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ABSTRACT
In an influential paper, Levesque proposed a formal specification for

analysing the correctness of program-like plans, such as conditional

plans, iterative plans, and knowledge-based plans. He motivated a

logical characterisation within the situation calculus that included

binary sensing actions. While the characterisation does not im-

mediately yield a practical algorithm, the specification serves as a

general skeleton to explore the synthesis of program-like plans for

reasonable, tractable fragments.

Increasingly, classical plan structures are being applied to sto-

chastic environments such as robotics applications. This raises the

question as to what the specification for correctness should look

like, since Levesque’s account makes the assumption that sensing is

exact and actions are deterministic. Building on a situation calculus

theory for reasoning about degrees of belief and noise, we revisit

the execution semantics of generalised plans. The specification is

then used to analyse the correctness of example plans.

KEYWORDS
Generalised planning; program-like plans; nondeterminism; noisy

acting and sensing; reasoning about knowledge and belief

ACM Reference Format:
Vaishak Belle. 2018. On Plans With Loops and Noise. In Proc. of the 17th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 8 pages.

1 INTRODUCTION
In an influential paper, Levesque [1] proposed a formal specifi-

cation for analysing the correctness of program-like plans, such

as conditional plans, iterative plans, and knowledge-based plans.

The problem setting is this: in a world where the agent can affect

changes by acting and learn about the truth of fluent values by

sensing, what should a plan look like and how should we verify that

it is correct? As a simple example, consider the problem of chopping

down a tree of unknown thickness using a chop action that reduces

its thickness by a unit. Clearly, no fixed sequence of chops would

work; however, if one is able to check after each chop whether the

tree still stands, then a simple iterative plan like in Figure 1 achieves

the desired outcome. To analyse such plans, Levesque motivated an

epistemic characterisation within the logical language of the situa-

tion calculus that included binary sensing actions. In that account,

the planning task is to find a structure such that for every situation

(that is, world state) considered initially possible, it leads to a final

situation where the goal holds. While the characterisation does not

immediately yield a practical algorithm, the specification serves as
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Figure 1: controller for chopping a tree of unknown non-
zero thickness d , by means of a binary sensing action дetd

a general skeleton to explore the synthesis of program-like plans for

reasonable, tractable fragments [2–5]. Moreover, recent advances

in multi-agent epistemic planning [6, 7] are encouraging, and a

formal characterisation like the one by Levesque can help relate

that work to generalised planning.

Increasingly, classical plan structures are being applied to sto-

chastic environments such as robotics applications [8]. Indeed, un-

certainty in the initial parameters of the planning problem is equiv-

alent to reasoning about belief states, so robotics has long served as

a motivation for generalised planning algorithms [3]. Approaches

such as [5] further allow a degree of nondeterminism in the effects

of actions. This raises the question as to what the specification

for correctness should look like in general, since Levesque’s ac-

count makes the assumption that sensing is exact and actions are

deterministic. In fact, Levesque concludes his paper with:

“But suppose that sensing involves reading from a noisy sensor
. . . how robot programs or planning could be defined in terms of this
account still remains to be seen."

To the best of our knowledge, no attempt has been made to

address the issue at the level of generality of the original paper,

and this is precisely our aim here. Building on a situation calculus

theory for reasoning about degrees of belief and noise, our main

contribution is to revisit the execution semantics of generalised

plans. Concretely, beginning with the established case of exact sens-

ing and deterministic acting, we turn to the case of exact sensing

but noisy acting. We then motivate the case where both acting and

sensing is noisy. We formally establish some compatibility theo-

rems between these accounts. Finally, the specification is then used

to analyse the correctness of example plans.

We reiterate that the technical thrust of this paper is limited

to formal characterisations: at no point will we concern ourselves

with algorithmic ideas or plan heuristics. We will mainly show how

the account correctly handles changes to the state of the world as a

result of noisy actions, as well as the changes to the beliefs of an

agent after noisy sensing.

In this paper, there is a natural evolution of theory and formula-

tion when compared to Levesque’s account. The original account

was based on the situation calculus extended for knowledge and

sensing [9] derived from classical epistemic logic [10]. Our account

is based on the situation calculus extended for probabilistic belief
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and noise [11] derived from probabilistic epistemic logic [12, 13].

In principle, of course, any logical language for reasoning about

actions and probabilities could have been used for the formalisation,

e.g. [14]. But by using the situation calculus, we can clearly expli-

cate the generalisation from Levesque’s account, but also benefit

from its first-order expressiveness, at least for axiomatising the

planning domain. Moreover, to logically characterise unbounded

iteration and transitive closure, we use second-order logic, as would

Levesque.

Its worth remarking that while this logical machinery makes the

account more involved than (say) POMDP specifications [15], hav-

ing a more general language is useful for contextualising involved

extensions such as the handling of non-unique prior distributions.

For example, in [16], it is argued that when planning in highly sto-

chastic and unknown environments, it is useful to allow a margin

of error in what the values of fluents will be. This means that the

planning system has to reason about multiple distributions satisfy-

ing such constraints, and as in [16], the use of logical connectives

allows us to express such scenarios effortlessly.

2 A THEORY OF KNOWLEDGE AND ACTION
We will not go over the language L of the situation calculus in

detail [17, 18], but simply note that it is a many-sorted dialect of

predicate calculus, with sorts for actions, situations, denoting a

(possibly) empty sequence of actions, and objects, for everything
else. A special constant S0 denotes the real world initially, and the

term do(a, s) denotes the situation obtained on doing a in s . Fluents,
whose last argument is always a situation, can be used to capture

changing properties. Following [18], application domains are ax-

iomatised as basic action theories, which stipulate the conditions

under which actions are executable, and their affects on fluents,

while embodying a monotonic solution to the frame problem. For

example, for the tree chop problem, using the functional fluent d
to mean the thickness of the tree, we may have:

1

Poss(chop(x), s) ≡ d(s) ≥ x .

d(do(a, s)) = u ≡

(a = chop(x) ∧ d(s) = u + x) ∨
(a , chop(x) ∧ d(s) = u).

We let chop be an abbreviation for chop(1). These axioms say

that chop is only possible when the tree’s thickness is non-zero, and

that the current value of d is u if and only if its previous value was

also u and no chop action occurred, or its previous value was u + 1
and a single chop action was executed.

A special binary fluent K(s ′, s) denotes that s ′ is a possible world
when the agent is at s . As usual, knowledge is defined as truth at

accessible worlds:

Know(ϕ, s) � ∀s ′. K(s ′, s) ⊃ ϕ[s ′].

1
Free variables are assumed to be implicitly quantified from the outside. For readability

purposes, we let ι range over initial situations only, that is, where no actions have

occurred.

A modeler axiomatises the initial beliefs of the agent:
2

K(ι, S0) ⊃ (1 ≤ d(ι) ≤ 10). (1)

This is equivalently written using Know and a special term now to

denote the current situation as:

Know(d(now) = 1 ∨ . . . ∨ d(now) = 10, S0).

The observations obtained by the agent are described using a special

function SF . In the tree chop problem, we may have:

SF(a, s) =


down a = дetd ∧ d(s) = 0

up a = дetd ∧ d(s) , 0

0 otherwise

(2)

which says that on doing the sensing action дetd , if the tree is still
standing, the sensor returns up, else it would return down.

A fixed successor state axiom for K then determines how the

agent’s knowledge changes over actions:

K(s ′,do(a, s)) ≡ ∃s ′′[K(s ′′, s) ∧ s ′ = do(a, s ′′) ∧ Poss(a, s ′′)
∧(SF(a, s ′′) = SF(a, s)))]

which has the effect of eliminating worlds that disagree with truth

at the real world, leading to knowledge expansion.

Plans with loops
We will be interested in computable program-like plans. We con-

sider finite state controllers, which are fairly common in the litera-

ture [3, 4, 19].

Definition 2.1. SupposeA is a finite set of (parameterless) action

terms, and O a finite set of objects, denoting observations. A finite

memoryless plan X is a tuple ⟨Q,Q0,QF ,γ ,δ⟩:
3

• Q is a finite set of control states;

• Q0 ∈ Q is the initial state, and QF ∈ Q the final one;

• γ ∈ [Q− → A] is a labelling function for Q− = Q − {QF };

• δ ∈ [Q− × O → Q] is a transition function.

Example 2.2. For Figure 1, we might have Q = {Q0,Q,QF },

γ (Q0) = chop,γ (Q) = дetd,δ (Q,up) = Q0, δ (Q,down) = QF , and

δ (Q0, 1) = Q .

Informally, we may think of applying these plans in an envi-

ronment as follows: starting from Q0 that advises the action γ (Q0),

the environment executes that action and changes externally to

return o ∈ O. Then, internally, we reach the control state δ (Q0,o)
and so on, untilQF . To reason about these plans in an environment

enabled in the situation calculus, we need to encode the plan struc-

ture as a L-sentence, and axiomatise the execution semantics over

situations, for which we follow [19] and define:

Definition 2.3. Let Σ be the union of the following axioms for:

(1) domain closure for the control states: (∀q) {q = Q0 ∨ q =
Q1 ∨ . . . ∨ q = Qn ∨ q = QF };

2
Like in modal logic [10], constraints on K correspond to appropriate properties for

Know in the truth theory [9]. We assume, as is usual, that Know has the full power

of introspection and closed under logical reasoning – so-called S5 – by consequence

of a stipulation that K is an equivalence relation. Also note that, unlike standard

modal logic, where “worlds” are static states of affairs that provide truth values to

propositions, the model theory of the situation calculus instantiates trees: each world

describes the values of fluents initially, but also after any sequence of actions.

3
Assume terms such as chop ∈ A and {up, down } ⊆ O .
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(2) unique names axiom for the control states:Qi , Q j for i , j;
(3) action association: ∀Q ∈ Q−

of the form γ (Q) = a;
(4) transitions: ∀Q ∈ Q−

of the form δ (Q,o) = Q ′
.

Definition 2.4. We useT ∗(q, s,q′, s ′) as abbreviation for ∀T [. . . ⊃
T (q, s,q′, s ′)], where the ellipsis is the conjunction of the universal

closure of:

• T (q, s,q, s)
• T (q, s,q′′, s ′′) ∧T (q′′, s ′′,q′, s ′) ⊃ T (q, s,q′, s ′)
• γ (q) = a ∧ Poss(a, s) ∧ SF(a, s) = o
∧ δ (q,o) = q′ ⊃ T (q, s,q′,do(a, s)).

In English: T ∗
is the reflexive transitive closure of the one-step

transitions in the plan.

We are now prepared to reason about plan correctness:

Definition 2.5. For any goal formula ϕ ∈ L, basic action theory

D, plan X and its encoding Σ, we say X is correct for ϕ iff

D ∪ Σ |= ∀s . K(s, S0) ⊃ ∃s ′[T ∗(Q0, s,QF , s
′) ∧ ϕ(s ′)].

Example 2.6. Let Ddyn denote the tree chop axioms, and then

it is easy to see that Ddyn ∪ {(1), (2)} ∪ Σ, where Σ represents the

encoding of Figure 1, is correct for the goal d = 0.

3 A THEORY OF PROBABILISTIC BELIEFS
Our objective now is to generalise the above well-understood frame-

work on knowledge and loopy plans to a stochastic setting. The

account of knowledge, deterministic acting and exact sensing was

extended by Bacchus, Halpern, and Levesque [11] – BHL hence-

forth – to deal with degrees of belief in formulas, and in particular,

with how degrees of belief should evolve in the presence of noisy

sensing and acting, in accordance with Bayesian conditioning. The

main advantage of a logical account like BHL is that it allows a

specification of belief that can be partial or incomplete, in keep-

ing with whatever information is available about the application

domain. The account is based on 3 distinguished fluents: p, l and
alt . The p fluent here is a numeric analogue to K in that p(s ′, s)
denotes the weight (or density) accorded to s ′ when the agent is at

s . Initial constraints about what is known can be provided as usual.

For example:

p(ι, S0) =

{
.1 if (1 ≤ d(ι) ≤ 10)

0 otherwise

(3)

is saying that the tree’s thickness d takes a value that is uniformly

drawn from {1, . . . , 10}. We provide a definition for a belief modal-

ity Bel shortly, but the above constraint can be equivalently written

as:

Bel(d(now) = 1, S0) = .1

and so on for the other values. As argued earlier, the logical account

also allows for uncertainty about the prior distribution – as needed,

for example, in [16] – by means of expressions such as:

Bel(d(now) = 1, S0) ≥ .05

which says that any distribution where d takes a value of 1 with a

probability greater than or equal to .05 is a permissible one.

The l fluent is used to express the likelihoods of outcomes. For

example, suppose we had a sensor that would inform the agent

about the numeric value of the d fluent in a situation. Then an

axiom of the form:

l(дetd(z), s) = N(z;d(s), .25) (4)

says that the observed value on the sensor is normally distributed

around the true value, with a variance of .25. In robotics terminology

[20], the sensor is said to have a Gaussian error profile.

To handle noisy actions, the idea is that if chop(x) represents a
chop that decrement’s the tree’s thickness by x units, assume a new

action type chop(x ,y) in that x is the intended argument and y is

taken to be what actually happens. These are chosen by nature, and

as such, out of the agent’s control. These action types are retrofitted

in successor state axioms:

d(do(a, s)) = u ≡ (a = chop(x ,y) ∧ u = d(s) − y) ∨
(a , chop(x ,y) ∧ u = d(s))

(5)

says that d is actually affected by the second argument.

Since the agent is assumed to not control y, we use alt to model

the possible alternatives to an intended action:
4

alt(chop(x ,y),a′, z) ≡ a′ = chop(x , z) (6)

says that, for example, chop(1, 2) is indistinguishable from chop(1, 3).
To suggest that some alternatives are more likely than others, an

axiom like

l(chop(x ,y), s) = N(y;x , .25) (7)

then says that the actual value is normally distributed around the

intended value, with a variance of .25. In robotics terminology, this

is the equivalent to an action having additive Gaussian noise.

Likelihoods and alt-axioms determine the probability of succes-

sors, enabled by the following successor state axiom:

p(s ′,do(a, s)) = u ≡

∃a′, z, s ′′ [alt(a,a′, z) ∧ s ′ = do(a′, s ′′) ∧ Poss(a′, s ′′) ∧
u = p(s ′′, s) × l(a′, s ′′)]

∨ ¬∃a′, z, s ′′
[alt(a,a′, z) ∧ s ′ = do(a′, s ′′) ∧ Poss(a′, s ′′) ∧ u = 0]

which essentially says that if two situations s and s ′ are considered
epistemically possible, on doing a at s , do(a, s) and do(b, s ′) will
also be considered epistemically possible, where b is any alt-related
action to a. Moreover, the p-value of do(b, s ′) is that of s ′ multiplied

by the likelihood of the outcome b.
Putting all this together, the degree of belief in ϕ at s is defined

as the weight of worlds where ϕ is true:

Bel(ϕ, s) �
∑

{s ′ : ϕ(s ′)}

p(s ′, s)

/ ∑
s ′

p(s ′, s)

We write K(s ′, s) to mean p(s ′, s) > 0, and Know(ϕ, s) � Bel(ϕ, s) =
1. Finally, note that when the likelihood models are trivial, that

is: ∀a, s . l(a, s) = 1, we are in the setting of nondeterministic but

non-probabilistic acting and sensing.

4
A more involved version would introduce alt as a fluent, allowing possible outcomes

to be determined by a situation.
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4 CONTROLLERS WITH NOISY ACTING
Our first objective will be to motivate a definition for analysing

the correctness of plan structures when actions are noisy (that is,

they are non-deterministic, and the actual outcome is not directly

observable). We assume, for now, that sensing is exact. This then

also handles the case where actions are non-deterministic but ob-

servable immediately after, by way of a sensing action to inform the

planner about the outcome. As far as the syntax of the plan struc-

ture goes, we will not want it to be any different than Definition

2.1; however, we will need to revisit Definition 2.4 to internalise

the noisy aspects of acting by using alt .

Definition 4.1. WeuseU ∗(q, s,q′, s ′) as abbreviation for∀U [. . . ⊃

U (q, s,q′, s ′)], where the ellipsis is the conjunction of the universal

closure of:

• U (q, s,q, s)
• U (q, s,q′′, s ′′) ∧U (q′′, s ′′,q′, s ′) ⊃ U (q, s,q′, s ′)
• γ (q) = a ∧ ∃b, z (alt(a,b, z) ∧ Poss(b, s) ∧ SF(b, s) = o ∧

δ (q,o) = q′) ⊃ U (q, s,q′,do(b, s)).

The main new ingredient here overT ∗
, of course, is how control

states transition from a situation to a successor. The reflexive tran-

sitive closure ofU basically says that if the controller advises a and

b is any action that is alt-related to a, we consider the transition
wrt the executability and the sensing outcome of the action b . The
idea, then, is allow U ∗

to capture the least set that accounts for all

the successors of a situation where a noisy action is performed. We

define:

Definition 4.2. For any goal formula ϕ ∈ L, basic action theory

D, plan X and its encoding Σ, we say X is correct for ϕ iff

D ∪ Σ |= ∀s . K(s, S0) ⊃ ∃s ′[U ∗(Q0, s,QF , s
′) ∧ ϕ(s ′)].

It can be shown that the new semantics coincides with Levesque’s

account when the action theory is noise-free: that is, alt-axioms are

trivial ∀z(alt(a,a′, z) ≡ a = a′), and l mimics the behavior of SF in

assigning 1 to situations that agree with the sensing outcome and

0 to those that disagree. Then:

Theorem 4.3. SupposeD is a noise-free action theory,X and Σ are
as above, and ϕ is any situation-suppressed formula not mentioning
the fluent K . Then, X is correct for ϕ in the sense of Definition 2.5 iff
X is correct in the sense of Definition 4.2.

Proof. U ∗
differs from T ∗

is only one aspect, that of alt-related
actions governing the transition to a successor situation. By as-

sumption, ∀z(alt(a,a′, z) ≡ a = a′); so Definition 2.5’s constraint

on T ∗
coincides with Definition 4.2’s constraint on U ∗

.

Definition 4.2 only tests for a single goal-satisfying path, which

is often referred to as a weak plan [2]. A property like termination
could be formalised using:

D ∪ Σ |= ∀s . K(s, S0) ⊃

∀s ′ [U ∗(Q0, s,q, s
′) ⊃ ∃s ′′ (U ∗(q, s ′,QF , s

′′))].
(8)

It is well-known [2] that in the absence of nondeterminism,

termination is implied by the existence of a goal-satisfying path:
5

5
There are, of course, a number of other criteria in terms of which one characterises

plan execution [2], a discussion of which is orthogonal to the issues of interest here and

are hence omitted. Major criteria include fairness, where if a nondeterministic action

Proposition 4.4. SupposeD,X and ϕ are as above. IfX is correct
for ϕ in the sense of Definition 2.5 then (8) holds.

Example 4.5. Imagine a tree chop problem with noise-free sens-

ing (i.e., let SF work as in (2)), but with noisy actions. Let chop ∈ A

correspond to the L-action chop(1, 1), with

l(chop(x ,y), s) =


.9 if x = y

.1 if y = 0

0 otherwise

(9)

That is, the chop action does nothing with a small probability.

Letting the initial theory be a p-based axiom for (1), we see that

the plan from Figure 1 is correct in the sense of Definition 4.2,

and it is also a terminating plan, because regardless of how many

times the action fails, there is clearly one execution path, that of

the appropriate number of chops always succeeding, which stops

after enabling the goal.

While Definition 4.2 looks at every non-zero initial world, weaker

specifications are possibile still. For example:

D ∪ Σ |= ∀s . p(s, S0) > κ ⊃ ∃s ′[U ∗(Q0, s,QF , s
′) ∧ ϕ(s ′)] (‡)

looks at worlds with weights > κ whereas

D ∪ Σ |= Bel(∃s ′[U ∗(Q0,now,QF , s
′) ∧ ϕ(s ′)], S0) ≥ κ (♯)

says that the sum (or integral) of initial worlds where there is a

weak plan is ≥ κ . Of course, since K(s ′, s) is an abbreviation for

p(s ′, s) > 0, and Know(ϕ, s) � Bel(ϕ, s) = 1, we have:

Proposition 4.6. Definition 4.2 is equivalent to (‡) for κ = 0, and
it is equivalent to (♯) for κ = 1.

Example 4.7. Imagine a tree chop problem with two types of

trees, wooden ones and metal ones; the chop action has no effect

on a metal tree [21]. Suppose we have 3 worlds: the first with a

wooden tree of thickness 1 and weight .4, the second with a wooden

tree of thickness 2 and weight .4, and the third with a metal tree

of arbitrary non-zero thickness with weight .2. If the goal is d = 0,

and the plan is the one from Figure 1, then (‡) holds for (say) κ = .3
and (♯) holds for (say) κ = .7.

We do not think that there is one preferred definition for cor-

rectness. While Definition 4.2 attempts correctness in the sense of

[2], planning for likely states, as in (‡), is very common in robotics

when exploring large biased search spaces [22, 23].

5 INCORPORATING NOISY SENSORS
Accounts like Definition 4.2 and (♯) capture nondeterministic act-

ing when the outcome of the action is immediately observable. In

applications such as robotics, sensing is often noisy. Similar to con-

tingent planning [7, 24, 25], we will now motivate a semantics of

plan execution over belief states.

To review the setting informally, consider a noise-free tree chop

problem instantiated by (1). Although the agent believes that d ∈

{1, . . . , 10}, in the real world S0, the tree has a fixed thickness, say

2. In this case, the controller discussed previously will advise two

chop actions, which will be executed in each of the possible worlds,

is executed infinitely many times then every outcome is assumed to occur infinitely

often, and acyclicity, where the same state is not allowed to be visited twice in plan

execution paths.

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1313 



including S0. At this point, a noise-free sensor returns down, and
so, the agent will come to believe that the tree is down. Implicitly,

all the worlds other than S0 considered possible initially will be

discarded, as they are no longer compatible with the sensing results.

(For example, the world in which d = 1 will be discarded after the

sensor says that the tree is still standing on doing a chop action,

because that is clearly not possible in such a world.) However, a

noisy sensor might return a down despite the tree still standing.

The point, then, is that the sensor’s error profile will inform the

agent how likely it is that a down is observed when the tree still

stands, and based on that, subsequent actions can be taken until it

is believed that the tree is no longer standing.

To formalise this intuition, we will need to address two technical

issues. First, observe that the account of Bel from BHL [11] makes

no mention of sensing functions, and in this sense, the language is

only geared for projection. That is, we can infer the value of Bel(d ≤

4,do(дetd(3), S0)) where we explicitly provide the sensor reading,

but it is ill-formed in the language to reason about beliefs after дetd
sans argument that is determined only at run time. Moreover, as

discussed above, the external feedback (e.g. number reported on a

sensor) will only be an estimate of the true property when we turn

to noisy sensors.

The solution to this issue by BHL was to define programs for

sensing actions: for example, a sensor was defined as πy. дetd(y),
the latter being a GOLOG program [18] that non-deterministically

chooses the argument for the sensing action. In [26], a slightly

simpler technical device was introduced where дetd also stood

for a program, but the semantics of program execution, which

is defined over action sequences, incorporates run-time sensor

readings. Neither of these solutions is appropriate for us, because: (a)

wewould like to avoid the complexity of definingGOLOGprograms;

and (b) we would like the new definition to be compatible with our

previous accounts of plan execution, enabled via the SF function.

We achieve this by considering a runtime sensing outcome function
Π : A∗ → O. Recall that in the situation calculus, situations are

not states, and the initial situation corresponds to the setting where

the agent has not executed any action. In a way, Π is an analogue

to usual definitions of observation functions that map states to

observations in that it responds to an action history. Then, we use

SF to refer to runtime readings as follows:

SF(a,do(ak ,do(. . . ,do(a1, ι) . . .))) = Π(a1, . . . ,ak ,a).

With this machinery, we can use SF as usual in the plan execution

semantics.
6
We can then introduce parameterless sensing actions

like дetd whose likelihood is now defined to mimic (4) as follows:

l(дetd, s) = N(SF(дetd, s);d(s), 1). (10)

The second technical issue is to interpret execution paths over

belief states, but while referencing the real world to test for sensing

outcomes. That is, starting from a control state (from the plan

structure) and the agent’s beliefs, we will need to define how a new

control state is reached with an updated set of beliefs. So, we will

need to “reify” beliefs in formulas: for any ground situation term

s , we introduce a new term s to be used with formulas in that we

write ϕ(s) to mean ∀s ′. K(s ′, s) ⊃ ϕ(s ′).We will often use two such

6
A more involved characterisation for Π would also take into account the values of

fluents at situations, which we omit here for simplicity.

[1,10]1
real world belief

[1,10] [0,9]

[1,10] [0,9] [0,9] X

1

0

chop(1,0)
.1

chop(1,0)

chop(1,1)

chop(1,1)
.9

Figure 2: execution path for the tree chop problem with ex-
act sensors against the controller from Figure 1

terms in a predicate for one-step transitions: V (t , s, t ′, s ′) can be

first expanded to ∀s∗. K(s∗, s) ⊃ V (t , s∗, t ′, s ′), which then expands

to ∀s∗, s+. [K(s∗, s) ∧ K(s+, s ′)] ⊃ V (t , s∗, t ′, s+). Recall that the K
fluent was assumed to be an equivalence relation, and so, roughly

speaking,V (t , s, t ′,do(a, s)) can be seen as saying that starting from

t and the belief state given by the situation s (that is, all K-related
situations from s), we perform a transition to t ′ and the belief state

given by do(a, s). Formally, we define:

Definition 5.1. WeuseV ∗(q, s,q′, s ′) as abbreviation for∀V [. . . ⊃

V (q, s,q′, s ′)], where the ellipsis is the conjunction of the universal

closure of:

• V (q, s,q, s)

• V (q, s,q′′, s ′′) ∧V (q′′, s ′′,q′, s ′) ⊃ V (q, s,q′, s ′)
• γ (q) = a ∧ Poss(a, s) ∧ SF(a, s) = o
∧ δ (q,o) = q′ ⊃ V (q, s,q′,do(a, s)).

The one-step transition is based on the controller advising a, this
action being executable at all accessible worlds, and the sensing

function returning o for a at s , which is taken to be the real world.

Most significantly, observe that ϕ(do(a, s)), by means of p’s suc-
cessor state axiom, would implicitly account for all the alt-related
actions to a.7

With this, we are prepared to reason about correctness:

Definition 5.2. For any goal formula ϕ ∈ L, D, X and its encod-

ing Σ, we say X is epistemically correct for ϕ iff

D ∪ Σ |= ∀s . K(s, S0) ⊃ ∃s ′ [V ∗(Q0, s,QF , s ′) ∧ ϕ(s ′)]

Before turning to the case of noisy sensors, let us revisit the

tree chop problem with noisy acting and exact sensing to better

understand how belief state transitions work.

Example 5.3. Let D be an action theory built from (3), (6), and

the likelihood axiom (9). Suppose the sensor works as follows:

l(дetd, s) =


1 SF(дetd, s) = down ∧ d = 0

1 SF(дetd, s) = up ∧ d > 0

0 otherwise

(11)

It is noise-free. Finally, suppose our goal is Bel(d < 10,now) > .9.

7
This is a key point as far as practical planning frameworks are concerned: V ∗

does

not look so different from the semantics of noise-free belief-based planning – see the

account in [21], for example; however, what is then needed is a set of belief states that

correctly accounts for the unobservability of nondeterministic outcomes and how that

changes with noisy sensing.
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getd
<6

>6

stopchop getd <6

>6

Figure 3: a controller for chopping the tree with noisy sens-
ing

A plan that is epistemically correct for this goal is given in Figure

2. We only argue for the initial world S0. It also depicts a possible

execution path of the plan using V ∗
. Let us suppose d(S0) = 1.

The first action advised by the controller is chop, and suppose the

action instantiates as chop(1, 0). Then d(do(chop(1, 0), S0)) = 1; so

its still standing, and also, the agent accords a belief of .9 to [0, 9] that

corresponds to a successful move, and a belief of .1 to its failure. The

noise-free sensor naturally returns up. The controller advises chop
again, and suppose this time, the action instantiates as chop(1, 1).

Incidentally, even without a sensor reading, the degree of belief

in d < 10 is > .9 because the only branch that still entertains d
retaining a value of 10 is that of both chop actions failing, with a

likelihood of .1 × .1. In any case, the controller advises a sensing

action, which would return down, and so the plan terminates for α =
[chop(1, 0) · дetd · chop(1, 1) · дetd] with Know(Bel(d < 10,now) >

.9,do(α , S0)).

Example 5.4. Consider the tree chop problem with noisy sensors

and effectors. Suppose the initial theory and alt-axioms are (3) and

(6) as before, but the likelihoods for the effector is given by (7)

and that for the sensor is given by (4). Finally, suppose our goal is

Bel(d ≤ 5,now) > .8.

A plan that is epistemically correct for the goal is given in Figure

3 wrt observed values of 5.5, 4.5 and 3.9. We only argue for S0.
Assume also that {< 6, > 6} ∈ O and that the numeric values

obtained from the sensor map to these binary outcomes.

Here, the controller advises chop, after which the belief inψ =
d ≤ 5 is > .5. This is because the likelihood of the action succeeding

is more than it failing, and given the prior ind ≤ 5 is .5, the posterior

should be clearly greater than .5. Suppose now the sensed value is

5.5. The belief in ψ drops to < .5. The controller advises another

chop, at which point the belief in ψ increases to > .5. Next, we

observe a reading of 4.5 followed by 3.9. The controller terminates.

On termination, it can be verified that the robot knows that the

degree of belief inψ is > .8.

In a noise-free setting, our definition of an epistemically cor-

rect plan is downward compatible with Definition 2.5 (and thus,

Definition 4.2):

Theorem 5.5. Suppose D is a noise-free action theory, X,Σ as
above, and ϕ is any formula not mentioning K . If X is epistemically
correct for ϕ, then it is correct for ϕ in the sense of Definition 2.5.

Proof. Suppose X is epistemically correct but not correct. Then

there is some s such thatK(s, S0) and¬∃s ′′T ∗(Q0, s,QF , s
′′)∧ϕ(s ′′).

By assumption, V ∗(Q0, s,QF , s ′) ∧ ϕ(s ′) for some s ′. Thinking of

⟨control states, situations⟩ are “nodes" in an execution path, the

definition of V ∗
is the least set of pairs of nodes containing: ⟨Q0, t⟩

chop
2

up

noop
3

down
stop
4

pick-up
1

nil

Figure 4: a problematic controller

for all situation terms t such that K(t , s), which includes s because
K is assumed to be an equivalence relation; ⟨q,do(a1, t)⟩ for all
situation terms t such that K(t , s) provided Q0 advises a1, it is
executable at every t and the sensing function returns o for a1
at s and δ (Q0,o) = q; and so on. By assumption, V ∗

contains as

node ⟨QF , s
′⟩ for s ′ = do(a1 · · ·ak , s). But, by the definition of

T ∗, it follows that T ∗(Q0, s,QF , s
′). Moreover, since ϕ(s ′) and K is

reflexive, ϕ(s ′). Contradiction.

In general, in the presence of noise, as one would expect, epis-

temic correctness diverges from correctness criteria based on plan

evaluation at initial worlds. For example, we have:

Theorem 5.6. Suppose D is any action theory, X,Σ as above, and
ϕ is any formula not mentioning K . If X is epistemically correct for
ϕ, then it does not follow that X satisfies (8).

Proof. To prove this result, it suffices to provide a (possibly

unwise) controller that is epistemically correct, but does not satisfy

(8). Consider the tree chop problem for a tree of unit thickness, but

with an additional action for picking up a saw. Suppose there is

only a single initial world S0, and ∀a, s(Poss(a, s) ≡ true). Suppose
the pick-up can fail, that is, suppose alt(pickup,b, z) ≡ b = noop,
where noop is the action of doing nothing. Suppose neither of these

actions provide the agent with any meaningful sensing result: that

is, ∀s SF(pickup, s) = SF(noop, s) = nil . Imagine a controller like in

Figure 4, where the control states are designated by numbers. (That

is,q1 is the control state advisingpickup andq4 is terminating state.)

Initially, the controller advises pickup, leading to two successor sit-

uations: do(pickup, S0) and do(noop, S0). By way of the definition of

SF and Poss for these actions, we haveV ∗(q1, S0,q2,do(pickup, S0)),
U ∗(q1, S0,q2,do(pickup, S0)) andU

∗(q1, S0,q2,do(noop, S0)). Suppose
now SF(chop,do(pickup, S0)) = down and so we have

V ∗(q1, S0,q4,do(pickup · chop, S0)), and by construction, [d(now) =

0](do(pickup · chop, S0)).However, suppose SF(chop,do(noop, S0)) =
up. Then we haveU ∗(q1, S0,q3,do(noop · chop, S0)), which will not

terminate.

The intuitive reason is that the termination conditions defined

over U ∗
respond to sensing results along every execution path,

whereas V ∗
only responds to the sensing outcomes for the path of

advised actions from an initial world and how belief changes with

it. This can be seen to be not surprising: among other things, the

much stronger (8) is not needed because incompatible worlds will

get discarded after sensing.

Let us conclude the section with two remarks. First, as mentioned

earlier, the definition of V ∗
does not look very different from the
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semantics of noise-free belief-based planning, and this is good news:

if the space of belief states is designed carefully to account for noise,

algorithms for noise-free generalised planning may carry over to

the stochastic case. Second, note that V ∗
was defined to include

an explicit reference to sensing outcomes from the environment,

which is external to the agent. A result in [21] shows that it is not

possible to realise that we are making progress towards the goal

without such a construction in belief-based planning.

6 DISCUSSION AND CONCLUSIONS
Generalising plans has been of interest since the early days of plan-

ning [27]. Algorithmic proposals to synthesise plans that generalise

varied widely in methodology, ranging from interactive theorem

proving [28] to learning from examples [29]. The convergence of

these approaches to synthesise plans that solve multiple problem

instances is a recent effort [4, 19, 30–32]. We refer interested readers

to [31] for a comprehensive list of references, and [5, 33] for re-

cent advances on handling nondeterminism. Outside of Levesque’s

account on the correctness of program-like plans as an epistemic

formulation, there are numerous variants [2, 5, 33–35]. The se-

mantics U ∗
extended Levesque’s T ∗

to handle noisy acting, and

V ∗
further extends that to noisy sensing, thereby obtaining a full

generalisation of the formulation to handle nondeterminism.

Belief-based planning, which we touch upon, is widely studied,

e.g., [24], and the usual approach is to formulate a nondeterministic

(conformant) planning problem that treats belief states as first-class

citizens. Our definition of V ∗
can be seen as a formalisation of

this semantics against a logic of probabilistic belief and action. In

that regard, the motivation behind this work is close in spirit to

knowledge-based programs [36, 37] and its stochastic extension

[26]. These are formulated using the situation calculus and the

high-level programming language GOLOG, but, of course, variant

languages are also popular for developing such planning accounts

[38]. At the outset, there are significant reasons to develop a seman-

tics customised to memoryless plans, as we argue below. Moreover,

since there are a number of generalised planning algorithms that

synthesise loopy plans [4], an execution semantics tailored to that

representation is useful to understand how those algorithms can

be applied to domains with noise.

Let us begin by observing that memoryless plans can be easily

encoded as GOLOG programs consisting of atomic physical ac-

tions and branches based on sensing outcomes. In general, given a

program δ , one is interested in showing that

D ∪ Θ |= Do(δ , S0,do(σ , S0))

where Θ encodes the single-step transition semantics of δ , and σ
is a ground sequence of actions such that δ terminates in do(σ , S0).
The key feature of knowledge-based programs is that δ can mention

Know, and the probabilistic belief operator Bel in [26]. Nonetheless,

note that if δ does not mention Bel, the entailment criteria above is

weaker than Definition 2.5 as it only looks at S0. But if it mentions

the Bel operator, then it seems closer to Definition 5.2, but at the

cost of a more cumbersome plan structure: δ can have unbounded

memory (via while loops), can refer to complicated state properties,

and is subjective, whereas Definition 5.2 is defined for memoryless

plans built purely from a finite set of atomic actions.

So, in the current paper, the end result is an account of correct-

ness with widely-studied loopy plan structures, which eschews the

complications of GOLOG but is able to achieve almost as much. Nat-

urally, then, relating knowledge-based programs and loopy plans

(in belief-based settings) is likely to be of considerable theoretical

interest, as would a closer study of the two execution semantics.

(Cf. also [34] on memoryless structures being effective, and [37] on

knowing how to execute GOLOG programs.)

Despite focusing on probabilities and nondeterminism, this pa-

per has established no connection to the large body of work on

Markov decision processes [39]. Mostly, decision-theoretic planning

frameworks are characterised in terms of optimality criteria against

expected rewards, often enabled via dynamic programming, while

we have treated goals as arbitrary formulas that are to be satisfied,

as would symbolic planning frameworks such as [2]. Nonetheless,

one can imagine ways of recasting expected rewards in terms of

goal satisfaction or vice versa [40], and that is arguably worth do-

ing in the context of this paper so as to relate to efforts such as

[41]. Interestingly, recent robotics planners such as [16] eschews

a planning paradigm that advises actions for every belief state, as

one would in partially observable Markov decision processes, and

instead resorts to a scheme that computes plans for a designated

initial belief state, as in belief-based planning. Moreover, as men-

tioned before, ultimately the goal here was to generalise Levesque’s

account and to provide a rigorous foundation for extensions such

as the handling of non-unique prior distributions.

As a final remark, like in Levesque’s original formulation, one

can motivate a generic planning procedure as follows:

input: ϕ, E∗ ∈ {T ∗,U ∗,V ∗} ,∆ is a correctness criteria

repeat with X ∈ FINITE STATE CONTROLLERS

if D ∪ Σ |= ∀s . K(s, S0) ⊃ ∆(E∗,ϕ, s) then return X

Naturally, we do not expect to use a full-blown logical framework

for planning, nor do we expect planners to actually use such a

procedure in practise. Languages like the ones in [16, 42] seem

entirely reasonable. It is also conceivable that existing algorithms

for generalised planning, such as bounded AND/OR searches, can

be adapted for stochastic settings, as argued earlier, possibly by

leveraging abstraction techniques [5, 33]. We hope this paper is

also useful for approaching and resolving that line of inquiry.
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