying out research
level mathematics [10]. These are situations where existing compu-
tational infrastructure was re-purposed by a community— in effect
creating a new social machine within existing infrastructure.

However, there is also widespread concern about the centralisa-
tion of many of these architectures: monolithic platforms provide
useful services, but they stifle innovation, and enforce centralised
notions of what sociality may or may not be.

In this paper, we outline a research agenda to democratize the
development of Social Machines, with the ultimate aim of suppor-
ting a wide range of people in creating mixed human-machine
communities, where computational agents support human sociality
1Academics (and others) use this Twitter hashtag to request scientific articles which
are inaccessible to them due to paywalls, and others share the articles by email or
by responding with a link to an accessible copy. Similar activities happen on Reddit
(/r/scholar subreddit) and on Facebook [19]
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Figure 1: The Cybermadres social machine, sketched by par-
ticipants of a 2016 Digital Humanities workshop. This repre-
sents the activities of a group of volunteers in Mexico (the
“Madres”), who collect excess food from restaurants and dis-
tribute it to people in need. The diagram shows roles, inte-
ractions, implementation hints and social aspects of the sy-
stem concisely and comprehensibly.

in an open, extensible manner. We view this initiative as a parallel
to the push towards the re-decentralisation of the Web, in line with
projects such as IPFS [4] and SOLID [11].

Social Machines are a frontier for open agent systems on the
web, and as such we want a future where they are available to all.

Our Vision: Social Machines for All
We have been inspired by working with a range of people over
several years to understand how they might go about developing
social machines. The Cybermadres diagram (Figure 1) is a typical
output from a design workshop. This informal sketch of a social
machine was the result of an open-ended process, seeded with
an initial set of diagrams illustrating interactions in a particular,
simplified way, to be extended and subverted as necessary.

Despite its informality, the diagram conveys many relevant as-
pects of this social machine: we can see actors with different roles,
coordination infrastructure, and sketches of interaction between
them. Arguably, people familiar with existing social machines can
easily interpret the diagram and visualize the finished system.

This demonstrates the ability of laymen to design social machines
from a standing start in just a few hours. The next step to produce
a working social machine is to create Web-based infrastructure to
support it. Enabling the automatic transformation of such designs
into working systems would massively enhance the possibilities
for bottom-up, democratic creation of social machines. So what are
the challenges to make such automatic transformations possible?

In order to do this, we need conceptualisations that are both
formal and useful to novice designers, ideally in the form of a visual

language that allows non-experts to describe social machines both
at a technical and a social level. We then need automation machi-
nery that can transform such designs into usable software, ready to
be populated with human and software agents. We also need met-
hods and tools for analysing, debugging and understanding social
machines— from “unit tests" to ensure that the interaction patterns
make sense to advanced simulation and verification techniques to
validate technical and social properties.

To support our contention that this vision is not entirely out of
reach, we identify three corresponding main research challenges,
discussing the main promising avenues to address them.

2 GRAND CHALLENGE: FROM INTUITIVE
MODELS TO DEPLOYED SOCIAL MACHINES

The central challenge in democratizing the development of social
machines is bridging the gap between intuitive, comprehensible
models and fundamentally complex systems. We envision the desig-
ners specifying only high-level patterns of interaction (e.g. "make
announcement", in the CyberMadres example) or coordination in-
frastructure (e.g. "a voting system"), and obtaining “out of the box"
computational support for those elements, based on a limited set
of building blocks.

Parallels exist with Model-Driven Engineering [18], which aims
to make models, not code, the primary artefact of the software engi-
neering process. High-level models are transformed into executable
code, through the use of patterns, frameworks and templates. While
this technique has been applied to multi-agent systems [1, 39], these
approaches are intended for high expressiveness and result in ex-
tremely complex agent models. Similarly, MDD has been applied
to Virtual Organizations [2, 3] and the systematic transformation
of simple workflow models into executable code (e.g. UML activity
diagrams into BPEL[20]).

By viewing hybrid system development as model creation, we
can begin to decompose our overarching challenge into different
sub-problems, organized around the modelling artefact.

(1) How can a layperson create intuitive models of complex
agent systems? This requires simple representations with
enough flexibility to incorporate social elements, such as
motivations, incentives, influences, yet specific enough to
provide a formal enough system that can be analyzed, simu-
lated, and deployed.

(2) How should the agent coordination patterns produced from
the model be deployed and monitored on the Web, particu-
larly when both human and software agents are involved?

(3) What tools can be provided to test, debug and predict the
success of social machines, creating a design cycle that in-
cludes social and technical assurance and feedback?

Our remaining sections unpack these into a series of challenges
for different aspects of potential approaches.

3 CHALLENGE #1: CREATING INTUITIVE
MODELS OF COMPLEX INTERACTIONS

We first consider the following challenge:
What modelling formalism could enable a non-expert
to design a meaningful class of social machines?
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MAS researchers are used to formalisms that describe agent in-
teraction in a way that supports execution—for example Electronic
Institutions (Islander [15], EIDE [34]), and organizational models
based on norms (MOISE [22], OPERA [12]). In particular, recent
efforts for hierarchical institution governance [24] attempt to spe-
cify the permitted norms of participation in a social machine in
a way that fits well with the framework described here. Similarly
Process Management researchers work with workflow specification
languages (e.g. BPMN [36], BPEL [35]). While we are not arguing
against the need for rich and complex languages such as these, for
this challenge we are interested in extending existing practice in
space of simple specifications, with the understanding that this will
necessarily constrain the range of systems that can be described.
Essentially, most serious development is at the complex end of the
spectrum, covering intricate formal systems in unambiguous detail.

In contrast, we hope that formalisms exist where a small number
of high-level constructs can be assembled like building blocks to
describe complex interaction patterns, such that the proverbial 80%
of applications is catered for with 20% of the complexity. Varying
specifications of primitives exist: HTTP has a few verbs (GET, POST,
PUT, DELETE etc. [16]) while Twitter is highly constrained, with just
3: TWEET, LIKE, RETWEET. In the agent engineering world, FIPA’s
communicative acts specification has around 20 performatives [17]
with complex compositional semantics. At the simple end of the
scale, data science became massively parallelised with just two
verbs: MAP and REDUCE.

It is therefore natural to pose the question: can we extrapolate
from this observation and determine a set of primitives needed to
build social machines? Central to this challenge is finding represen-
tational levels that are broadly applicable enough to be re-usable,
yet precise enough to support execution. Saying an actor MANAGES
a collection brings a host of intuitive semantics around create, read,
update and delete operations; an N-WAY agreement between agents
or RESERVING physical resources are concisely understandable, and
re-usable components of complex systems. The appropriateness of
different components may also depend on the particular type of
social machine that is being designed. The selected building blocks
need to accommodate different categories of social machines, for
example based on known taxonomies [45, 46].

These primitives then need to be composed into larger scale
machines—in Figure 1, actors need to ASK_ALL of the restaurants
for excess food and then RESERVE it for collection. This requires a
formal composition language that systematically links such proces-
ses by establishing, for example, information or resource flows and
shared data structures.on.

There is an array of theories and tools for supporting such com-
position. BPEL [35], for example, enables business process compo-
sition linking to web services and via executable semantics, but
does not have a visual representation and supports centralized or-
chestration (as opposed to peer-to-peer choreography). Process
algebras such as the π -calculus [29] and session types [23] offer so-
lid theoretical foundations for the systematic analysis of distributed
systems, but are far from intuitive for non-expert users. Recent ef-
forts in formally verified process specification and composition [38]
have taken steps towards visual process composition with formally
verified properties and automatic code generation.

An additional challenge arises in maintaining the social side of
these systems: motivations for participation, incentives [43], social
norms and expectations [8], knowledge sharing etc.

This vision raises several key questions: first of all, what should
a primitive look like and how to develop a usable set of primiti-
ves? Secondly, what does it mean to automatically compose these
primitives? Finally, how can we fill the gap between a highly ab-
stract primitive, which is by nature underspecified, and a concrete
implementation, which needs to be fully functional?

4 CHALLENGE #2: CREATING
INFRASTRUCTURE FOR PEOPLE AND
AGENTS ON THEWEB

Functioning social machines require a combination of infrastruc-
ture, interactions that use the infrastructure, and people and agents
to carry out those interactions. The process of creating infrastruc-
ture is time consuming, and extremely error prone; similarly, com-
munity building takes time, and relies heavily on network effects.
These requirements are at odds with widening participation, requi-
ring resources not available to the general public.

However, many innovations in Web engineering work by re-
using existing infrastructure: “If This Then That"2 provides simple
scripts to work across multiple platforms; Zapier3 allows users
to construct workflows based on web applications they already
use; and work has been done on integrating electronic institutions
with social media platforms [31]. This has the dual benefit of i)
abstracting away authentication, security, storage provision etc.
and ii) integrating with the practices that users already have.

This stands in contrast to typical development, which requires
bespoke infrastructures to be hand-crafted by developers—clearly
at the “expressive but difficult” end of the complexity spectrum.
At the “accessible but constrained” end of the scale, Panoptes4 has
made the deployment of crowdsourcing social machines so easy—in
terms of specification, infrastructure and access to a community of
volunteers—that several new projects are started each day.

Another observation is that dedicated infrastructure is actually
not always needed: Social Machines can be built via social conven-
tions, on top of existing communications infrastructure: a good
example is the #IcanHazPDF social machine, which has created a
community around a particular Twitter hashtag.

These social conventions go hand in hand with having a de-
clarative modelling language, with specifications such as “reach
consensus over X”, “discuss Y”. There are many ways these could be
fulfilled that share a set of core executable semantics (i.e. providing
a single answer that ‘most’ actors are comfortable with) while dif-
fering implementation details. Several threads of work are relevant
here: “Do What I Mean” (DWIM [48]) allows abstract, intuitive,
specifications and sensible error behaviours; convention over confi-
guration supports extremely minimal configurations by providing
sensible, compatible defaults for everything; finally, web service
discovery techniques (e.g. [41]) are used to retrieve an appropriate
web service implementation given a user-provided specification.

2https://ifttt.com/, see also [37]
3https://zapier.com
4https://panoptes.zooniverse.org/
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The challenge then is whether existing platforms can be used as
composable components in the design of social machines. A secure
multi-agent voting protocol may be appropriate in some places, but
sometimes a VOTE verb would be better served with a Doodle poll
and bindings for computational agents to make use of the results.
This requires a combination of both formal systems expertise and
a sociological understanding. In particular, what range of human
preferences and ad-hoc decisions can be intuitively described by an
average user and is manageable automatically in terms of system
configuration. We believe such a range would extend much further
than a software system or web service.

5 CHALLENGE #3: ANALYSING AND
DEBUGGING THE SOCIAL COMPUTER

As in traditional software engineering, we expect the design pro-
cess for social machines to be cyclical: once designs are produced,
they need to be evaluated and debugged, then updated accordingly.
The designer should be able to analyse a model to validate that it
accurately reflects their particular vision. It is also essential towards
better understanding the functionality, limitations, and means of
improvement of the social machine.

Agent-based simulation techniques [27] adapted to social machi-
nes can help test the flow and outcome of particular scenarios (e.g.
a defined set of agents and parameters), in the spirit of unit tests.
This would also enable explorative what-if scenarios with different
parameters to gain insights on quantifiable properties (e.g. costs
and delays), information flow, load balancing, etc.

Formal verification techniques, including model checking [9],
can also be used to mathematically verify properties across all
possible scenarios, ensure the correct system behaviour, eliminate
errors, and establish safety. They can also generate counterexamples
of unwanted behaviour that breaks expressed properties, such as
“the system never reveals information X about an agent”, value
properties such as “if an agent pays for something then they will
receive it or their money back”, and safety properties such as “no-
one can steal money from another agent”.

The trade-off between expressiveness and automation is predo-
minant here too. The logical languages employed by simulation and
verification tools are seldom intuitive for the uninitiated, and the-
refore a more expressive, declarative language would be required.
Executable semantics would also be required for such an analysis.
These are available for languages such as LCC [42], BPEL (to some
extent) and other protocol or workflow specification languages,
but not in practical visual languages such as BPMN or flowcharts.
Efforts to formalise the semantics of BPMN [13, 50] and develop
formal verification tools [47] are clear indicators of the perceived
usefulness of such techniques in the community.

Moreover, unlike purely technical systems, social machines in-
clude unpredictable human agents, and the overall “behaviour” of
the machine depends both on the materiality of the system and on
the collective agency of the user population. Testing and analysing
this behaviour will require a realistic simulation of choices and so-
cial behaviour of human agents and of how the system’s regulative
infrastructure affects the agents. This knowledge – which currently
exists in mostly informal sources [25, 26, 51] – needs to be made
available at the point of design.

Another key challenge of social machines is their adoption by
the community [21, 40]. The social sciences provide a number of
models to explain how and why humans engage with technology:
these range from highly technical game-theoretic models [52] to
empirical models from social psychology [25, 40]. The availability
of such techniques requires modelling constructs describing both
the technical elements (e.g. protocols) and social behaviour aspects
(e.g. economic payoffs), making it a considerable challenge.

Finally, systematic monitoring a deployed social machine is the
fundamental drive for refinement, continuous improvement, as well
as investigation of the differences between the model and the actual
social machine, particularly in the non machine mediated parts of
themodel. In addition, systemsmay change through use: new practi-
ces emerge which require infrastructure [6], or human behaviour is
taken over by computational agents [33]. Related work has shown
how social machine observation can be used to better understand
social norms and incentives, and refine the interaction models to
better support desired practice and optimize efficiency [32].

Such analysis requires automatic recording of event logs, perhaps
in the form of provenance graphs [28, 30], and the use of techniques
such as process mining [49]. One can then compare expected inte-
raction models with the actual usage of the system (conformance
checking), identify variances and exceptional behaviour, or even
infer new interaction models. Such techniques have successfully
been used within multi-agent systems [7, 44]. Making them usable
by non-experts through intuitive interfaces and languages would
be a major breakthrough towards our vision.

6 CONCLUSION
As social machines are rapidly becoming an integral part of today’s
world and a frontier for the deployment of agent systems, it is
paramount that their development becomes accessible to more
than just large or well-funded institutions. Non-expert individuals
should be able to design, build and analyse social machines that
leverage distributed intelligence to benefit different communities
and the general public. The challenges associated with this vision
are as grand as its potential impact:

#1. How can we create intuitive models of complex interactions
that balance what people want to express andwhat can be executed?
How can we discover the primitive interactions that can become
the building blocks of social machines? How can we incorporate
intuitive but abstract, primitive but usable specifications?

#2. How can we make social machines easily deployable on the
web?How canwe leverage existing infrastructure andmodel-driven
development to that end?

#3. How can we enable rigorous analysis and debugging that not
only reveal system properties from the technical perspective, but
also delve into the social aspects of these complex hybrid systems?

We argue that these questions require a unified approach invol-
ving research in multiple areas, including model-driven develop-
ment, process modelling, agent-based simulation, game theoretic
analysis, formal verification, software engineering and configura-
tion, and social sciences. This is a unique opportunity to bring these
research communities together, drawing strong contributions from
them to bring the DIY social machine revolution within reach.
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