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ABSTRACT
Most often, both agents and human societies use norms to coordi-

nate their on-going activities. Nevertheless, choosing the ‘right’ set

of norms to regulate these societies constitutes an open problem.

Firstly, intrinsic norm relationships may lead to inconsistencies in

the chosen set of norms. Secondly, and more importantly, there is

an increasing demand of including ethical considerations in the

decision making process. This paper focuses on choosing the ‘right’

norms by considering moral values together with society’s partial

preferences over these values and the extent to which candidate

norms promote them. The resulting decision making problem can

then be encoded as a linear program, and hence solved by state-of-

the art solvers. Furthermore, we empirically test several optimisa-

tion scenarios so to determine the system’s performance and the

characteristics of the problem that affect its hardness.
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1 INTRODUCTION
Norms have been extensively studied as coordination mechanisms

within both agent and human societies [8, 39]. Within agent soci-

eties, problems such as norm synthesis [1, 40], norm emergence

[18, 42], or norm learning [9, 36, 37] have been widely tackled.

Regarding human societies, e-participation and e-governance ICT

systems are currently attracting a lot of attention [13, 26, 43]. Thus,

for example, some regulatory authorities in European cities –such

as Reykjavik [34], Madrid [12], or Barcelona [11] municipalities–
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are opening their policy making to citizens. This is also the case for

some countries: New Zealand authorities are opening consultations

about legislations related to different topics such as family violence

[29] or pensions [22]; whereas governamental site Parlement et

Citoyens [16] opens French Parliament to citizens so that they can

participate in national law elaboration.

Beyond the intrinsic complexity due to the number of norms to

manage –either if they are proposed by humans or automatically

generated– choosing the norms to regulate a society constitutes a

complex process. The reasons are twofold.

On the one hand, norms can be related. Norm relationships have

been previously studied in the literature. Thus, for example, Grossi

and Dignum [19] study the relation between abstract and concrete

norms, whereas Kollingbaum, Vasconcelos et al. [25, 41] focus on

norm conflicts —and solve them based on first-order unification

and constraint solving techniques. In this paper, we borrow some

of the relationships identified in Morales et al. [33] and follow the

work by Lopez-Sanchez et al. [27], which characterises three differ-

ent binary norm relationships, namely, generalisation, exclusivity,

and substitutability. Thus, we can consider a set of norms and the

fact that some norms in this set generalise some specific norms;

that some other norms are pair-wise incompatible (i.e., mutually

exclusive); or interchangeable (that is, substitutable). When this is

the case, a regulatory authority should not select these norms to be

simultaneously established in the society. We encode these relation-

ships in terms of restrictions in a linear program that computes the

norm subsets (subsets of the given set of norms) compliant with

the constraints imposed by the associated norm relations.

On the other hand, the work in [27] characterises the problems

that regulation authorities confront when considering two different

preference criteria over the norms to impose. In this manner, they

specify the optimisation problem of finding the subset of norms that,

in addition to complying with the relation constraints, maximizes

represented norms while minimizing associated norm costs (since

norms have deployment costs). This paper presents an empirical

analysis of different optimisation scenarios so to characterise the

hardness of the problem at hand and to assess how norm relation-

ships affect its performance.

Our main contribution is the consideration of moral values as-

sociated to norms as an additional decision criterion. This has to

be necessarily the case if we consider the different initiatives that

are flourishing revolving the application of Artificial Intelligence
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in many aspects of our daily lives [21]. Obviously, this includes

automatic decision making, since most resulting decisions have

ethical implications. Thus, along with the lines of the IEEE Global

Initiative for Ethical Considerations in Artificial Intelligence and

Autonomous Systems [3], with a committee devoted to “Embedding

Values into Autonomous Intelligent Systems”, we include moral

values in the selection of the norms that will be enacted in a society.

Values have been studied in argumentation. Some representa-

tive examples are Bench-Capon et al.[4, 7] or Modgil [30], which

work with different Value-based Argumentation Frameworks. Val-

ues have also been considered in artificial moral agents (AMA) [44],

introduced by Kohler et al. [24] in multi-agent institutions and,

more recently, Luo et al. [28] use them when considering agent

opportunistic behaviours. However, to the best of our knowledge,

no other authors have considered the values that norms support. In-

stead, the normative multi-agent systems research area has focused

in different normative concepts such as minimality and simplicity

[17, 32], liberality [33], compactness [31], or stability [39].

In this paper we assume that a regulatory authority has available

a collection of candidate norms (and their relationships) together

with a moral system that reflects the moral values shared within a

society. Then, we model the problem that pursues to maximize the

set of norms to establish under (a combination of) several criteria

regarding norm representation, associated costs, and supported

moral values. Subsequently, despite the computation complexity

of these problems, state-of-the-art linear programming solvers are

used to automatically compute their solution.

The paper is structured as follows. Sections 2 and 3 introduce

norm related concepts and a norm decision-making problem. Sec-

tion 4 introduces moral values into this multi-objective optimisation

problem. Sections 5 and 6 describe our empirical evaluation, and

section 7 discusses its application and future work.

2 BASIC DEFINITIONS
This section introduces norms and other related concepts as the

fundamental building blocks of the problems at hand.

Most normativemultiagent systems literature [2] considers norms

as coordination mechanisms. However, they differ in their formal

definition. Our notion of norm is based on a simplification of the

one in [45]. Thus, here we formally consider a norm ni as a pair
θ (ρ,ac), where: θ is a deontic operator (prohibition, permission, or

obligation); ρ is a description of the addressee entity, namely, the

agent required to comply with the norm; and ac is an action –from

a set of actions– that entities can perform in a specific domain.

Example 2.1 illustrates this definition.

As aforementioned, norm relations have also been previously

studied [19, 25, 41]. Here, we borrow some of the relations from

[33] and follow the work in [27], which characterises three norm re-

lationships (namely, exclusivity, substitutability, and generalisation).
Informally, it is considered that: two norms are mutually exclusive

when they are incompatible; two norms are substitutable if they

are interchangeable; and a norm is more general than another one

when it subsumes its regulation (has wider regulation scope).

Specifically, considering N as a non-empty set of norms, the

exclusivity relation is a binary relation Rx ⊆ N ×N . If (ni ,nj ) ∈ Rx
we say that ni ,nj are incompatible or mutually exclusive. Rx is an

irreflexive, symmetric, and intransitive relation.

The substitutability relation is a binary relation Rs ⊆ N × N . If

(ni ,nj ) ∈ Rs , we say that norms ni ,nj are interchangeable or sub-
stitutable. Based on substitutability relationships, we introduce the

notion of substitution chain as follows. Given two norms, ni ,nk ∈ N ,

we say thatnk is connected by substitutabilities toni if there is a non-
empty subset of norms {n1, . . . ,np } ⊆ N such that (n1,n2), . . . ,
(np−1,np )∈ Rs , n1 = ni , and np = nk . Henceforth, a new relation-

ship S ⊆ N × N will contain the pairs of norms that are connected

by substitutabilities. In particular, notice that if (ni ,nj ) ∈ Rs , then
(ni ,nj ) ∈ S. Rs is an irreflexive, symmetric, and transitive relation.

Finally, the direct generalisation relation is a binary relation

Rд ⊆ N × N . If (ni ,nj ) ∈ Rд , we say that ni is more general

than nj (i.e., it generalises nj ). Rд is irreflexive, anti-symmetric,

and intransitive (this is so because if (ni ,nj ) ∈ Rд , ∄nk ∈ N s.t

(ni ,nk ), (nk ,nj ) ∈ Rд ). Transitivity is captured through the no-

tion of indirect generalisation and the so-called ancestors. Given
two norms, nk ,ni ∈ N , we say that nk is an ancestor of ni if

there is a non-empty subset of norms {n1, . . . ,np } ⊆ N such that

(nk ,n1), . . . , (np ,ni ) ∈ Rд . Henceforth, given a norm ni ∈ N , we

will note its ancestors as A(ni ). Notice that if (nj ,ni ) ∈ Rд then

nj < A(ni ).
Previous concepts allows us to define the so-called norm net.

Def. 1. A norm net is a pair NN= ⟨N ,R⟩, where N stands for a set
of norms and R = {Rд ,Rx ,Rs } contains generalisation, exclusivity
and substitutability relationships over the norms in N . The relation-
ships in R are mutually exclusive, namely Rд ∩ Rx = ∅, Rд ∩ Rs = ∅,
and Rx ∩ Rs = ∅.

Furthermore, given a norm net NN= ⟨N ,R⟩, we will refer to any
subset of the norms in N as a norm system. The challenge then

lies in selecting a norm system out of a norm net. In general, we

will be interested in norm systems incorporating as many norms

as possible but excluding overlapping nor conflicting norms. Thus,

considering that exclusivity relationships capture conflicts between

norms whereas substitutability and generalisation relationships

capture redundancy or overlap (or in the case of generalisation,

subsumption), the following characterisation of norm systems nat-

urally follows.

Def. 2. Given a norm net NN= ⟨N ,R⟩, we say that a norm system
Ω ⊆ N is conflict-free iff for each ni ,nj ∈ Ω, (ni ,nj ) < Rx .

Def. 3. Given a norm net NN= ⟨N ,R⟩, we say that a norm system
Ω ⊆ N is non-redundant iff for each ni ,nj ∈ Ω: (i) (ni ,nj ) < Rд and
nj < A(ni ); and (ii) (ni ,nj ) < S

Def. 4. Given a norm net NN= ⟨N ,R⟩, we say that a norm system
Ω ⊆ N is sound iff it is both conflict-free and non-redundant.

Thus, we aim at finding sound norm systems that satisfy certain

criteria. Next section is devoted to further elaborate on that. Before

that, though, we illustrate norm nets with an example.

Example 2.1. Figure 1 illustrates an example of a norm net that

includes some norms (rules) of border control at an international

airport. Norms are depicted as circles labeled as n1, . . . ,n5 respec-
tively. In particular, they are defined as follows:

n1 : Permission(all_passengers, cross_border)
n2 : Obliдation(all_passengers, register_passport)
n3 : Obliдation(all_passengers, fulfil_form)
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n2=Obl(all, 
register-passport)

n3=Obl(all, 
fulfil-form)

n5=Obl(visitors, 
fulfil_form)

n4=Obl(locals, 
fulfil_form)

n1=Perm(all,  
cross_border) 

x
x 
x 
x
x

x  x x x x x x x x x x x x x x x

Generalisation x  x x x Exclusivity o o o o Substitutability

Figure 1: Norm net example: rules of border control at an
international airport.

n4 : Obliдation(locals, fulfil_form)
n5 : Obliдation(visitors, fulfil_form)
Norm n1 rules free movement of passengers, allowing all passen-

gers to cross the border without any additional action. Conversely,

norm n2 requires all passengers to register their passport, and there
is still a third rule n3 that requires them to fulfil a form asking for

passport information. As Figure 1 depicts, norm n1 has an exclusive

relation with both norms n2 and n3 ((n1,n2), (n1,n3) ∈ Rx )). Addi-
tionally, there is a substitutability relationship between second and

third norms ((n2,n3) ∈ Rx ). Finally, norm n3, –which requires all

passengers to fulfil a form– is a generalisation of norms n4 and n5,
which respectively require local and foreign passengers (visitors) to

fulfil a form (i .e ., (n3,n4), (n3,n5) ∈ Rд). Hence, considering these

restrictions Ω = {n1,n4} constitutes a possible sound norm system.

3 NORM DECISION MAKING
As mentioned above, the work in [27] characterises the problem

of determining sound norm systems that meet some optimization

criteria. This section details how soundness constraints and two

specific criteria –namely, norm representation and norm deploy-

ment cost– can be encoded as a linear program that can in turn be

solved with state-of-the-art solvers (e.g. CPLEX [20], Gurobi [35]).

On the one hand, norm representation is a preference criteria

that encapsulates the purpose of incorporating as many norms as

possible out of those proposed in a norm net, since they are all

considered to be acceptable. Thus, informally, we will aim at the

norm system that represents the largest number of norms in the

norm net. On the other hand, we cannot ignore the fact that norm

deployment has associated costs and that the expenses derived from

imposing norms should be bounded by the available budget. Norm

costs may represent monetary expenses derived from regulatory

processes –such as norm establishment or norm enforcement– as

well as non-monetary aspects –such as social implications or po-

litical correctness– as long as they can be somehow quantified. In

any case, we intend to minimise incurred costs while maximizing

norm representation.

Formally, we consider a representation power function, r : N →
R to be a linear function that computes a norm’s representation

power: a real value that encapsulates the fact that a norm cannot

only represent itself but also all the norms it generalises. Besides lin-

earity, the only condition that we impose on r is that r (ni ) ≤ r (nj )
for each nj ∈ A(ni ). Hence, the representation power of a norma-

tive system Ω can be readily obtained by adding the representation

power of its norms, namely ρ(Ω) = ∑
n∈Ω r (n).

Similarly, we assume that the cost of a norm system can be ob-

tained by adding the individual costs of its norms, namely cost(Ω) =∑
ni ∈Ω c(ni ), where c(ni ) stands for the cost of norm ni . Further-

more, we make the (reasonable) assumption that cost(Ω) is bounded
by a maximum budget b that is available to cover the expenses of

imposing those norms in the resulting norm system.

From that, we can cast the decision problem as the following

multi-objective optimisation problem.

Problem 1. Given a norm net NN= ⟨N ,R⟩1, a representation
power function r , and a fixed budget b, the maximum norm system
problem with limited budget (or the maximum norm system problem,
for short) is the problem of finding a sound norm system Ω ⊆ N with
maximum representation power and minimum cost limited by some
non-negative budget b (i.e., there is no other norm system Ω′ ⊆ N
such that ρ(Ω′) > ρ(Ω), cost(Ω′) < cost(Ω), and cost(Ω) ≤ b).

Lemma 1. The complexity of the maximum norm system problem
is at least NP-Hard.

Proof. 1. The proof goes trivially by reduction of the maximum in-
dependent set problem, which is known to be an NP-Hard optimisation
problem [23], to the maximum norm system problem. Consider that
we want to find the maximum independent set of a graphG = (V ,E).
Now say that each vertex in V stands for a norm and each edge
in E stands for an exclusivity relationship in Rx . From this follows
that finding the maximum independent set of G amounts to solving
the maximum norm set problem on the norm net ⟨V , {Rx }⟩, where
the representation power and cost functions are defined as r (v) = 1,
cost(v) = 1 for each v ∈ V and b = |V |.

Next, we show how to solve the maximum norm system problem

by encoding the optimisation problem as a linear program. Thus,

consider a norm net NN= ⟨N ,R⟩, and a set of binary decision

variables {x1, . . . ,x |N |}, where each xi encodes the decision of

whether norm ni is selected (taking value 1) for a norm system

or not (taking value 0). Thus, solving the maximum norm system

problem amounts to balancing the maximisation of

∑ |N |
i=1 xi · r (ni )

with the minimisation of

∑ |N |
i=1 xi · c(ni ) subject to a number of

constraints (including soundness restrictions).

First, exclusivity constraints prevent that two mutually exclusive

(incompatible) norms are jointly selected to be part of a norm

system. Thus, the following constraints must hold:

xi + x j ≤ 1 for each (ni ,nj ) ∈ Rx (1)

Second, substitutability constraints avoid that interchangeable

norms are simultaneously selected. This amounts to enforcing that

any pair of norms that are connected by substitutabilities cannot

be simultaneously selected, namely:

xi + x j ≤ 1 for each (ni ,nj ) ∈ S (2)

1
Notice that we assume knowledge about candidate norms to enact and the relation-

ships between such norms.
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Third, generalisation constraints avoid redundancy by imposing

that a norm cannot be selected together with any of the norms that

it directly generalises. Given a norm ni , the set of norms gener-

alised by ni is defined as Children(ni ) = {nj |(ni ,nj ) ∈ Rд}. Then,
formally, the following constraints must hold:

xi + x j ≤ 1 nj ∈ Children(ni ) 1 ≤ i ≤ |N | (3)

Moreover, all the children of a norm cannot be simultaneously

selected. Formally:∑
nj ∈Children(ni )

x j < |Children(ni )| 1 ≤ i ≤ |N | (4)

Additionally, a norm cannot be simultaneously selected together

with any of its ancestors, namely:

xi + xk ≤ 1 nk ∈ A(ni ) 1 ≤ i ≤ |N | (5)

Fourth, we must also consider the binary constraints correspond-

ing to the norm decision variables, namely:

xi ∈ {0, 1} 1 ≤ i ≤ |N | (6)

Finally, a further constraint ensures that the cost of the norm

system does not exceed the limited budget b ≥ 0:

|N |∑
i=1

c(ni ) · xi ≤ b, (7)

The linear program encoding the maximum norm system prob-

lem requires |N | binary decision variables, 2 · |Rд | + |Rx | + |S|
pairwise constraints (equations 1, 2, 3, and 5), and |P(Rд)| inequal-
ity constraints (equation 4), where P(Rд) = {ni |(ni ,nj ) ∈ Rд}.
Hence, the number of constraints is linear with the number of

norm relationships in a norm net.

4 CONSIDERING MORAL VALUES
So far we have considered quantitative criteria that regulation

authorities can take into account when choosing the norms to

enact in a society. However, as stated in the introduction, there is

an increasing demand of including ethical considerations in the

norm decision making process. Bringing in moral values into the

norm decision making can be regarded as a qualitative criterion.

In fact, both the law (or its philosophical approach, deontology)

and moral philosophy (ethics) act as systems of recommendations

on which possible actions are to be considered ‘right’ or ‘wrong’

[10]. Law’s basic component are norms, whereas values constitute

the core concept of moral philosophy. Values serve as criteria to

guide the evaluation of actions taking into account the relative

priority of values [15]. Moreover, the abstract nature of values

distinguishes them from norms, which usually refer to specific

situations [38]. Thus, in this paper, we will assume that: i) the

society has preferences over moral values; and ii) a norm is related

to a given moral value when the norm’s goal either promotes or

demotes that value.

In order to reason about norm systems based on moral value

preferences, we must be able to compare them in terms of the

values that they support. The principle that we adhere to is: the
more preferred the values supported by a norm system, the more
preferred that norm system. Thus, ideally, the decision maker would

like to opt for the norm system that supports the most preferred

values out of all the sound norm systems. This section is devoted

to extend the multi-objective decision-making problem introduced

in section 3 to account for the moral values supported by norms.

But first, subsequent subsections introduce values and how they

relate to norms.

4.1 Value systems
As aforementioned, moral values (e.g., equality or transparency

2
)

serve as criteria to guide the evaluation of actions taking into ac-

count their relative priority [15]. Since our main goal is to be able to

quantitatively reason about norm systems based on the qualitative

preferences over the values that they support, we adapt some value-

related definitions by Bench-Capon et al. [7] and considerV to be a

non-empty set of shared moral values in a society. Furthermore, we

consider a value system, similar to the one in [28], consisting of a set

of values V and a partial order ⪰ encapsulating value preferences.

Def. 5. A value system is a pair VS = ⟨V , ⪰⟩, where V stands for
a non-empty set of moral values and ⪰ represents a partial order over
these values such that ∀vi ,vj ∈ V s.t. vi ⪰ vj , it implies that vi is
more or equally preferred to vj .

Notice that we can have equally preferred values (when vi ⪰ vj
and vj ⪰ vi ) as well as incomparable values, which are those for

which neither exists a relation between them nor a path of relations

that connects them. It is also worth noticing that this ordering

extends the total order in [28].

We consider value preferences are expressed in terms of a partial
order , therefore, incomparable values or equally preferred values

may exist. Hence, we assume a regulation authority will reflect

both the moral values shared within a society and their relative

preferences into a mixed acyclic graph where: nodes represent

values; directed edges mean that the starting node value is more

preferred than the end node value; and undirected edges connect

equally preferred values. Not connected nodes –neither with an

edge nor with a path– represent incomparable values (namely, the

regulation authority cannot assess which one is preferred or if they

are equally preferred).

For these preferences to be congruent (without inconsistencies),

we require for equally preferred values in the graph to have the same

preferences over other values. Formally, this preference graph will

be transformed to a DAG (Directed Acyclic Graph), as in [14], where

edges represent preferences of starting nodes over ending nodes.

This transformation ensures that there are no ties of preference

over sets of values. In this manner, the undirected edges in the

graph are changed to directed edges by randomly (with a 50%

/ 50% chance) assigning a direction in order to maintain a fair

equilibrium between equally preferred values. Therefore, pairs of

equally preferred values are formally represented by each value

being equiprobably more preferred than the other. Next example

illustrates this transformation.

Example 4.1. Figure 2 depicts an example of the transformation

of the ‘raw’ preferences into those formal preferences the system

will use. Initially, the regulation authority provides a mixed acyclic

graph (see Figure 2 a)). In this case, it represents the set of values

2
Please refer to [38] for an overview on ten basic values that are recognized in cultures

around the world.
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V = {v1,v2,v3,v4} with preferences: v1 preferred over v3 (i.e.,

v1 ⪰ v3) and v1 equally preferred to v4 (i.e., v1 ⪰ v4) and v4 ⪰ v1).
Afterwards (see Figure 2 b)), for this graph to be congruent, v4 has
to be preferred overv3 (i.e.,v4 ⪰ v3) sincev4 is equally preferred to
v1, which is more preferred than v3. Finally, in order to convert the

congruent mixed acyclic graph into a DAG, we have to convert the

undirected edge to a directed one, by randomly selecting a direction.

Thus, we randomly define v1 ⪰ v4 in Figure 2 c).

Figure 2: Value preference specification: a) Mixed acyclic
graph (MAG); b) Congruent MAG; and c) DAG.

Notice that we only perform this transformation when ‘raw’

value preferences are ill-defined. Thus, there is no need to perform

such processing for congruent DAGs. Either way, equation 8 de-

fines the children relationship to denote immediate preference in a

congruent DAG.

children(vi ) = {vj | vi ⪰ vj , ∄vk s .t . vi ⪰ vk ⪰ vj } (8)

4.2 Norms’ value support
In addition to considering values and their preferences, we need to

define how they relate to norms. As previously mentioned, Philoso-

phy literature states that the abstract nature of values distinguishes

them from norms, which usually refer to specific situations [38].

Thus, we consider that norms regulate specific situations by pro-

moting (or demoting) some moral values. For instance, consider

the specific situation of a funeral, and a norm (or convention) that

dictates to wear dark
3
. In this case, this norm promotes the value

of respect. From this consideration, we take inspiration in [6] and

define the support rate function val : N → [−1, 1] |V |
which at-

tributes the support of the norm to each value by means of a rate in

[−1, 1], where: rate -1 stands for a norm totally demoting a value;

1 means that the norm totally promotes that value; and 0 means

that the norm is neutral to the value (that is, it has no relation to

it). Thus, val(ni ) = (x1, . . . ,x |V |), encompasses the rate of support

of ni to all values in V .

Using the DAG value structure, we define the following recursive

utility function to calculate the preference utility of each value:

u(vi ) = ϵi +
∑

vj ∈children(vi )
u(vj ) (9)

where 1 ≤ i ≤ |V | and ϵi ∈ (0, 1] is a randomly selected number

for each vi . The randomness of ϵ ensures (with high probability)

that there will be no ties between possible sets of values. Moreover,

3
Notice that different cultures differ in their dressing conventions.

as indicated by equation 8, vj values correspond to vi ’s children
(i.e., its immediately less preferred values).

In this case, it is clear that vi ⪰ vj ⇒ u(vi ) ≥ u(vj ). Neverthe-
less, if vi and vj are unrelated, although we can ensure (with high

probability) that one utility will be greater than the other (no ties),

it is a matter of randomness which one will be the largest. Note

that this methodology allows us to assure that our solution will

be optimal but, since we are choosing ϵ randomly, not all optimal

solutions are equiprobable.

Independently of the order used, we can readily calculate the

value support of a norm ni by adding the utility of the values sup-

ported by the norm as follows:

un (ni ) = val(ni )(u(v1), . . . ,u(v |V |))⊺ (10)

And from the individual utilities of norms we can compute the

value support for a given norm system Ω ⊆ N by adding the utility

of the values supported by each one of its norms as:

uN (Ω) =
∑
n∈Ω

un (n) (11)

It is worth noticing that utility function uN allows us to lift the

preferences defined as an order of preferences over single moral

values to a preference relation over bundles of norms. Thus, we will

say that Ω ⪰ Ω′ ⇔ uN (Ω) > uN (Ω′). Interestingly, the lifting of

preferences provided by the uN utility function satisfies responsive-
ness [5] which informally states that if in a norm system {n2,n3},
n3 is replaced by a better (supporting more preferred values) norm,

e.g. n1, then {n2,n1} makes a better norm system.

Lemma 2. The utility function uN guarantees responsiveness.

Proof. 2. To prove the lemma it suffices to show that given a
norm system Ω such that ni ∈ Ω, nj < Ω, and nj ⪰ ni , then Ω \
{ni } ∪ {nj } ⪰ Ω. Let us note Ω−i = Ω \ {ni }. Since uN (Ω) =
uN (Ω−i ) + un (ni ) < uN (Ω−i ) + un (nj ) = uN (Ω−i ∪ {nj }), then
Ω \ {ni } ∪ {nj } ⪰ Ω holds.

4.3 Value optimisation
At this point, we can quantitatively compare norm systems based

on the values that they support. Hence, we are ready to define a

new multi-objective optimisation problem involving values as an

extension of problem 1.

Problem 2. Given a Norm Net NN= ⟨N ,R⟩, a representation
power function r , a fixed budget b, and value system (V , ⪰), the
value-based maximum norm system problem with limited budget (or
value-based norm optimisation problem, for short) is the problem of
finding a sound norm system Ω ⊆ N with maximum representation
power, minimum cost limited by some non-negative budget b, and
maximum value support.

This problem can be encoded as a linear program by extending

the one in section 3. But first, we require: (i) some prioritisation

weightswr ,wc ,wv that measure, respectively, the relative impor-

tance of maximizing representation, minimizing cost, and maximis-

ing value support; and (ii) normalisation constants. We normalise

moral values by considering Vmax =
∑ |N |
i=1 un (ni ) and normalise

representation values by means of Rmax =
∑
nj ∈GN r (nj ), where

GN stands for the set of norms that are not directly generalised by
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Figure 3: Example of rules of border control (n1, . . . ,n5) to-
gether with the values they promote (v1,v2). Total promo-
tion is represented as a 1 within value support relation tri-
angles. For simplicity, value demotion is not depicted.

any other norm. Then, solving the value-based norm optimisation

problem amounts to solving the following linear program:

max
[ wr
Rmax

·
|N |∑
i=1

xi · r (ni ) +wc · (y − 1

b

|N |∑
i=1

xi · c(ni ))+

+
wv

Vmax
·
|N |∑
i=1

xi · un (ni )
] (12)

subject to constraints from equations 1 to 7 together with the fol-

lowing constraint related with prioritisation weights:

wr +wc +wv = 1 wr ,wc ,wv ∈ [0, 1] (13)

and two additional constraints related with y: a binary indica-

tor variable that allows us to turn the cost minimisation into a

maximisation, since finding the norm system with minimum (nor-

malised) cost (
1

b
∑ |N |
i=1 xi · c(ni )) amounts to maximising expression

y − 1

b
∑ |N |
i=1 xi · c(ni ). Hence, y must satisfy that:

y ∈ {0, 1} (14)

y ≤
|N |∑
i=1

xi ≤ M · y (15)

where M is a very large number
4
. Furthermore, it is worth men-

tioning that this indicator variable guarantees that no cost is added

to the objective function if no norm is chosen.

Finally, notice that the specification above corresponds to a max-

imization problem whose constraints are all inequalities. Hence, it

is in standard form and it can be solved with state-of-the-art linear

program solvers such as CPLEX [20] or Gurobi [35].

Example 4.2. In our example, as Figure 3 shows, we just consider

two values: v1, which corresponds to “free movement of persons”;

and v2, which stands for “safety”. Then, we can consider that n1

4
In our problem M can be defined to be strictly larger than |N |.

totally promotes the “free movement of persons” value but totally

demotes “safety” (that is, val(n1) = (1,−1)); whereas n2, . . . ,n5 to-
tally support the “safety” value whist totally demoting “free move-

ment” (that is, val(n2) = . . . = val(n5) = (−1, 1)). Let us consider
that: i) the society prefers “free movement” to “safety” (namely

v1 ≻ v2), then, u(v2) = ϵ2 and u(v1) = ϵ1 + ϵ2, and ii) moral values

are the only criterion to consider (i.e., wr = wc = 0 and wv = 1).

Therefore, our problem amounts to finding the sound norm system

that has maximum value support. Then, if we encode the prob-

lem, a linear program solver results in two alternative solutions

Ω = {n1,n4}, Ω = {n1,n5}. In other words, they constitute two

different value-optimal sound norm systems.

5 EMPIRICAL HARDNESS ANALYSIS:
PROBLEM STRUCTURE

Before analysing the hardness of our problem, we decided to start

by empirically studying the effect of the number of norms, their

relationships, and available budgets without considering values yet.

Thus, next subsection is devoted to describe how experiments on

the maximum norm system problem (described in Section 3) are

generated. Subsequent subsection presents the obtained results.

5.1 Experimental settings
Initially, we aimed at checking if the norm selection process scales

well with the number of norms. With this aim, we conducted ex-

periments for |N | = 500, 1000, 5000 norms. Moreover, for each of

this predefined number of norms, we generated different experi-

ments varying: the number of exclusivity relations; generalisation

relations; and the budget.

Norm relations define the norm net’s topology. On the one hand,

in order to study generalisation relationships, we automatically

generated several generalisation trees for each experiment so that

each overall norm net had a forest structure. Different experiments

were set up by changing the number of generalisation siblings.

Thus, we defined our topologies based on two parameters: height

(h), the tree’s depth; and width (w), the branching factor. Figure 4

shows different generalisation trees for different heights and widths,

including single norm trees —i.e., those trees with h = 0 andw = 0.

Figure 4: Example of alternative generalisation tree struc-
tures together with their heights and widths.

With the aim of avoiding uniform forest structures –i.e., having

all trees with the same height h and widthw–, we introduce single

norm trees in the norm net by considering a д parameter represent-

ing the probability of each tree actually having the h andw from its

norm net configuration (and thus, 1 − д is its probability of being a

single norm tree). Considering д requires to compute the number
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of trees to generate in the norm net so that its number of norms is

close to |N |. Our experiments consider д = 0.5 and the following

formula:

trees = round

(
|N |

д · ((∑h
i=0w

i ) − 1) + 1

)
Example 5.1. In order to generate a norm net with about 5000

norms, h = 2,w = 3, and д = 0.5, this formula tells us to create 714

trees. From these, we expect 50% of them (that is, 357) to correspond

to single norm trees whereas the remaining 357 will have 13 norms

each (as in the right-hand side of Figure 4), which amounts for 4641

norms. Hence, the total number of norms expected will be around

4998, which is close to our targeted 5000 norms.

Notice that when generating norm nets with h = 0 and w = 0

we are just creating |N | single norm trees, without generalisation

relations (Rд = ∅). On the other hand, we have considered 3 differ-

ent tiers on the generation of exclusivity relations between norms:

low exclusivity; medium exclusivity; high exclusivity.

Finally, once we have both generalisation and exclusivity rela-

tions, we parameterise the maximum budget to study its possible

effects on our problem resolution. First, we assign random individ-

ual costs to leaf norms in our trees and then compute the cost of

each general norm as the addition of the costs of its children norms:

c(ni ) =
∑

nj | (ni ,nj )∈Rд
c(nj )

Second, since root norms are the most expensive norms that could

be selected, we take as a reference a maximal cost that adds the

costs of all root norms (without considering exclusivity relations)

in our norm net. Third, we define three alternative budgets: low

budget, which is set to be 25% of this maximal cost; medium budget,

which corresponds to 50%; and high budget, which is set to 75%.

So to sum up, we have considered the following parameters:

• |N | = 500, 1000, 5000

• h = 0, 1, 2, 3,w = 0, 1, 2, 3

• Low exclusivity, medium exclusivity, high exclusivity

• budдet = 25%, 50%, 75% of maximal cost

• д = 0.5,wr =
1

2
,wc =

1

2
,wv = 0.

We consider representation power as important as cost. Moreover,

notice that height and width configurations result in 10 different

combinations as configurations of the form (0,w) or (h, 0) are ef-
fectively the same as (0,0). Now, for each possible parameter con-

figuration, we performed 100 experiments, which accounts for a

total of 27,000 experiments. Next subsection analyses the results

using a PC with processor Intel Core i5-6500.

5.2 Results and analysis
As aforementioned, we conducted 27,000 experiments to analyse

which problem parameters have a larger impact on resolution per-

formance. Along this empirical evaluation, it became apparent that

the larger height (h) and width (w) we considered in an experiment,

the smaller computational times we got. This lead us to believe that

generalisation relations might make the problem easier. However,

the way we generate exclusivities make that given a norm net with

a fixed |N | and exclusivity tier, if we reduce the generalisation rela-

tions, the exclusivity relations are increased. Therefore, we analyse

Figure 5: Solving times in seconds (y-axis) for problem
instances with 1,000 norms. X-axis corresponds to the
GER(NN ) ratio. Each point represents a problem instance.
The (red) line depicts a regression on solving times.

the results by considering the ratio of the number of generalisation

relations over the number of exclusivity relations. Formally, we

define this ratio for a norm net as: GER(NN ) = |Rд |
|Rx | .

We have seen that this characteristic affects largely the computa-

tional time and therefore the problem’s hardness. Thus, for example,

Figure 5 shows the solving times for 9000 different problem settings

with |N | = 1000. We observe that solving times rapidly increases

as the ratio decreases. In fact, for ratios near zero, tiny changes

largely increase hardness. Conversely, solving times get close to

zero for larger ratios, without big differences between them. This is

caused by a well-defined transition point, separating easy problems

corresponding to large ratios from harder problems corresponding

to low ratios. The reasons explaining these results are twofold. On

the one hand, generalisation relations ease the problem’s resolution

because, once a root norm is included in the solution, all norms

in its generalisation tree cannot belong to the solution, which de-

creases the number of norms that the solver needs to inspect. On

the other hand, exclusivity relations –which just relate root norms–

will push the solver to check on siblings (i.e., generalised norms),

thus increasing the norms to inspect and slowing the task. Addition-

ally, the less generalisation relations, the more single norm trees

(and the more exclusive relations), making finding the best possible

solution a matter of checking far more cases. Hence, this makes the

case h = 0 andw = 0 the hardest case to solve.

Regarding maximum budget, Figure 5 also depicts in different

colours experiments with low, medium, and high budget. From

these results we consider that increasing the budget just affects

the time slightly as, the more budget, the more norm combinations

are possible solutions, and, therefore, the solver has a harder time

selecting them. But it does not represent a substantial difference.

Tests have also shown that, even very large problems bearing

thousands of norms have resulted in manageable times. Indeed, the
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hardest cases considering 500, 1000 and 5000 norms take an average

maximum time of 1.6 s, 7 s, and 280 s (i.e., 4’40”) respectively.

6 EMPIRICAL HARDNESS ANALYSIS: MORAL
VALUES

Next, we study the problem’s hardness once we add moral values.

Empirical settings. Here study how values affect performance by

focusing on the hardest tree structure from previous section: single

norm trees (h = 0, w = 0) without generalisation relations. For

the sake of simplicity (and clarity), all support rates were set to 1.

Moreover, we have considered the value cardinality |V | = 1

33
|N |,

which we have empirically found to be the hardest.

As for social value preferences, we generated mixed acyclic

graphs by assigning, for all possible value pairs, a relation that is

randomly chosen from these four possibilities: 1st value is preferred

over the 2nd; 2nd value is preferred over the 1st; both values are

equally preferred; and values are not related. We then proceeded as

described in sections 4.1 and 4.2, producing directed acyclic graphs,

values’ utilities, and computing the value support of each norm.

Our experiments’ objectives are twofold. First, we aim to as-

sess whether or not norm polarisation towards certain values affects

solvers’ performance. Hence, we related norms and values by follow-

ing four different distributions: i) random distribution; ii) 20%-80%,

meaning that 20% of norms support the most desirable values whilst

the remaining 80% support the least desirable ones; iii) 50%-50%;

and iv) 80%-20%. Second, we aim to study if our problem becomes

harder as we increase the variability on the number of relations

between norms and values. For this purpose, we generate scenarios

with i) low variability, so that all norms relate to few values; ii)

medium; or iii) high variability.

In all cases, we considered the weights on equation (13) to be

wr = wc = wv = 0.333 so as to consider representation power,

cost, and value support equally important.

Results and analysis. Table 1 shows themedian computation time

for each experiment configuration, and compares it to the compu-

tation time required with no values (see first row). The second row

shows results on problems with randomly generated value rela-

tions, increasing time up to 20%. If we bias value support (rows 3-5),

the problem tends to become easier, since when there are norms

supporting less preferred values, their utilities become lower and

they can be discarded. In fact, for large norm nets (|N | = 5, 000) hav-

ing more than 50% of norms supporting less preferred values, the

resulting times are lower than the problem without values. Regard-

ing rows 6-8, the results improve the times of randomly generated

value relations, as although also being generated randomly, in this

case variability guides the solver. Thus, for large norm nets, the

higher the variability, the higher the improvement.

Overall, we conclude that if the problem’s characteristics lead

to similar value supports, then the problem will become harder.

Otherwise, clearly different value supports ease the problem with

respect to those without values, as norms having the highest value

supports will tent to be chosen for the resulting norm system.

From these experiments wemay also conclude that adding values

to the problem does not make the problemmuch harder. For smaller

Experiment 500 norms 1,000 norms 5,000 norms

No values 1.67s 6.28s 199.39s

Random values 1.67s 6.82s 227.27s

50%-50% 1.67s 6.36s 192.15s

20%-80% 1.67 s 6.37s 190.91s

80%-20% 1.68s 6.28s 221.99s

Low variability 1.59s 6.17s 226.83s

Medium variability 1.59s 6.2s 216.37s

High variability 1.59s 6.14s 204.97s

Table 1: Median of the computational times for experiment
settings with |N | = 500, 1000, 5000.

norm nets, there is barely a noticeable difference on computational

times, while for larger cases we have seen that this times can be

slightly affected (for good or bad) depending on the values the

norms are supporting.

7 CONCLUSIONS AND FUTUREWORK
Parlement et Citoyens [16] is an official web site that enables French

citizens to participate in lawmaking. As for November 2017, up to 11

consultations have been completed, leading to a total of 1,411 article

propositions that may be submitted to the National Assembly. We

argue that our model constitutes a useful decision support system

for the complex task of deciding which propositions to approve.

We have proven that our model can deal with the expected amount

of norms, plus it could solve potential mutually exclusive norm

proposals (such as articles regulating open data and those for data

privacy) or could eliminate redundancy given similar (generalised)

norm proposals. Furthermore, norm implementation costs could

also be considered when facing a limited government’s budget.

Most importantly, values could also be included explicitly, re-

flecting shared value preferences or those that can be drawn from

the political program of the government, which in turn was se-

lected democratically. Overall, our solver would produce the best

possible sound norm system constrained by budget and aligned

with the society’s value preferences. This would ultimately ease

the government’s task and encourage citizen participation.

To conclude, we advance the state of the art in norm decision-

making by incorporating ethics. Thus, the problem becomes that

of choosing the “right norms” by considering, among other criteria,

the moral values that candidate norms promote. A problem specifi-

cation requires the definition of shared moral values, together with

the social preferences over these values and the extent to which

candidate norms promote them. Then, problem resolution amounts

to computing a maximal sound norm system aligned with budget

limitations and social moral preferences. We show that CPLEX (a

state-of-the-art LP solver) helps solve large problems (in a few sec-

onds when considering up to 1000 norms and at most 4 minutes

when considering up to 5000 norms).

As to future work, we plan to perform the automated discov-

ery of norm relationships as well as to further investigating and

formalising the concept of value from a philosophical perspective.
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