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ABSTRACT

We introduce a novel framework to formalize and solve transparent
planning tasks by executing actions selected in a suitable and timely
fashion. A transparent planning task is defined as a task where the
objective of the agent is to communicate its true goal to observers,
thereby making its intentions and its action selection transparent.
We formally define andmodel these tasks as Goal Pomdps where the
state space is the Cartesian product of the states of the world and a
given set of hypothetical goals. Action effects are deterministic in
the world states of the problem but probabilistic in the observer’s
beliefs. Transition probabilities are obtained from making a call to
a model–based plan recognition algorithm, which we refer to as an
observer stereotype. We propose an action selection strategy via on–
line planning that seeks actions to quickly convey the goal being
pursued to an observer assumed to fit a given stereotype. In order
to keep run–times feasible, we propose a novel model–based plan
recognition algorithm that approximates well–known probabilistic
plan recognition methods. The resulting on–line planner, after
being evaluated over a diverse set of domains and three different
observer stereotypes, is found to convey goal information faster
than purely goal–directed planners.

KEYWORDS

Cognitive Models; Communication, Languages and Models

ACM Reference Format:

AleckM.MacNally, Nir Lipovetzky,Miquel Ramirez &Adrian R. Pearce. 2018.
Action Selection for Transparent Planning. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

INTRODUCTION

Understanding the intentions and plans of agents, humans or oth-
erwise, has been identified as crucial in key AI research areas such
as intelligent user interfaces, dialogue in natural language, cooper-
ation in multi–agent systems, and assisted cognition [8, 10, 31, 45]
and substantial literature exists proposing several different formal
and computational frameworks [3, 16, 35].

On the other hand, the complementary problem of assisting an
observer to determine the goal being pursued, has received less
attention [9]. Informally, and from the perspective of model–based
approaches to planning and plan recognition, this is a problem
of planning – seeking actions – under specific constraints or in
response to feedback obtained from the observer. In turn, the ability
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Figure 1: Shows a person, A, walking in a corridor whomust

avoid a collisionwith a second person, B. Two possible paths

are shown for person A.

of autonomous systems to generate behaviour that is, according
to some measure of efficiency, easy to interpret is identified as a
critical and complementary component to robust intention recog-
nition in human–in–the–loop systems and joint human–robotic
teams operating in dynamic environments. Existing approaches
reformulate the planning model used by the acting agent (actor)
in a way that is beneficial to the agent that observes (observer).
Chakraborti et al [9] propose a framework for Model Reconciliation
that aims to elicit changes on-line in planning models so that the
cost optimal plans pursued by the actor match those considered by
the observer. Moving the focus away from the dialogical dimension
of the problem, Keren et al [21] Goal Recognition Design aims at
redesigning the environment where plans are executed to guaran-
tee that the degree of ambiguity in optimal plans for a given set of
goals is bounded. Interestingly, recent work [30] aims at exploiting
inherent ambiguity in the structure of the environment to delay
the identification of goals. In this paper we present a formal and
computational framework for transparent planning, when on–line
co–ordinated or off–line model reformulation is not suitable or pos-
sible. We formalize the problem and model it using the Goal Pomdp
framework [19], and the Functional STRIPS language to describe
states and actions [4, 14]. The goal pursued is then a constraint
on the posterior probabilities that the observer assigns to a set of
hypothetical goals, so that the actual goal is the best predictor for
the actions executed up to a given point in time. We propose an on–
line, polynomial and approximate algorithm to select actions, that
embeds a model–based plan recognition algorithm to procedurally
determine the Goal Pomdp transition probabilities required to track
the progression of beliefs. We evaluate the resulting planner over
several domains, which in this work are restricted to actions whose
effects over state variables modelling the environment are deter-
ministic. The results obtained indicate that the proposed scheme,
accelerates the convergence of the observer’s beliefs towards a
probability distribution with the desired properties, and is robust
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Figure 2: Shows the change in the beliefs of an observer in response to the actions it observes the actor executing. Time flows

left to right. The beliefs are shown in the graphs at the base of the figure. Next to each action is a diagram illustrating the state

following that action.

with respect to the assumptions made on the posterior used by the
observer to interpret observed actions.

Motivation

It is important in robot-human co-operative teams that each mem-
ber knows the intentions and roles of their collaborators [43]. In
this paper we focus specifically on how an agent may communicate
its goals to its fellow teammates. An obvious method of achieving
this is to have the agent explicitly transmit all relevant information
to observing agents. This can be achieved through some form of
communication protocol, such as, when the observer is human, a
computer screen or through natural language. Unfortunately this
solution is not as straight-forward as it seems. When the observ-
ing agent is human, the internal state of an acting agent must be
distilled in such a way that the information relevant to humans is
accessible. However, what is accessible may depend on the human.
Issues with training, language and culture will affect whether they
can correctly comprehend any communication.

An explicit communication protocol requires that both commu-
nicating parties understand the protocol in its entirety. Transparent
Planning represents a method for communicating information im-
plicitly by acting in a way which is recognizable to observers. In
comparison to explicit communicationmethods this form of implicit
communication only requires that there is agreement regarding
what constitutes natural behaviour, rather than a complete protocol.

We can see transparent planning used in human-human collabo-
ration especially in cases where there is no shared communication
protocol such as between an adult and a toddler [44]. In the work
by Warneken et al. [44] an adult executes actions, which are chosen
because they indicate what the adult is attempting to achieve, to
communicate to an observing toddler. In this case the toddler does
not yet understand languages but can interpret the intentions of
the adult by reasoning about its actions, and then it may choose to
assist.

In cases where there is an established communication protocol,
there is also the problem of communicating over a channel. The
form of this channel greatly changes the difficulty of the communi-
cation. For instance, if we take the example of a human supervising
a team of robots, it is clear that if each of the robots was audibly
broadcasting its intentions, the human would be unable to process

the barrage of information. Communicating by acting transparently
mostly uses a visual communication channel which, whilst sub-
ject to its own set of problems, will be useful in cases where other
channels are intractable, as in the above example.

Illustration. Figure 1 shows a situation in which two people in a
corridor must navigate around each other in order to pass. For a
successful solution each human must know which side the other
will pass on. In this case A has decided that they will pass B on the
their right-hand side. It is imperative that B understand A’s inten-
tion to avoid a collision. Two possible paths are illustrated in Fig. 1
from whichAmay choose. The blue path clearly communicatesA’s
intentions in advance of a possible collision, while the red path does
not. In situations like this, humans do not generally broadcast their
intentions audibly to other humans but instead act transparently, as
in this example by moving to the decided side early on in their plan.
We seek to produce this behaviour in human-robot collaborations.

In this work we do not require that the agent who is acting
transparently commits to achieving its goal and communicating it
simultaneously. The actor’s objective is to communicate its goal as
efficiently as possible regardless of how far this might remove the
actor from the goal. We wish to have the planner use actions as
the vocabulary for describing its intentions rather than for their
true effects. For example in Figure 2 we can see the interaction of a
human and a robot over time. The robot is planning in the Blocks
Words domain [34], in which the robot must assemble alphabet
blocks into a goal configuration by picking them up and putting
them down. The set of possible goalsG consists of twowords: BASH
and HABS. The robot’s goal is BASH. The initial state can be seen
on the far left of Figure 2. The optimal action for both goals is to
pick up H and then put it on the table, but if the actor executes these
actions the observer will only see a partial plan that is equally good
for both goals. So instead it picks up S which only occurs optimally
in plans to achieve the word BASH at t0. It then composes the word
ASH on top of the B. This clearly conveys the goal of the actor very
rapidly as can be seen by the graphs at the bottom of the figure
indicating the beliefs of the observer. Once the actor has written
ASH it can do no more with its limited vocabulary and therefore
un-stacks A as that is its only available action. At this point we
may assume that an observer will have gauged the goal of the actor
already and the actor may, therefore, act towards achieving the
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goal. If the actor assumes that the observer is not convinced it may
instead again stack A on top of S, in an attempt to convey its goal
with a limited vocabulary. This behaviour is reminiscent of that
required by the adults in the research by Warneken et al. [44], in
which an adult repeatedly knocks into a closed cupboard to indicate
to a toddler that it intended to place an object into the cupboard.

Related Work

The literature combining plan recognition and automated planning
generally focuses on recognizing the intentions of exogenous agents
and then acting in response to those intentions [13], this work in
contrast focuses on what an observer would gauge from observing
the agent under our control. Much of the literature considering
the effects actions have on the mental model of observers has been
focused in the area of human-aware planning [1], in particular in
the area of plan explanation. Chakraborti et al. [9] considered plan
explanation by taking into account differences between the actor’s
action model and the actor’s model assumed by the human. They
formulated a method for reconciling the human and robot action
models by suggesting changes to the human model. In contrast, we
do not intend to change the human action model but to generate the
most unambiguous behaviour given an observation model. Zhang
et al. [46] also considered the difference between the actor’s action
model and the human’s. They use this difference to produce plans
expected by a human who has full knowledge of the goal of the
actor, bypassing the need to explain actions. We produce plans
without assuming the observer knows the actor’s goal, we instead
select actions to communicate this goal to the observer.

We take direct inspiration from Keren et al. [21] work on Goal
Recognition Design, where a point is made that even if actors plan
optimally, it may still be difficult to identify the goal being pursued
in a timely fashion. From this observation, we note that seeking a
plan which is not necessarily optimal may allow an agent to convey
its goal more efficiently.

An orthogonal work to the focus on explaining actions and,
more generally, directing observers towards the goals that motivate
plans, recent work by Masters and Sardina [30] explores the active
manipulation of observers’ beliefs, proposing algorithms to produce
deceptive plans in the path–planning domain. Wemanipulate beliefs
too, but with the exact opposite intent and over general planning
models.

Finally, this work is inextricably linked to the notion of model–
based, probabilistic plan recognition [35]. Transparent Planning
internalizes this idea and uses it as an element of the planning
model, so the evolution of observer beliefs over time is accounted
for explicitly while seeking actions and plans.

PLANNING OVER GOAL POMDPS

Goal Pomdps (Partially Observable GoalMdp) are a well–known
framework [19] for agents that have incomplete state information
and receive indirect evidence of the actual state of the world via
sensors or by their own reasoning. In this paper we mostly follow
Bonet & Geffner’s [15] presentation of Goal Pomdps and define
them as a tuple M = ⟨S,b0,bG ,A, tr , c,Ω,q⟩ whose elements are
as follows. S is a non-empty, discrete and finite state space. b0 is
the initial belief state, a probability distribution P(s) over every

s ∈ S , representing the probability that the agent is in state s . We
seek actions that transform b0 into a new belief state in which the
set of constraints on the state probabilities, bG , is satisfied. The
set of actions that an agent may execute in a state, s , is given by
the function A(s) and c(a, s) is the cost of performing action a in s ,
which is a positive real number. tr is the state transition function
and tr (s ′ |s,a) gives the probability that the agent will transition
into state s ′ after performing a in s .

Feedback from sensors consists of a finite set of observation
tokens Ω. The probability of a token, ω ∈ Ω, being obtained having
performed action a in state s is given by the sensor model q(ω |s,a).

A common way to solve Pomdps is to formulate them as com-
pletely observableMDPs over the belief states of the agent [2, 42].
While the effects of an action will have on a state may not be exactly
predicted, the effects of actions on belief states can. Formally, the
belief ba that results from doing action a in belief b, and belief bωa
that result from observing ω after doing a in b, are:

ba (s) =
∑
s ′∈S

tr (s ′ |s,a)b(s ′) , (1)

ba (ω) =
∑
s ∈S

q(ω |s,a)ba (s) , (2)

bωa (s) = q(ω |s,a)ba (s)/ba (ω) if ba (ω) , 0. (3)

As a result, the partially observable problem of going from an initial
state to a goal state is transformed into the completely observable
problem of going from one initial belief state into a goal belief state.
We also note thatMDPs where tr (s ′ |s,a) > 0 for exactly one state
s ′ map directly onto deterministic state models [15].

We use the Functional STRIPS [14] language to describe declara-
tively states and transitions, as Ramirez and Geffner [36] did, for
the domains discussed in the Evaluation Section. Out of the full
expressiveness of Functional STRIPS we only use a subset, we note
the features required by our benchmarks next. State variables X
have their domains to be either Boolean, and hence modeling the
truth value of some arbitrary atomic formula, or a subset of N with
small cardinality. S then corresponds to the set of possible valua-
tions of X , and the value of x on state s is noted as [x]s . Actions are
described by a precondition list, Pre(a), which is a list of literals of
X , and an effect list, E f f (a), which is a list of updates of the form
x := ⊤ or x := ⊥, where x is a variable with Boolean domain.

We refer the reader to [11] and [5] for more detailed accounts
of Functional STRIPS, and its extensions to deal with probabilistic
effects and partially observable states, respectively.

PROBABILISTIC PLAN RECOGNITION

A probabilistic plan recognition problem [35] is a tuple T = ⟨X , A, I ,
G, O, Prob⟩ where:

• X and A are a set of Functional STRIPS variables and actions
describing a planning domain,

• I ∈ 2X is an initial state,
• G is a set of candidate goal formulae from which a goal will
be chosen,

• O is an observation sequence,
• Prob is a prior probability distribution over G, which repre-
sents previous knowledge of the likelihoods of each goal.
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We note that T can be also defined over a plan library [3, 16],
which is a set of sequences of actions π = (a0, . . . ,an ), elicited
from selecting plans that map initial state I into states that satisfy
a goal G ∈ G.

We assume that an observer’s beliefs follow from the probability
distribution, P(G |O), where G ∈ G, which is the solution to a
plan recognition problem, T . We also assume that these posterior
probabilities are computed via the application of Bayes’ Rule as:

P(G |O) = α P(O |G) P(G) (4)

where α is a normalizing constant, and P(G) is Prob(G). Several
definitions of likelihoods P(O |G) have been put forward in the
literature on model–based plan recognition, this work examines
the following three. The first one, which we refer to as RG09, adopts
a hard postulate on the rationality of agents pursuing hypothetical
goals [34].

P(O |G) =

{
1 |c(G,O) − c(G)| = 0
0 otherwise

(5)

where c(G,O) is the cost of a plan forG constrained to be consistent
with observation sequence O , and c(G) is the cost of a plan for G
without constraints. c(∗) maybe computed with an optimal planner
or may be approximated by a satisficing planner or heuristic. The
second definition, also by Ramirez & Geffner [35] and noted as
RG10, adopts a softer postulate, preferring hypothetical goals G as
an explanation for O when they minimize the difference between
c(G,O) and c(G, Ō), the latter being the cost of a plan for G which
is constrained to be inconsistent with O , that is a plan which does
not feature the observations in sequence. Assuming a Boltzmann
distribution over plans according to their cost, and writing exp{x}
for ex , likelihoods P(O |G) are defined as:

P(O |G) =
1

1 + exp{−β ∆(G)}
(6)

where ∆(G) = c(G,O) − c(G, Ō) and β is a positive constant. It is
often noted that ∆(G) can be sometimes difficult to calculate when
the observation sequence O contains actions which are goal land-
marks [18]. In that case c(G, Ō) can increase substantially – or be
∞ in extreme cases – leading run–times to increase significantly.
Also, while Ramirez & Geffner [35] allows O to deviate from the
plans selected by the observer as the best plan for G, inherent in
the approach is the commitment to one specific best plan, amongst
potentially many plans with the same associated cost. Various ap-
proaches have been proposed to avoid these issues while allowing
for a softer stance on rationality [29, 32, 41]. In this work we will
concentrate our efforts to study the most recent one as it results in
run–times similar to library–based approaches, after an off-line and
potentially expensive elicitation of landmarks, and has been shown
empirically to provide very accurate approximations to RG10. Fol-
lowing from the discussion in Pereira et al [32] of possible heuristics
to select hypothetical goals as explanations for O , we define the
likelihood of O given a hypothetical goalG in terms of landmarks:

P(O |G) ∝
|O ∩ L(G)|

|{G ′ |L(G ′) ∩ L(G) , ∅,G ′ ∈ G}|
(7)

in words, directly proportional to the degree O covers the set of
landmarks for goalG ,L(G) and inversely proportional to the degree

of overlap between sets of landmarks of hypothetical goals G. We
will refer to this last approach as POM17.

PLANNING TRANSPARENTLY

While Plan Recognition is usually described as a multi–agent set-
ting, only recently [46] models and frameworks have been proposed
that address explicitly the possible interactions between the agent
being observed, or actor, and the agent observing the actor, which
we will refer to as the observer. In particular we drop the key as-
sumption in so–called keyhole Plan Recognition [20, 40] where the
actor does not take an interest on what the observer may do or
believe about its actions. We will next propose one possible planning
model for an actor that both knows about the observer and wants
to influence it in some way. In order to do so, the actor may even-
tually have to follow a course of action that deviates from the most
efficient plan for its actual goal G∗ ∈ G, or temporarily abandon
its pursuit, to pursue instead changing the observer’s initial beliefs
to consider G∗ more likely, while driving those away from other
hypothetical goals G ′ ∈ G.

We define a transparent planning task with the tuple Π = ⟨X , A,
s0, Ω, q(·|·), G, G∗, P(·|·), Prob⟩, where:

• X and A are a set of Functional STRIPS variables and actions
describing a planning domain,

• s0 is a given valuation of variables X ,
• G is a set of possible goal formulaeG over literals of X , with
one distinguished memberG∗ which models the actor’s goal,

• Ω ⊆ X and q(ϕ |ψ ,a) allow us to specify a sensor model when
the actor has limited access to the values of X , where a ∈ A,
ϕ is a conjunction of literals of every variable in Ω, andψ is
a conjunctive formulae over X ,

• P(·|·) is the definition posterior goal distribution P(G |O)
which is assumed by the actor to be used by the observer to
make sense of its behaviour,

• Prob is a prior probability distribution over G.
We will refer to pairings of distributions P(·|·) and Prob as the

observer stereotype or stereotype for short. Last, Π shares elements
both relevant to planning and goal recognition models discussed
elsewhere in the paper, this makes apparent that the actor both
reasons about his own goalG∗, and influences the observer’s beliefs
as it generates observation sequences O made of actions a ∈ A
chosen in a suitably defined manner.

Amongst the several possible models discussed by the planning
community over the years, we chose that of Kaelbling’s [19] Goal
Pomdps. The transparent planning task Π can be compiled into a
Goal PomdpM(Π) as follows. States S are valuations over variables
X ′ = X ∪ {y}, y is the non–observable state variable used to keep
track of the goal the observer knows the actor to pursue. The do-
main of y is given by the set D(y) = {KG |G ∈ G}, where KG are
constant symbols that stand for “the observer knows G = G∗”. Such
a statement is only true when indeed, the observer has identified
precisely the goal G∗, as it is false for every goal G ′ , G∗, G ′ ∈ G.
Furthermore, we note that states s such that [G]s = ⊤ and y , KG
are valid. The reason for allowing the mental state of the observer
to be independent of the actual truth value of the goals G in a given
state, is to avoid the observer beliefs diverging from the distribution
P(·|·). Such a thing can occur if we forced y = KG whenever [G]s
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is true, such as when there exists a goal G
′

∈ G which has G as a
landmark. Introducing such a functional dependency between X
and y can indeed be justified, but it is not of immediate interest to
us.

The initial belief b0 is defined as b0(s) = Prob(G) for every state
s = s0∧(y = KG)withG ∈ G andb0(s ′) = 0 otherwise. Actions a do
not change the value of y so the transition probability distribution
follows from

tr (s |s ′,a) =

{
P({a}|[y]s

′

)P(σ |a) s = f (s ′,σ )

0 otherwise
(8)

where f (s ′,σ ) is a function which updates s ′ with the set of as-
signments σ , and P(σ |a) is the probability of σ given the action
a [5].

A belief b is a goal belief if b satisfies constraints bG :∑
s ∈S, [y]s=G∗

b(s) ≥
1
|G|
+ max
G′∈G\G∗

∑
s ∈S ′ [y]s=G′

b(s) (9)

We want to note that alternative definitions of bG are possible. For
instance, fairly intuitive ones such as that of G∗ being part of the
set

argmax
G′∈G

∑
s ∈S, [y]s=G′

b(s) (10)

could be useful when Prob is not a i.i.d. over G, otherwise b0 would
trivially satisfy the constraint. We use equation 9 as it requires that
the true goal be salient beyond a normalization factor.

The tracking of beliefs in Equations 1–3 can be simplified in the
following way for the domains discussed in the Evaluation section.
First, in these domains the agent has access to all values in X and
may not directly or indirectly know the value of y, so our sensor
model becomes Ω = {⊥}, Qa (ω |s) = 1 for every s and a. As a
result of this, Equation 1 and Equation 3 have one and the same
expression, i.e. ba (s) = b⊥a . Second, actions in A have deterministic
effects so the belief update in Equation 1 becomes

ba (s) =
∑
s ′∈S

tr (s |s ′,a)b(s ′) =
∑
s ′∈S

P({a}|[y]s
′

)b(s ′) (11)

The two simplifications above apply to fully observable, determin-
istic domain theories as in the case of the problems we have used
in this paper. For this reason, instead of compiling Π to a Goal
Pomdp we can instead compile it to a factored state model [12]
and use scalable width–based algorithms such as BFWS [26] to
efficiently search for sequences of actions to achieve a goal belief
bG .

The reasons for having chosen Kaelbling’s classic framework
over recently proposed ones such as Bonet’s & Geffner [7] that
allows belief tracking factorization, are exposed next. First, we note
that Goal Pomdps can be compiled into Bonet & Geffner framework
without loss of generality. Second, and from a purely empirical
standpoint, the modelsM(Π) that result from the domains discussed
in the Evaluation Section always have a causal width of 1 and hence,
no computational advantage of using Bonet’s & Geffner framework
was to be reported, since time complexity of belief tracking is linear
over |G|. A recent framework we would have wanted to use but
could not because it does not support probabilistic beliefs at the
time of writing this, is the full–fledged multi–agent on–line planner

recently proposed by Kominis & Geffner [24]. We look forward to
reconcile this work with that of Kominis in the near future.

ACTION SELECTION

The action selection problem over the transparent planning task Π
can be addressed as a net-benefit planning problem [22] where the re-
ward function is defined over beliefsb. The reward R(b) = −d(b,bT )
considered in this work corresponds to the negative of the Euclidean
distance between belief b and target belief state bT , that satisfies
the constraint bG in Equation 9. We set bT so that P(G∗ |O) = 1, and
P(G |O) = 0 for G ∈ G \G∗, which stands for the observer being
absolutely certain ofG∗ being the goal the actor pursues. In order
to compute the Euclidean distance d , the probabilities assigned
by belief b to goals G ∈ G are treated as real–valued vectors of
dimension |G|.

A valid plan is a sequence of actions π = ⟨a0 . . ., an⟩ that induces
the sequence of observations Oπ = ⟨a0, . . ., an⟩ and the sequence
of belief states ⟨b0, . . ., bn⟩, such that a0 is applicable in b0, bi = bai
as per Equation 11, and bn |= bG . The utility of a plan π is defined
as

u(π ) =

∑ |π |

i R(bi )

|π |
(12)

in words, the average accumulated reward, and a plan π is optimal
if there is no other plan π ′ with higher utility. Note that plan
length |π | is only used to normalise u(π ), as we set the task to seek
sequences π that maximise the average similarity between beliefs
bi and target belief bT .

Features over Beliefs for Width–Based Search

Width-based algorithms have been shown to scale up for classical
planning problems, factored state models, and net-benefit problems
[12, 26, 28]. In this work we use BFWS, a best-first search that
balances exploration and exploitation. BFWS ranks nodes in the
open list by novelty (exploration term), and breaks ties by a heuristic
function (exploitation term). The novelty of a newly generated state
w(s) is the size of the smallest subset (conjunction) Q of atoms
[x]s true in s and false in all the states s ′ generated before s , i.e.
w(s) =minQ ⊆s,Q⊈s ′ |Q | [25].

For the transparent planning task we extend the computation of
novelty to a belief state by taking into account not only the state
variables valuation [x]s , but also the quantities [YG ]s =

∑
s ∈S, [y]s=G b(s)

corresponding with the posterior probability P(G |O) assigned by
the observer to each goal G ∈ G. The observation sequence O cor-
responds to the partial plan leading to state s . Features YG take a
precision of two decimal digits1. The features used to compute nov-
elty are then F (s) = { [x]s | x ∈ X } ∪ { [YG ]

s }, both the valuation
of state variables x ∈ X and the posteriors YG for each goal G ∈ G.
The novelty of a state becomes w(s) =minQ ⊆F (s),Q⊈F (s ′) |Q |. Ex-
tending the definition of novelty with additional features have
already shown benefits in classical planning [12]. Last, the exploita-
tion term h(s) = u(π ) is set to be the utility of the partial plan π
leading to s , making BFWS to prefer first novel states, breaking ties
by utility.

1Features need to be bounded, otherwise their domain becomes non-finite.
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In order to cope with the size of the state-space, and taking
advantage that net-benefit problems can be solved by online algo-
rithms, we adapt BFWS to solve the online action selection prob-
lem, where given a budget expressed in terms of time, number of
generated states or simply as a search horizon on the maximum
plan length, the algorithm has to return the first applicable action
leading to the state with highest utility. For this setting we take
advantage of a polynomial variant of BFWS where nodes whose
novelty w(s) > 1 are pruned [27]. The benefit of the polynomial
version known as 1-BFWS is that it does not require a budget, it sim-
ply stops when no more nodes can be expanded. Note that 1-BFWS
can generate at most DX ×DYG states, where DX =

∑
x ∈X |D(x)|

is the sum of domains D cardinality for each state variable, and
DYG =

∑
G ∈G |D(YG )| is the sum of the cardinalities of state fea-

tures’ domains. As soon as 1-BFWS reaches a state s that satisfies
the goal belief state bG , then the search is stopped and the first ac-
tion leading to s is returned. If no such state exists, then the search
stops when no more nodes can be expanded and the action leading
to the state with highest utility is returned.

We finish observing that the instance of BFWS above does not
necessarily select actions (paths) which lead to beliefs b where G∗

is true in every state s s.t. b(s) > 0, and therefore, guarantee that
the true goal has been achieved. In practice, once G∗ has been
confirmed by the observer in some way, e.g. via some observation
token which rules out any state where y , KG∗, one could switch
to a purely goal–directed planner.

APPROXIMATING P(O|G) FOR BELIEF

TRACKING

The computational bottleneck to solve the transparent planning
problem is the derivation of∆ values.We extend Ramirez &Geffner [34]
approximation forC(G,O), based on Hoffmann’s hF F heuristic [17],
to approximate C(G, Ō). While the value of hF F on the tasks that
result from compiling away O may be reasonably informative, as
noted by Ramirez & Geffner [35], it generally is much less infor-
mative for the planning task constrained to avoid plans consistent
with O , as the constraints are satisfied already in the initial state.

The cost of achieving goal G without satisfying the observation
sequence O , is the cost of a plan which either removes one or
more observations, or changes their sequence order. Hence, in
order to break the sequence of operators it is sufficient to force
an observation to appear with a different index. The following
transformation extends Ramirez & Geffner [34] in order to achieve
this.

Given an observation sequence O and observation ai ∈ O , we
construct the FSTRIPS planning problemΠ = ⟨X ′, s,A′,G⟩ required
to evaluate P(·|·) in Equation 11 as follows. The set of variables X ′

results from augmenting X with Boolean state variable next . A′ is
made up of copies a′ of each a ∈ A, where Pre(a′) = Pre(a) ∧ next
when a = ai , Pre(a′) = Pre(a) otherwise. Effects of copies a′ for
actions a , ai are E f f (a′) = E f f (a) ∪ {next := ⊤}. Finally the
initial state s = f (s0,O ′) is set to the state resulting from the appli-
cation of the observation sequence O ′ = ⟨a0, . . . ,ai−1⟩ preceding
observation ai . The transformed planning problem ensures that the
observation ai is out of sequence as it is not applicable on the ith
step of a plan, and importantly not even in the delete-relaxed plan

that induces the value of hF F . This is achieved by making sure that
a different observation action that adds the variable next is used
first. This transformation is applied to every observation ai ∈ O .
The cost of an optimal plan in Πi is approximated by hF F . The cost
C(G, Ō) is then set to minimum cost for breaking the observation
sequence O :

C(G, Ō) = min
i=0, ..., |O |

c(πi−1) + hF F (Πi , Ii ) (13)

where c(πi−1) is the cost of the observation sequence leading to ai .
Note that for each search node we do not require computing hF F
|O | times, C(G, Ō) can be computed from the best C(G, Ō) value
leading to the parent node.

EVALUATION

In order to test the usefulness of the proposed framework, algo-
rithms and approximations discussed in the previous Sections, we
have implemented an on–line planner for transparent planning, IGC
(implicit goal communication), using the LAPKT planning frame-
work [37]. This planner, sets P(·|·) to the approximation discussed
in the previous Section, fixing β = 1 in Equation 6. A general plan-
ner for Π trivially follows from attaching procedures to the planner
which provide the denotation of FSTRIPS terms corresponding to
the posterior goal probabilities [12].

It may be that a regular goal-directed planner communicates its
goal efficiently in the course of its plan execution, in this case there
would be very little utility in the proposed methods. To determine
whether this is true we evaluate IGC against the satisficing classical
planner LAMA [39] with which we project away the variable y.
Action selection in LAMA is driven mainly by the goal–directed
reachability and landmark–based heuristics used to determine help-
ful actions/preferred operators. Run–times, quantity T in the tables,
are put forward for reference only, as action selection in LAMA
requires the computation of a full plan for goal G∗ and then to
commit to its first action.

We have tested IGC and LAMA over 9 domains: Grid Naviga-
tion with and without obstacles, Ticket to Ride, Blocks Word,
Campus, Intrusion-Detection, Logistics, Kitchen and Rover.
Campus, Intrusion-Detection and Kitchen are domains which
have been compiled from plan libraries [33], whereas the Blocks
Word, Logistics and Rover are domains from the International
Planning Competition discussed in the literature on plan recogni-
tion as planning [32, 35]. The Grid Navigation domain specifies a
simple navigation task on a 2–dimensional, 4–connected grid. The
Ticket To Ride domain is a simplified version of the popular board
game of the same name2. The task requires the connection of nodes
representing in–game locations. Connecting two nodes is only pos-
sible if enough game pieces of a given colour have been drawn.
Actions in every domain have deterministic effects and unitary
costs. Experiments were conducted on a i7-6700HQ CPU running
at 2.60GHz and the physical memory available to the planners was
limited to 8Gb of RAM.

Experiments simulate the effects of the actions selected by IGC
and LAMA on the beliefs of the observer. For each instance, and
domain, three observer stereotypes are tested, one for each of the
three methods, RG09, RG10 and POM17, discussed in the Section
2https://boardgamegeek.com/boardgame/9209/ticket-ride
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Domain RG10 RG09 POM17 IGC T LAMA T
Blocks Word 0.565 0.813 1.028 0.344 0.193
Grid Navigation 0.523 0.523 1.000 0.431 0.21
Grid Navigation + Obs 0.649 0.649 1.000 0.433 0.21
Ticket to Ride 0.571 0.634 0.959 0.654 0.386
Campus 0.854 0.828 1.344 0.437 0.353
Intrusion-Detection 0.774 0.774 1.919 0.535 0.244
Logistics 0.442 0.369 1.011 0.21 0.556
Kitchen 0.778 0.444 1.756 0.237 0.19
Rover 0.750 0.597 1.775 0.34 0.23

Table 1: Evaluation of IGC and LAMA. IGC T and LAMA T is average time in seconds to select an action. Columns RG10, RG09, POM17 are

average ratios Qυ (IGC)/Qυ (LAMA) for the three stereotypes considered.

“Probabilistic Plan Recognition“ to define P(O |G), along with uni-
form priors Prob. The difference between the landmark graph used
by LAMA and POM17 observer is that POM17 uses causal land-
marks and no disjunctive landmarks [23, 38]. It is an open question
to measure the sensitivity of the observed results to the choice
of algorithm to approximate action landmark sets. The simulator
progresses M(Π) as actions are requested from the planner and
executed, this process continues up to the point that the current
belief b satisfies bG in Equation 9, producing a sequence of actions
π . We measure performance comparing the length of sequences π
generated, we denote this value as Qυ (X ), where υ is the observer
stereotype (RG09, RG10, POM17) and X is a planner (IGC, LAMA).

Table 1 compares the average lengths of generated action se-
quences π between IGC and LAMA, and the results clearly show
a stark difference in the performance of IGC when switching the
cost–based stereotypes (RG09, RG10) for the landmark–based ob-
server stereotype. For the former, IGC , accelerates the convergence
of the observer beliefs towards those satisfying bG . For these ob-
server stereotypes IGC acts far more transparently and manages to
convey the goal faster than the standard goal-directed LAMA. In
the case of the POM17 stereotype in most domains the lengths are
very similar, and in the specific case of Rovers and the plan library
compilations (Campus, Kitchen and Intrusion Detection) are
worse. The reason for this difference of performance can be traced
directly back to the “loopy” behaviour demonstrated in Figure 2
which delays the selection of landmarks. The number of plans in
the plan library compilations are quite small3 and the set of (ac-
tion) landmarks contain most if not every action used relevant to
valid plans. In contrast, Richter and Westphal’s use of the landmark
heuristic [39] naturally directs LAMA towards including action
landmarks in plans. While LAMA may seem to have been a poor
choice for a baseline, in fact it serves us to illustrate the poten-
tial of an implementation of IGC using likelihoods derived from
landmarks.

Table 2 produces a ranking between IGC and LAMA on the
basis of how often either planner induce beliefs consistent with
bG faster than the other. Again, for the cost–based stereotypes,

3We refer the reader to the figures in pages 73–78 of M. Ramirez’s thesis [33], where a
graphical representation of the plan libraries is discussed.

the proposed IGC planner clearly outperforms LAMA, sometimes
by a wide margin (see entry for Logistics with RG10 stereotype).
Interestingly, this Table also shows how the performance of IGC
degrades as we move from RG10 to stereotypes which strongly
penalize plans which do not match their definition of rationality –
P(G |O). This is made manifest by the results on the Rovers domain,
where we see RG09 and POM17 react in opposite ways to IGC.
RG09 assigns null posteriors P(G |O) as soon asO deviates from the
(suboptimal) best plan, POM17 in contrast penalises IGC as it avoids
executing landmark actions common to many of the hypothetical
goals G, yet instrumental to achieve G∗. Included in Table 2 is an
analysis which uses a χ2 test where the null hypothesis (H0) is that
the number of IGC wins is equal to the number of times IGC doesn’t
win. A result with an *, **, *** or **** indicates a rejection ofH0 with
a significance level of 0.05, 0.01, 0.001 or 0.0001 respectively. Results
which are significant in the opposite direction of the hypothesis
are denoted ns, these are considered not significant because they
only suggest that IGC did not perform better than LAMA.

While the results clearly show that our proposed instantiation of
IGC is overfitting RG09 and RG10, and more generally, cost–based
goal recognisers, we note that the hypothesis that maximising
the number of landmarks achieved by plans as a good strategy
for selecting actions for cost–based recognisers, does not seem to
follow from the results in Tables 1 and 2. LAMA does not convey
the goal faster in most domains.

Finally, we note that assumptions on rationality from the ac-
tor and observer perspective are best tested over domains that
present opportunities for divergences in terms of which action
conveys more information. Such domains are essentially partially–
observable domains like those discussed by Ramirez & Geffner [36],
yet to try our ideas on these, additional research is necessary to
integrate algorithms for action selection over partially–observable
planning models, such as LW (1) [6], with the width–based search
methods discussed in this paper.

FUTUREWORK

In this paper we have formalised the notion of planning for com-
municating goals to an observer, making some strong assumptions
on the nature of the reasoning process used to make sense out of
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RG10 RG09 POM17

Domain I P F ∆m ∆a F ∆m ∆a F ∆m ∆a

Blocks 23 IGC 22∗∗∗∗ 7 2.7 14 4 2.4 3ns 2 1.3
Word LAMA – – – 3 3 1.7 4 2 1.2

Campus 16 IGC 4 2 1.5 4 3 2.2 –ns – –
LAMA – – – – – – 5 2 1.8

Grid 21 IGC 16∗ 16 5.1 16∗ 16 5.1 –ns – –
Navigation LAMA – – – – – – – – –
Grid Naviga– 24 IGC 15 7 3.0 15 7 3.0 –ns – –
tion (w. obst) LAMA – – – – – – – – –
Intrusion 23 IGC 19∗∗∗ 4 1.4 18∗∗ 4 1.3 3ns 3 3.0
Detection LAMA – – – – – – 17 8 3.8

Kitchen 18 IGC 12 2 1.5 18∗∗∗∗ 2 1.3 6 2 2.0
LAMA – – – – – – 12 10 3.0

Logistics 20 IGC 20∗∗∗∗ 17 4.5 18∗∗∗ 20 11.0 13 17 7.3
LAMA – – – 2 11 10.0 5 10 7.0

Rover 18 IGC 13 1 1.0 14∗ 9 5.2 2ns 1 1.0
LAMA 1 1 1.0 3 1 1.0 13 4 1.1

Ticket to 21 IGC 20∗∗∗∗ 11 3.0 19∗∗∗ 11 2.9 3ns 4 3.3
Ride LAMA – – – – – – – – –

Table 2: Comparison between IGC and LAMA over stereotypes RG09, RG10 and POM17. Column F is the number of times Qυ (IGC) <

Qυ (LAMA) (and vice versa). Columns ∆m and ∆a report maximal and average difference Qυ (X2) − Qυ (X1), where X2 and X1 are the slow-

est and fastest planner. – entries correspond to cases where IGC (or LAMA) were never quicker than the other. Number of ties follows from

subtracting the sum of F values from I (# instances) for every domain and stereotype. *, **, *** and **** indicate the statistical significance

of the result representing p-values less than 0.05, 0.01, 0.001 and 0.0001 respectively. ns denotes results which are significant in the opposite

direction of the hypothesis, which are those where IGC did not perform better than LAMA.

the actions in the plan. One obvious and appealing line of future
work is to conduct investigations with human observers and see to
what extent human cognitive processes fit the behaviours predicted
by our computational model. This study would need to investigate
whether this fit would vary based upon if the human knows that
the agent is communicating with them or not (whether the human
believes that it is in a keyhole recognition scenario or an intended
recognition scenario). Such a study would verify the suitability of
our framework to inform the design of systems where humans and
robots need to co–operate directly or indirectly in the pursuit of a
common goal.

Communicating goals is a limited form of communication be-
tween agents which does not require a previous agreement on a
communication protocol to be used by all the parties involved. An-
other future line of research is to explore the possibilities opened
up by this work to enable implicit co–ordination in multi–agent
planning domains.

The experimental setting we use in this paper to evaluate our
approach implicitly assumes that every action can be perceived by
the observer. This may well be not the case in realistic, yet simple
settings. Examples of these are domains where the environment in
some form prevents the observer from sensing the actors’ actions.

Last, planning to obfuscate the goal being pursued seems in-
tuitively a matter of setting bT in a suitable manner, yet finding

settings with an entirely passive observer where doing so is mean-
ingful seems challenging to us.
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