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ABSTRACT 
There1is evidence that Pedagogical Agents (PA) can influence 
students’ emotions while learning with Intelligent Tutoring 
Systems, and that this influence is modulated by the students’ 
achievement goals for learning. This suggests that students may 
benefit from personalized PAs that could rectify episodes of 
negative affect depending on their achievement goals. To 
ascertain the possibility of devising such personalized PAs, this 
paper investigates the real-time prediction of both students’ 
achievement goals and affective valence while interacting with 
MetaTutor, an agent-based intelligent tutoring system. We train 
classifiers using eye-tracking data to make such prediction, and 
show that these classifiers can outperform a majority-class 
baseline at predicting both achievement goals and emotion 
valence.  
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1 INTRODUCTION 

Pedagogical agents (PAs) are intelligent virtual agents that 
support learning with Intelligent Tutoring Systems (ITS) by 
providing students with adaptive scaffolding (e.g., hints, prompts, 
feedback) [3,17,50]. There is extensive evidence that PAs can 
improve learning and engagement with ITS [3,30,50]. However, 
there is also work showing that PAs can generate negative affect 
in students (e.g., boredom, frustration), and that such negative 
affect can be modulated by students’ individual differences (e.g., 
gender, personality, achievement goals) [2,29,38]. In particular, 
work [38] has shown that students’ achievement goals 

                                                                 
Proc. of the 17th International Conference on Autonomous Agents and 
Multiagent Systems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. 
Koenig (eds.), July 10-15, 2018, Stockholm, Sweden. Copyright © 2018, 
International Foundation for Autonomous Agents and Multiagent Systems 
(www.ifaamas.org). All rights reserved. 

(motivational goals in learning situations [20]) can influence their 
affective reaction to  
 
PAs’ prompts and feedback during interaction with MetaTutor, an 
ITS designed to scaffold student cognitive and metacognitive 
processes [3]. Specifically, students with a mastery-approach goal, 
who focus on developing competencies, tended to experience 
more negative affect when receiving PAs’ scaffolding than 
students with a performance-oriented goal, who focus on 
outperforming their peers. Such findings suggest that these 
mastery-oriented students may benefit from PAs that can 
recognise these episodes of negative affect, and take actions to 
rectify them. 

Here, we take a first step toward providing such 
personalization by studying the real-time prediction of student 
achievement goals (mastery-oriented vs performance-oriented) 
and emotion valence (positive vs negative affect) during 
interaction with MetaTutor. To do so, we train classifiers using 
eye-tracking data collected during student interaction with 
MetaTutor, namely eye gaze movements and distance of the head 
to the screen. Our results show that these classifiers can 
significantly outperform a majority class baseline for both 
prediction tasks, with accuracies suitable to further investigate 
the value of personalization driven by these classifiers. 

There has been a substantial interest and positive results in 
using eye-tracking data to predict user’s long-term cognitive 
abilities relevant to perceptual tasks (e.g., perceptual speed, spatial 
memory) [12,52], as well as short-term states such as confusion 
[38], boredom [34], and learning [35]. Here we contribute to this 
research by showing that eye-tracking data can help predict a 
user’s long-term trait beyond cognitive abilities, namely 
achievement goals, which can be seen as an attitude or preference. 
Achievement goals are considered a facet of motivation given that 
they provide a purpose for the learning task at hand, and guide 
students’ learning behaviors by setting the standards with which 
they evaluate success [20]. There is extensive work on the impact 
of achievement goals not only on student learning with PAs [19], 
but also students’ performance and motivation in general [20,32]. 
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Thus, showing the feasibility of predicting this trait is significant 
beyond the specific interaction with MetaTutor considered in this 
paper.  

Although the real-time prediction of emotion valence (i.e., a 
short-term state indicating the presence of positive vs. negative 
affect) has been extensively studied using a variety of data sources 
(e.g., facial expressions, speech, blood pressure [14,44,45]), here 
we show that it can be predicted solely from eye tracking data. 
We also show that this prediction can be made in conjunction 
with the prediction of achievement goals (i.e., a long-term trait). 
Thus, these results are promising for the design of personalized 
PAs that can react to episodes of negative affect based on the 
student’s goals, by solely leveraging eye-tracking information.  

It should be noted that, in recent years the focus of research 
in affective student modeling has been on detecting specific 
student emotions (frustration, boredom, confusion, joy, hope and 
several others), e.g., [5,9,18,53,55]. Accuracy results for some of 
these emotions are very promising, other emotions (e.g., 
confusion) can be more difficult to predict in academic settings 
[10,46]. In general, most of this work predicts one emotion at a 
time, despite substantial evidence that emotions can  co-occur 
[13,15,24,28]. Furthermore, there are still limited results on what 
can be done with these specific predictions in terms of 
personalization (see literature review). In this paper, we provide 
further evidence that students do feel multiple emotions during 
interaction with MetaTutor. Predicting these multiple emotions is 
a challenging multiclass classification problem, and even if we 
could solve it, we would still need to understand how to enable 
the MetaTutor’s PA to respond to these multiple emotions. This is 
indeed an intriguing research endeavor, however in this paper we 
want to explore the potential of a simpler approach based on the 
detection of emotion valence only. To this end, we discuss 
guidelines about how our classification results on emotion 
valence and achievement goals can inform the design of 
personalized interventions for the MetaTutor’s PAs. In the rest of 
this paper, we first discuss related work, followed by a description 
of MetaTutor and of the study that generated the data used in this 
paper. Next, we describe the datasets and machine learning set up, 
followed by results, discussion and conclusions. 

2 RELATED WORK 
Students’ affective reactions to PAs can greatly vary among 
students. In particular there is evidence that PAs can generate 
negative affect in some students [2,29,38,41], which can in turn 
hinder learning [4,29,30]. To address this issue, researchers 
started investigating affect-aware PAs that can detect and rectify 
episodes of negative affect for learning, as stated in the 
introduction.  

The first step to design such personalization is to detect 
episodes of negative affect during interaction with the PA. 
Extensive research has been dedicated to such real-time detection 
of emotions (see [11,56] for an overview). A simple approach 
consists in predicting the valence (i.e., positive or negative) of the 
occurring emotions, which has been done by leveraging a variety 
of data sources such as facial expressions [45,56,57], 
spoken/dialog cues [14,22,40], interaction data [49], physiological 

sensors (e.g., blood pressure, heart rate, skin conductance, pupil 
dilation [23,25,31,44]). Other work focused on detecting specific 
emotions by leveraging similar data sources as listed above for 
valence detection. Most of this work focused on predicting basic 
emotions (fear, anger, delight), e.g., [46,56]. However these basic 
emotions do not capture the full scope of affective reactions in 
learning or academic settings [47], therefore extensive research 
has also focused on detecting more subtle affective states that 
typically occur during learning, such as boredom, confusion, hope 
(e.g., [5,9,18,55]). Although high prediction accuracies were 
overall obtained in such work, some affective states may be more 
difficult to detect during learning, for example confusion or 
frustration in [10,46]. Recently, Jaques et al. [34] examined the 
value of eye tracking for affect detection, and found that eye gaze 
movements and distance of the eyes to the screen can be predictor 
of boredom in MetaTutor [34]. 

Although previous studies (e.g., [13,15,24,28]) showed that 
different emotions frequently co-occur while learning with ITS, 
almost all work on affect detection focused on building models 
that can predict only one emotion at a time. A notable exception 
is [13] where the authors studied a Bayesian Network that can 
detect pairs of co-occurring emotions (e.g., joy/pride) in an 
educational game. 

A few works started leveraging affect detectors to react to 
episodes of negative affect when they occur [16,55]. In the 
Wayang Tutor, a PA offering students to move on to another 
exercise when they are bored was found to improve student’s 
engagement [55]. In AutoTutor, empathetic feedback designed to 
respond to boredom, frustration or confusion improved learning 
for students with low prior knowledge [16]. 

Research has shown that learning outcome and affect can be 
influenced by specific student traits such as gender, personality or 
achievement goals during interaction with PAs [2,29,38]. In 
particular, achievement goals have been found to impact both 
learning and emotions in MetaTutor, with results showing that 
mastery-oriented students learned less from the PAs and 
experience more negative affect than performance-oriented 
students [19,38,39]. More generally, these achievement goals have 
been shown to influence various aspects of learning, including 
learning strategies [1,51], academic performance [26,27], self-
regulation [19,43], and belief that success follows from one’s effort 
[1]. 

Despite the strong interest for achievement goals in the fields 
of psychology and ITS, there has been no work on the real-time 
detection of achievement goals. However, eye tracking has been 
extensively used in HCI to predict other long-term traits, namely 
cognitive abilities (e.g., perceptual speed, working memory) 
[12,52]. Eye tracking is also a predictor of several short-term 
states, such as confusion [37], mind wandering [8], learning [35], 
and cognitive load [7].  

3 MetaTutor 
MetaTutor [3] is a ITS containing multiple pages of text and 
diagrams about the circulatory system, as well as mechanisms to 
help students apply meta-cognitive learning strategies known as 
Self-Regulated Learning (SRL), with the assistance of multiple 
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speaking pedagogical agents (PAs). When working with 
MetaTutor, students are given the overall goal of learning as much 
as they can about the human circulatory system, and they can set 
subsequent learning subgoals as they proceed through the 
available material. The MetaTutor interface and a description of 
its components are provided in Figure 1. A key element of the 
interface is the SRL palette (Fig 1G), designed to scaffold students 
self-regulatory processes by providing buttons they can select to 
initiate specific SRL activities (e.g., making a summary, taking a 
quiz, setting subgoals). Further SRL scaffolding is provided on 
each of these activities by three PAs, which in turn appear at the 
top right corner of the interface (Fig. 1F).  

These PAs provide both feedback on the outcome of students’ 
SRL activities (e.g., on quiz performance or on the quality of a 
summary), as well as prompts to guide these activities when 
needed. Pam the Planner scaffolds planning by assisting the 
student in creating subgoals (e.g., learning about the path of blood 
flow or heart disease) adequate to their progress through the 
material. Mary the Monitor scaffolds students’ metacognitive 
monitoring processes, such as the self-assessment of their 
progress towards the established subgoals, and relevance of 
content to the subgoals. Sam the Strategizer supports students in 
applying cognitive learning strategies such as taking notes on the 
content or summarizing it in their own words. All PAs provide 
audible assistance through the use of a text-to-speech engine 
(Nuance) and are visually rendered using Haptek virtual 
characters. More details about the design of the PAs can be found 
in [3]. 

4 USER STUDY 
The data used in this paper derives from a study designed to gain 
a general understanding of how students learn with MetaTutor 
[3]. Here we provide a brief summary of the study specific to the 
purposes of the paper. Thirty college students participated in the 

study, which started with a session during which students took a 
pretest on the circulatory system and questionnaires on 
demographics and learning-related traits, including the 
Achievement Goal Questionnaire that generated some of the data 
we use in this paper. In a second session, participants first 
underwent a calibration phase with a non-intrusive, monitor-
mounted eye tracker (SMI RED 250). Next, they had 90 minutes 
with MetaTutor to learn as much as possible about the circulatory 
system, while their gaze was tracked with the SMI RED 250. 
During the interaction, the PAs spoke to the students for 24mins 
on average (SD = 10.5) [39], to scaffold the use of SRL strategies 
as described in the previous section. Thus, although MetaTutor 
has several components, the PAs have a considerable presence. At 
various points during the session participants were asked to 
report their current emotions, via the self-reports described next. 

4.1  Measures of Achievement Goals and 
Emotions 
Here we describe the study material that provided the data we use 
in this paper for predicting achievement goals and emotion. 

Achievement Goals. The Achievement Goal Questionnaire 
Revised (AGQ-R) [20] is a 12-item self-report questionnaire that 
assesses four components of motivation in learning situations: (a) 
mastery-approach (e.g., goal to develop competence and skills), (b) 
mastery-avoidance (e.g., goal to avoid a failure to learn a skill), (c) 
performance-approach (e.g., goal to outperform others), and (d) 
performance-avoidance (e.g., goal to avoid being outperformed by 
others). All work done on MetaTutor has focused on mastery-
approach and performance-approach goals only, given that 
avoidance goals are typically considered less useful to scaffold 
effective learning [19,38]. In the AGQ-R, students indicate their 
agreement with a series of items using a 7-point Likert scale. A 
sample item for the mastery-approach subscale is: “My aim is to 
completely master the material presented during this learning 

 

Figure 1. Screenshot of MetaTutor showing the main components of the interface: A) Overall Learning Goal, B) Current 
Subgoals, C) Table of Content, D) Learning Text, E) Diagram, F) Pedagogical Agent, G) SRL Palette, H) Note taking popup, 
I) Timer. 
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session.” A sample item for the performance-approach subscale is: 
“My goal is to perform better than the other student participants.”  

 Emotion Reports. During the interaction with MetaTutor, at 
regular intervals of about 9 minutes students had to complete an 
on-line Emotions and Value (EV) Questionnaire [3]. This 
questionnaire consists of 15 items, each asking if the student 
currently feels a specific emotion: enjoyment, pride, hope, curiosity, 
eureka, anxiety, boredom, frustration, contempt, confusion, sadness, 
shame, hopelessness, surprise, neutral. One example item is: ‘‘Right 
now I feel bored’’. These items were rated on a 5-point Likert scale 
ranging from 1 (strongly disagree) to 5 (strongly agree), and 
students had to rate each emotion before they could proceed. The 
instructions and wording of the items are based on a subscale of 
the Academic Emotions Questionnaire (AEQ, [47]), that assesses 
students’ emotions commonly experienced in learning or 
academic settings. 

5 DATASET AND DATA LABELING 

5.1 Data for Predicting Achievement Goals 
Given the students’ responses to the AGQ-R questionnaire from 
the study, following [19,38,39] we assign students a dominant goal 
with respect to mastery-approach vs performance-approach, based 
on which of the two received the highest score in the AGQ-R. In 
the case of a tie, it is assumed that the student had no dominant 
goal and the student is excluded from the analysis. There are 5 
such students in our dataset. Based on this criterion, 16 of the 
remaining students had a mastery-oriented dominant goal 
(mastery-oriented students from now on), and 9 had a 
performance-oriented dominant goal (performance-oriented 
students from now on). These are the data that will be used to 
train our classifiers for achieving goal. 

5.1 Data for Predicting Valence 
206 EV emotion self-reports (simply reports from now on) were 
collected in the study (M = 6.8, SD = 1.4). Following [34], an 
emotion is considered present or reported at the time of a report if 
it is rated 4 or 5.  182 reports include at least one reported emotion, 
with 2.3 different emotions reported on average (SD = 1.44). 

The fact that often students reported more than one emotion 
is consistent with previous work, as mentioned in the related 
work (e.g., [13,15,24,28]). Recall, however, that our goal is to 
predict emotion valence, thus we need to extract labels for valence 
from the reports. There is generally a well-established mapping 
between individual emotions and their valence [33], however the 
presence of co-occurring emotions complicates our task when 
there are mixed reports that include both emotions with a negative 
and with a positive valence. This is because there is no emotion 
theory that gives a formal definition of how the valence of co-
occurring emotions integrates into an overall affective valence.  

 

Figure 2. Histogram of self-reports valence. 

Figure 2 shows how often these mixed reports appear in our 
dataset. The first (green) bar in Figure 2 denotes reports with a 
clear valence, i.e., where students reported solely positive or 
negative emotions. The rest of the bars (in blue) represent 
different types of mixed reports, i.e., reports with a specific 
absolute difference between the number of positive and negative 
emotions reported. For example, a report with 4 positive and 1 
negative emotion is categorized as “Difference 3”. As Figure 2 
shows, about 30% of the reports (54) have mixed valence. Thirteen 
of these include the same number of positive and negative 
emotions (Diff of 0 in Fig 2), and thus may be considered as 
“undetermined” in terms of valence. The remaining 41 reports 
have a difference of at least one, meaning that there were either 
more positive or more negative emotions reported. Table 1 
provides additional descriptive statistics for the 5 report 
categories in Figure 2. The first row shows the total number of 
students who generated reports in each category. The second row 
shows statistics on how many emotions per report there were in 
each category. The last row shows the number of reports with a 
majority of positive emotions (+), and a majority of negative 
emotions (-) in each category.  

Given the challenge of clearly defining the overall valence of 
these mixed reports, we will initially focus on predicting valence 
as expressed in clear reports where students reported only 
positive or only negative emotions. These are the 72 positive 
reports and 54 negative reports listed in the last cell of the “clear 
valence” column in Table 1. This choice is suitable for our goal of 
investigating the feasibility of predicting emotion valence using 
eye-tracking data, because it removes possible confounds due to 
the unclear valence of the mixed reports. In section 7, however, 
we will also discuss an analysis that includes the classification of 
these mixed self-reports. 

Table 1. Descriptive statistics of the EV reports. 

EV report: 
Clear 

valence 
Mixed valence 

Diff of 3 Diff of 2 Diff of 1 Diff of 0
#students 26 5 9 13 8 
Statistic on 
number of 
emotions per 
report 

M=1.93 
SD=.86 
Max=4 
Min=1 

M=5   
SD=0 

Max=5 
Min=5 

M=4  
SD=0 

Max=4 
Min=4 

M=3.36 
SD=.76 
Max=5 
Min=3 

M=1.15 
SD=.18 
Max=2 
Min=1 

Valence  
+ 72 
- 54 

+ 5 
- 0 

+ 13 
- 1 

+ 8 
- 14 

N/A 

69%

3% 8% 12% 7%
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6 MACHINE LEARNING SET UP 
We describe here the machine learning analysis we conducted to 
predict the binary labels generated for achievement goals 
(mastery vs. performance) and for emotion valence (positive vs. 
negative). 

6.1 Data Windows 
As described in section 4.2, students were prompted by MetaTutor 
to report their emotions at regular intervals (about 9 minutes). To 
predict the valence of a given report r, we use gaze data collected 
between the submission of the previous report and the appearance 
of r. In order to ascertain how much data leading up to a report is 
needed to predict it, we built our machine learning models over 
two different windows of data: (ii) a short window capturing data 
15 seconds immediately before a report, (ii) and a full window 
capturing all data between two reports. We selected the 15-
seconds window because it has been extensively used for affect 
detection [9,13,34,42]. As for the full window, it was found to be 
among the best at predicting boredom with MetaTutor in [34]. 

Unlike emotions, achievement goals do not change overtime 
(or they might change over long periods of time beyond the 
duration of a session with MetaTutor) [1,22]. What can change 
overtime during interaction with MetaTutor is the accuracy of a 
classifier for AG, as more eye-tracking data becomes available for 
classification. To ascertain how early we can predict a student’s 
achievement goal during interaction with MetaTutor, we use an 
approach similar to [12,52] for predicting different long-term user 
traits: given the sequence of 6 reports seen by all the participants 
in the study, we generated a data window for each report, 
including the eye-tracking data available from the beginning of 
the interaction to that report (i.e., 9 minutes on average, 18 
minutes, etc). We predict achievement goal for each of these 6 data 
windows. 

6.2 Eye Tracking Features 
The SMI eye tracker provides information on user gaze patterns 
(Gaze from now on) as well as on the distance of the user’s head 
from the screen (Head Distance from now on). From both gaze and 
head distance information, we derived a set of features listed in 
Table 2 that we leveraged to predict student’s emotion valence 
and achievement goals during interaction with MetaTutor. We 
used EMDAT (github.com/ATUAV/EMDAT), an eye tracking data 
analysis toolkit, to generate the features in Table 2, described next. 

Table 2. Set of features considered for classification. 

a) Gaze Features (154) 
 Overall Gaze Features (19): 
 Fixation rate, Mean & Std. deviation of fixation durations 
 Mean, Std. deviation of saccade length & Longest saccade 
 Mean & Std. deviation of saccade duration 
 Mean, Std. deviation, Min & Max of saccade speed 
 Mean, Rate & Std. deviation of relative saccade angles 
 Mean, Rate & Std. deviation of absolute saccade angles 
 Ratio between total fixation duration and total saccade duration 
 AOI Gaze Features for each AOI (135): 

 Fixation rate in AOI 
 Longest fixation in AOI, Time to first & last fixation in AOI 
 Proportion of time, Proportion of fixations in AOI 
 Prop. of transitions from this AOI to every AOI  
b) Head Distance Features (6)  
 Mean, Std. deviation, Max., Min. of head distance 
 Head distance at the first and last fixation in the data window 

 
Gaze Features: Users’ gaze patterns are captured in terms of 

fixations (gaze maintained at one point on the screen), and 
saccades (quick eye movement between two fixations). EMDAT 
generated the gaze features listed in Table 2 (part a) by calculating 
various summary statistics (e.g., sum, mean) over a user’s fixations 
and saccades. These statistics were computed for gaze patterns 
over the whole interface, generating the gaze features labelled as 
Overall Gaze Features in Table 2a, as well as over specific areas of 
interest (AOI) in the MQ interface, generating the AOI Gaze 
Features in Table 2a. There are nine AOIs defined over nine 
regions of MetaTutor, shown Figure 1. 

Head Distance: Head distance is obtained by averaging the 
distances from both eyes to the screen. Using EMDAT, we 
computed a set of summary statistics on users’ head distance, 
suitable for describing fluctuations of this measure over the 
course of the interaction with MetaTutor. These include min, max, 
mean, and std. dev. of users’ head distance (see Table 2, part b). We 
also included head distance at the first and last fixation in the data 
window as a way to capture variations of the measures between 
the closest and farthest datapoints to the emotion report in that 
window.  

6.3 Classifiers 
We tested 4 standard machine learning algorithms available in the 
Caret package in R [36] for our classifiers: Boosted Logistic 
regression (BL), Random Forest (RF), Neural Network (NN) and 
Support-Vector Machine (SVM). We chose these classifiers 
because they have been extensively used for affect detection, 
without concluding evidence as for which one is the best (see 
overview in [12]). As a baseline, we use a majority class classifier. 
For each of these 5 algorithms, we built: 
- Six classifiers for achievement goal, one for each data 

window at reports 1 through 6, 
- Two classifiers for valence, one for the 15-second window 

and one for the full window described in section 6.1. 
 

All classifiers were trained and evaluated with a process of 10-
runs-10-folds stratified cross-validation over students, meaning 
that all data for a given student are either in the training or in the 
test set. Stratification ensures that the class distribution in the 
folds is similar to that in the whole dataset. Due to the high 
number of features in our dataset, we discarded highly correlated 
features (r > .8) within the train folds only, to reduce data 
dimensionality. As a result 82 features were discarded on average 
across folds. The performance of each classifier was averaged 
across the 10 folds, and then again over the 10 runs. We report 
performance in terms of: overall accuracy (number of correct 
predictions divided by the total number of predictions) as well as 
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class accuracy (for each class, the number of correctly identified 
datapoints divided by the total number of datapoints in this class). 

7 RESULTS 

7.1 Prediction of Achievement Goals 
Figure 3 shows overall accuracy for the binary prediction of 
students’ achievements goal, namely whether students are 
mastery-oriented or performance-oriented. Figure 4 and Figure 5 
show class accuracy respectively for mastery-oriented students 
and performance-oriented students. Prediction accuracy is shown 
for the various machine learning algorithms we tried (defined in 
Section 6.3), along with the majority class baseline, for 
classification done from the first to the sixth emotion self-report. 
Notice that the baseline always predicts students as “mastery-
oriented”, the majority class, and thus is unable to identify 
performance-oriented students. 

To identify which combinations of classifier and self-report 
yield the best predictive performance, we ran a MANOVA2 with:  
- overall accuracy and both class accuracies at each run of cross-

validation as the dependent variables;  
- self-report (6 levels) and classifier (5 levels) as the factors. 

 
The MANOVA reveals a significant3 main effect of self-report 

(F5,810 = 67.2, p < .000, η2 = 0.77) and of classifiers (F12,810 = 109.1, p 
< .000, η2 = 0.87).  
 

 

Figure 3. Overall prediction accuracy for the prediction of 
students’ achievement goals. 

Main effect of self-report. Post-hoc univariate ANOVAs 
indicate that there is a main effect of self-report on all three 
dependent variables, namely overall accuracy (F5,270 = 278.36, p < 
.000, η2 = 0.65), class accuracy for mastery-oriented students (F5,270 

= 89.64, p < .000, η2 = 0.56), and class accuracy for performance-
oriented students (F5,270 = 1672.8, p < .000, η2 = 0.72).  For each 
dependent variable, we ran pairwise comparisons between the 
reports to identify which report yields the best accuracy, using the 
Wilcoxon signed-rank test. To account for family-wise error, we 
used the Holm method to adjust p-values based on the number of 
comparisons made per dependent variable [33].  

                                                                 
2 The data normality assumption was not met, thus we aligned the data using the 
Aligned Rank Transform method implemented in the ARTool package in R, widely 
used to run ANOVAs on non-parametric data [21,48,54]. 

Results of the pairwise comparisons reveal that prediction at 
the first report significantly outperform all other reports in terms 
of overall accuracy and class accuracy for performance-oriented 
students, with medium to large effect sizes (from η2=.16 to η2=.57). 
This first report also ties for best with the fifth report in terms of 
class accuracy for mastery-oriented students. The fact that the best 
overall accuracy and class accuracy can be obtained at the very 
first report (i.e., the first 9 minutes of interaction) is important as 
it enables the possibility of early personalization to the student’s 
achievement goal. Although it may seem surprising that having 
more interaction data available for training our classifiers at later 
reports does not yield better prediction of achievement goals, this 
result is consistent with previous work on predicting other long-
term user traits from gaze data [12,52]. A possible explanation is 
that these user traits make the most difference at the onset of the 
interaction, when they heavily influence how users assess the task 
at hand and start reasoning about it. 

 

Figure 4. Class accuracy for mastery-oriented students. 

 

Figure 5. Class accuracy for performance-oriented students. 

Main effect of classifiers. For the best report identified above 
(report 1), we ran Holm-adjusted pairwise comparisons between 
the classifiers for each independent variables, using the Wilcoxon 
signed-rank test. Results reveal that: 
- BL reaches significantly higher overall accuracy than the 

baseline (Z = 2.8, p = .005, η2 = .38), and so do SVM (Z = 2.8, 
p < .005, η2 = .38) and RF (Z = 2.8, p < .005, η2 = .38). BL also 

3 In this paper statistical significance is reported at the .05 levels, and effect sizes as 
large for η2 > .26, medium for η2 > .13, and small otherwise. 
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significantly outperforms both RF (Z = 2.7, p = .007, η2 = .36) 
and SVM (Z = 2.8, p = .005, η2 = .38). 

- BL outperforms all other classifiers in terms of both class 
accuracies (obviously excluding the 100% accurate baseline 
for mastery-oriented students). 

 
These results show that the BL classifier trained at the first 

report is the best at predicting achievement goals, reaching an 
overall accuracy of .81 over a .64 baseline (Figure 3). As shown 
Figure 4 and Figure 5, BL can detect mastery-oriented students 
with a very high accuracy (.92) at this first report, while still being 
able to recognize 59% of the performance-oriented students. 
Previous work has shown that mastery-oriented students tend to 
experience more negative affect with MetaTutor’s PAs than 
performance-oriented students [38]. Thus the fact that BL can 
detect mastery-oriented students with a very high accuracy is 
important to provide these students with dedicated support when 
they experience negative affect.  

7.2 Prediction of Emotion Valence 
Here we evaluate the ability of BL, RF, SVM, NN and the majority 
class baseline (which always predicts positive) to predict student 
emotion valence (positive vs negative) with the two data windows 
described in section 6.1 (Full and 15-seconds). As done for 
achievement goals, we ran a MANOVA with: overall accuracy and 
class accuracies at each run of cross-validation as the dependent 
variables; window (2 levels) and classifier (5 levels) as the factors.  

Results reveal a significant main effect of classifier (F12,420 = 
45.95, p < .000, η2 = 0.54) only. Post-hoc univariate ANOVAs for 
each dependent variable show a significant main effect of classifier 
for all dependent variables, namely overall accuracy (F4,140 = 321.4, 
p < .000, η2 = 0.58), class accuracy for negative reports (F4,140 = 
221.7, p = .002, η2 = 0.39), and class accuracy for positive reports 
(F1,140 = 644.1, p = .002, η2 = 0.39). To identify the best classifier, 
we started by running holm-adjusted pairwise comparisons 
between the classifiers with overall accuracy as the dependent 
variable, using the Wilcoxon signed-rank test. Figure 6 shows 
overall accuracy for each classifier and each of the two windows.  

 

 
Full Window 15-Seconds Window 

Figure 6. Accuracy and confidence intervals for the binary 
prediction of emotion valence in reports with a clear 
valence. 

Results reveal that only SVM with the full window significantly 
outperforms the baseline (Z = 2.29, p = .02, η2 = .51). Specifically, 
this SVM classifier reaches 0.64 accuracy, over a .57 baseline (see 
Figure 7, left). This finding indicates that the most promising 
approach to predict emotion valence from eye tracking in this 
context is to use a full window and SVM. Thus, we will focus the 
discussion of results for class accuracy on Full window only. 

Figure 7 shows class accuracy with Full window for the 
negative and the positive reports. Although the baseline can 
correctly detect all positive reports (the majority class), it cannot 
identify negative reports. Pairwise comparisons (with the suitable 
adjustments described in the previous section) reveal that SVM 
and NN tie as the best at predicting positive reports. SVM is the 
second best classifier at predicting negative reports, being 
outperformed only by BL. Specifically, as shown Figure 7, SVM 
with data from the Full window can correctly identify 26% of the 
negative reports, and 88% of the positive reports. Thus, the higher 
classification error pertains to false positives, namely the classifier 
misclassifies 74% of the report with negative valence as positive 
(31% of all reports). These would translate into missed 
opportunities for MetaTutor to rectify episodes with negative 
affect for the students, but would not otherwise interfere with the 
interaction. The classification error for false negatives is rather 
low, namely only 12% of the positive self-reports are misclassified 
(6% of all reports). These are the misclassifications that could 
generate unwarranted interventions from the PAs, thus it is 
encouraging that their number remains low. 

Pairwise comparisons also show that BL is the best classifier in 
terms of class accuracy for negative reports, being able to 
correctly identify 34% of them (see Figure 7, left). However, as 
shown Figure 7 (right), BL has the worst performance for positive 
reports, misclassifying as negative 44% of them (25% of all 
reports). Therefore, although BL would allow rectifying more 
episodes with negative affect than SVM, it would also lead to 
substantially more unwarranted interventions due to the high 
false negative rate. As future work, it may be worth examining 
ensemble techniques that could combine the strengths of the SVM 
and the BL classifiers. 
 

 

Figure 7. Class accuracy and confidence intervals for the 
negative (left) and positive (right) reports in the full 
window. 
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7.3 Prediction for the Mixed Reports 
Results reported in the previous section were obtained for reports 
with a clear valence only, as this is the best way to show whether 
valence can be predicted, without incurring in possible confounds 
due to the difficulty of defining valence for mixed reports. Here 
we examine if the winning classifier from the previous section 
(SVM+ Full window) can also make predictions on the mixed 
reports with a difference of at least 1 (cf. Section 5), if we interpret 
their valence as positive when they include more positive than 
negative emotions, and negative otherwise. Thus, we repeat the 
analysis performed in the previous section, for the accuracy of 
SVM at full windows trained only on clear valence reports and 
tested (with 10-run 10-fold stratified cross-validation) on test sets 
including both clear and mixed reports. Table 3 reports the results 
(3rd row), as well the accuracies for predicting just the mixed 
reports (2nd row).  

Both these sets of accuracies are very similar to the accuracies 
obtained on clear valence reports, indicating that perhaps student 
affective valence when they generated the mixed reports is indeed 
dictated by the valence of the dominant emotions reported.  We 
also re-run the analysis by adding the mixed reports to both 
training and test sets, to ascertain whether training on more data 
would improve the accuracy of the SVM classifier with full 
window data, but there was no substantial change on the results 
(see last row in Table 3). 

Table 3. Performance of the SVM+Full window classifiers 
for different approaches to include the mixed reports. 

 Overall 
accuracy 

Class accuracy 
Negative Positive

Trained and test on Clear (Section 
7.2) 

.637 .264 .882 

Trained on Clear and tested on 
Mixed 

.626 .248 .874 

Trained on Clear and tested  
on Clear+Mixed  

.638 .262 .885 

Trained and tested on Clear+Mixed  .643 .275 .884 

8 IMPLICATIONS FOR PERSONALIZATION 
As explained in the introduction, our main goal is to enable 
personalization to rectify episodes of negative affect based on the 
student’s achievement goal, leveraging the findings reported in 
[38]. That work found that PAs’ scaffolding in MetaTutor tended 
to generate negative affect in mastery-oriented students. As a 
possible reason for this result, [38] suggests that the PAs’ 
scaffolding may generate a sense of lower perceived autonomy for 
mastery-oriented students, based on an analysis of this 
achievement goal in [6]. Thus, possible forms of personalization 
for a student who is predicted to be mastery-oriented and 
experiencing negative affect during interaction with MetaTutor 
could include:  
- reducing the number of prompts and feedback provided, 
- offering the prompts and feedback in a way that gives the 

student more autonomy with them.  

One possible concern with our results is that some of the 
reported class accuracies are not high. This concern might be 
addressed by devising more sophisticated classifiers trained on 
more and richer data that combines eye tracking with other data 
sources known to be predictive of valence (e.g., facial expressions, 
blood pressure [9,53,55]). Here, however, we discuss whether our 
gaze-based classifiers are still worth considering to drive the 
personalization described above, despite their inaccuracies. 
Specifically, we discuss the implications for misclassification. 
Note that we will not consider the effects of misclassification of 
affect for performance-oriented students, because we propose no 
personalization for these students. 

(i) Misclassifying episodes of negative affect as positive for 
mastery-oriented students would result in missed opportunities to 
rectify negative affect. Although such missed opportunities would 
be frequent because our SVM classifier detects only 26% of the 
negative self-reports, they would not hinder students in any way 
since no intervention would be triggered.  

(ii) Misclassifying episodes of positive affect as negative would 
result in reducing PAs’ scaffolding or designing it for more 
autonomy if the student is predicted to be mastery-oriented. This 
might be problematic if the mastery prediction is incorrect and the 
student is in fact performance-oriented, because these students 
have been shown to benefit from the PAs’ scaffolding [19] and this 
personalization would reduce it or make it more discretionary. For 
correctly classified mastery-oriented students, making the 
scaffolding less prominent when it is not generating negative 
affect might unnecessarily remove the chance for them to benefit 
from it. However, these episodes of unwarranted personalization 
are limited, because our SVM valence classifier has high accuracy 
on positive reports (only 12% of all positive reports are 
misclassified). 

(iii) Misclassifying mastery-oriented students as performance-
oriented would also result in missed opportunities to support 
these students in the presence of negative affect. Fortunately, such 
misclassifications occur rather unfrequently with our BL 
classifier, which correctly identified up to 92% of mastery-oriented 
students. Misclassifying performance-oriented students as 
mastery-oriented, on the other hand, is quite frequent (40% of 
them are misclassified), and in that case students would receive 
unwarranted and possibly hindering personalization when 
negative affect is detected, as discussed above. This said, if those 
performance-oriented students are truly experiencing negative 
affect, they might actually benefit from receiving less scaffolding 
from the PAs, although further analysis would be needed to assess 
this hypothesis. 

Given the discussion above it appears that our gaze-based 
classifiers are still worth considering to drive personalization for 
mastery-oriented students who have negative affective reactions 
to the scaffolding provided by the MetaTutor PAs. Specifically, the 
benefits in personalization generated by correct predictions and 
the consequences of misclassification should be tested against 
MetaTutor with no such personalization or with the 
personalization provided to all students detected to be mastery-
oriented, regardless of their affective states.  
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9 CONCLUSION 
This paper contributes to research on intelligent Pedagogical 
Agents (PAs) by investigating the real-time prediction of students’ 
achievement goals and emotion valence during interaction with 
several PAs featured in MetaTutor, an ITS that scaffolds self-
regulated learning. The focus on these classification tasks is 
driven by findings indicating that the prompts and feedback 
generated by the MetaTutor’ PAs can generate negative affective 
reactions in mastery-oriented students, which the PAs could 
address if detected in real time. We trained several classifiers on 
eye-tracking data capturing student gaze patterns as well as head 
distance to the screen. Our results show that a Boosted Logistic 
Regression (BL) classifier predicts achievement goals with an 
overall accuracy of .81, significantly over a .64 baseline. 
Furthermore, this accuracy is achieved after seeing about 10 
minutes worth of data over a 90 minutes interaction, which is very 
promising for early personalization. This is to our knowledge the 
first result on predicting a student’s long-term trait during 
interaction with an ITS. As for emotion valence, a SVM classifier 
significantly outperformed a .57 baseline by reaching an accuracy 
of .64. Based on these results, we provided suggestions on how to 
design personalized PAs in MetaTutor that can regulate episodes 
of negative affect based on the student’s achievement goal. 

As future work, we first plan to investigate other machine 
learning techniques to improve classification accuracy (e.g., 
ensemble modeling), as well as other data sources (e.g., face 
videos, log files). Second, we plan to evaluate the forms of 
personalization suggested in this paper, driven by our classifiers. 
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