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ABSTRACT

We consider the online version of the coalition structure gener-

ation in graph games problem, where agents are vertices in a

graph. After each step t , in which the t-th agent appears in an

online fashion, agents are partitioned into c(t) coalitions C(t) =
{Ct

1
,Ct

2
, . . . ,Ct

c(t )}, such that every agent belongs to exactly one

coalition Ct
i . When an agent appears, it may either join an existing

coalition or form a new one having it as the only agent. The profit

of a such a coalition structure C(t) is the sum of the profits of its

coalitions. We consider two cases for the profit of a coalition: (1) the

sum of the weights of its edges (which represents the total profit

of the agents in the coalition), and (2) the sum of the weights of

its edges divided by its size (which represents the average profit of

the agents in the coalition). Such coalition structures appear in a

variety of application in AI, multi-agent systems, networks, as well

as in social networks, data analysis, computational biology, game

theory, and scheduling. For each of the profit functions we consider

the bounded and unbounded cases depending on whether or not

the size of a coalition can exceed a given value α . Furthermore,

we consider the case of a limited number of coalitions and various

weight functions for the edges, namely the cases of unrestricted,

positive and constant weights. We show tight or nearly tight bounds

for the competitive ratio in each case.
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1 INTRODUCTION

Coalition structure generation (CSG) or clustering is a major re-

search challenge in AI, multi-agent systems, and networking com-

munities. The problem is partitioning a set of agents into coalitions

so that the social welfare is maximized. Specifically, given a set of
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agents A = {1, 2, . . . ,n}, and a value function v : 2
A → R (note

that v may map to negative values), that assigns a value to each set

of agents (coalition or cluster) S ⊆ A, a coalition structure is a parti-

tion of A, into disjoint, exhaustive coalitions. Several papers (see

the Related Work section) considered the problem of partitioning

agents into disjoint clusters, by a centralized algorithm, so that the

overall outcome of the system, that is the sum of all cluster values,

is maximized.

CSG models real scenarios. For instance, consider a set of agents

who can work in teams. Some agents work well together, while

others find it hard to do so. When two agents work well together, a

team which contains both of them can achieve better results due to

the synergy between them. However, when two agents find it hard

to work together, a team that contains both agents has a reduced

utility due to their inability to cooperate, and may perform better

when one of them is removed. The problem is partitioning agents

into teams in order to maximize the total utility.

CSG have been also considered from an algorithmic game theo-

retic point of view, where agents are supposed to be selfish. Hedonic

games, introduced in [16], describe the dependence of a player’s

utility on the identity of the members of her group. They are games

in which players have preferences over the set of all possible player

partitions (called clusterings). In particular, the utility of each player

only depends on the composition or structure of the cluster she

belongs to. Several papers (see the Related Work section) consid-

ered different forms of clustering stability like the core, Nash and

individual stability.

If the problem is defined by the 2
n
distinct coalition values, the

mere specification of the input would be intractable. Therefore,

researchers have focused on succinct description of the problem

(while still allowing it to capture elaborate games). A widely studied

setting, introduced in [15], and also studied in other works, see for

instance [27], is the one in which the agents are vertices of a graph,

and the value of a coalition is the sum of the weights of the edges

between coalition members. In the literature, such settings are

commonly referred to as weighted graph games [5].

Most of the papers dealing with CSG, assume that all the infor-

mation on the input is known at the beginning. However, in more

realistic scenarios (e.g., hiring employees and assigning them to a

team), agents arrive over time.

In this work we study CSG, with agents introduced in an online

fashion. When an agent arrives, it knows the weights of edges

between itself and all agents that arrived previously. The agent has

to decide whether to join it to an existing cluster or to create a new
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cluster. The decision depends on the cost function associated with

the resulting structure. Every setting of CSG in which (i) agents

arrive over time and (ii) an irrevocable choice has to be made upon

their arrival naturally fits our model. Generally speaking, looking

at a social network as a dynamic entity is very natural. For instance,

consider (a) social-network games (among the most played in the

world) receiving players over time to be assigned to rooms and

not allowed to change room before the end of the game; (b) a

research institute aiming at assigning researchers (hired over time)

to departments: the cost of moving a researcher already inserted

in a department could be very high in terms of productivity and

of organization and administrative issues; (c) similarly, a company

with geographically spread agencies to which hired employees have

to be assigned.

We model a network by an undirected weighted graph. The

nodes (i.e., agents) of the network appear online, and form clusters.

After each step t the network is partitioned into clusters C(t) =
{Ct

1
,Ct

2
, . . . ,Ct

c(t )}, such that every node belongs to exactly one

cluster Ct
i . When a node appears, it can either join existing cluster

or form a new one consisting only of the current node. The profit

of a clustering C(t) is the sum of the profits of all of its clusters.

We consider two cases for the profit of a cluster: (1) the sum of

the weights of its edges, and (2) the sum of the weight of its edges

divided by its size. We refer to these two profit functions as total

weight and fractional weight, respectively.

Our Contribution. We consider the online variant of the problem

in which nodes are presented one at a time and two different profit

measures for a cluster, namely, the total weight, and the fractional

weight. In addition, the input contains two numbers α ,k > 0, that

constitute upper bounds for the size of a cluster and for the number

of clusters, respectively. Furthermore, we consider different types

of weight functions, that is, the cases of unrestricted, positive and

constant weights. We show tight or nearly tight bounds for the

competitive ratio in each of the cases. Table 1 and Table 2 summarize

our results for the total weight and fractional weight measures,

respectively. Our main technical results are the Ω(log2W ) lower
bound (Thm. 4.6) for the competitive ratio of Maximum Fractional

Weight Clustering with positive weights, and the matching upper

bound (Thm. 4.4), whereW is the maximum absolute value of the

edge weights.

Bounds Weights Lower Bound Upper Bound

α = ∞ General

W · (n − 2) W · (n − 1)
(Thm. 3.1) (Thm. 3.2)

α < ∞

General 2W · (α − 1) 2W · (α − 1)
(Thm. 3.5) (Thm. 3.7)

Positive
W ·(α−1)
o(W ) W · α

(Thm. 3.8) (Thm. 3.9)

k < ∞ ±1 Unbounded (Thm. 3.3)

Table 1: The competitive ratio of MaximumWeight Cluster-

ing.

Related Work. [21] proposed one of the most efficient centralized

algorithms for the CSG problem, which returns an optimal solution

Bounds Weights Lower Bound Upper Bound

α = ∞

General

4W 4W
(Thm. 4.1) [4]

Unweighted

4 4

(Thm. 4.3) [4]

Positive

Ω(log2W ) O(log2W )
(Thm. 4.6) (Thm. 4.4)

α < ∞
General

Ω(W ) 4W
(Thm. 4.9) [4]

Unweighted

4(1 − 1/α) 4(1 − 1/α)
(Thm. 4.7) (Thm. 4.8)

k < ∞
±1 Unbounded (Thm. 4.10)

Positive

n
2

n
2

(Thm. 4.11) (Observation 1)

Table 2: The competitive ratio of Maximum Fractional

Weight Clustering.

in time O(3n ). Anytime algorithms which can return a solution at

anytime during the running time, with the property that the quality

of this solution improves monotonically as the computation time

increases, have been developed (e.g., [22, 24, 25]) for the coalition

structure generation problem.

All the algorithms that solve the CSG problem optimally have

a worst-case time complexity exponential in n, therefore several
heuristics have been proposed. For instance, in [26], the authors

propose a greedy algorithm which restricts the search space by

imposing constraints on the size of the coalition.

Awidely studied setting commonly called weighted graph games,

introduced in [15] and studied in other works (e.g. [27]), is the one

in which the agents are vertices of a graph, and the value of a

coalition is the sum of the weights of the edges present between

coalition members. In [5], it is showed that finding the optimal

coalition structure is hard even for planar graphs. They also provide

constant factor approximation algorithms for minor-free graphs

(that include the family of planar graphs) and bounded degree

graphs.

Most of the literature on multi-agent coalition formation has

focused on settings where the value of a coalition does not depend

on players who are not part of the coalition. However, in [22],

authors consider the coalition structure generation problem for

games with externalities. Moreover, [29] studies cooperative games

in a setting in which clusters do not constitute a partition of the

agents, but may also overlap. A survey of different approaches for

the coalition structure generation problem has been presented in

[23].

Our problem is also closely related to game theoretic works.

Hedonic games have been first formalized in [16], where they are

analyzed under a cooperative perspective. Additively separable

hedonic games (ASHGs) constitute a natural and succinctly rep-

resentable class of hedonic games. In this setting, each agent has

a value for any other agent, and the utility of a coalition to a par-

ticular agent is simply the sum of the values she assigns to the

members of her coalition. Additive separability satisfies a number

of desirable axiomatic properties [3]. Properties guaranteeing the

existence of core allocations for games with additively separable
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utility have been studied in [9], while [12] also considers other

forms of clustering stability like Nash and individual stability. [6],

[3] and [19] deal with computational complexity issues related to

hedonic games, also considering additively separable utilities.

Fractional hedonic games have been introduced in [2] from the

cooperative perspective. They are similar to additively separable

hedonic games with the difference that the utility of an agent is

divided by the number of agents of the coalition. Fractional hedonic

games model natural behavioral dynamics in social environments.

In [14], the computational complexity of deciding whether a core

and individual stable partition exists in a given fractional hedonic

game is studied. [10, 11] deal with Nash stable outcomes in frac-

tional hedonic games, while in [18] the authors consider Nash and

core stable outcomes for modified fractional hedonic games, where,

slightly differently than fractional hedonic games, the utility of an

agent is divided by the size of the coalition she belongs minus 1.

[4] considers the computational complexity of computing welfare

maximizing partitions (not necessarily Nash stable) for fractional

hedonic games. In [20], several classes of hedonic games and frac-

tional hedonic games are considered. Simple sufficient conditions

on expressivity for the hardness of the problem of checking whether

a given game admits a stable outcome are identified.

Finally, strategyproof mechanisms for additively separable and

fractional hedonic games have been proposed in [17, 28].

We note that our profit functions are equivalent to the ones of

the corresponding hedonic games and fractional hedonic games,

being just scaled by a constant factor of 2.

A related (but different) problem in the online setting was initi-

ated in [1]. They studied the problem of balanced repartitioning:

given an online sequence of pairs of nodes to be interconnected,

the objective is to dynamically partition the nodes into clusters

of similar size, at a minimum cost. Partitioning can be updated

dynamically, by migrating nodes between clusters at a given cost

per migration. Thus, the three main differences between that model

and ours are that we do not require equal size clusters, we con-

sider different value functions, and clusters in our model cannot be

reconfigured.

Paper organization. In Section 2 we present definitions and nota-

tion used throughout the paper, and also the problems’ statement.

In Sections 3 and 4 we analyze the total weight measure and the

fractional weight measure, respectively. Section 5 contains con-

cluding remarks. Due to space limitations, some proofs are only

sketched or omitted.

2 PRELIMINARIES

For an integer k > 0, we denote by [k] the set {1, . . . ,k}.
Through this work G is an undirected edge-weighted graph

(V , E,w) on n vertices having no loop, withw : E → R. We denote

by uv and wu ,v , the edge {u,v} ∈ E and its weight w({u,v}), re-
spectively. We assume that

��wu ,v
�� ≥ 1, for every uv ∈ E. We denote

byW = maxuv ∈E
��wu ,v

��
the maximum absolute value of the edge

weights. We say that G is unweighted if wu ,v = 1 for any uv ∈ E.
We denote byG+ = (V , E+,w+) the subgraph ofG consisting of its

positive-weighted edges. Given a set of edges F ⊆ E, we denote by
w(F ) =

∑
uv ∈F wu ,v , the total weight of edges in F . We denote by

G[S], the subgraph of G induced by a subset S of its vertices, i.e.,

G[S] = (S , ES ,wS ), where ES = {uv ∈ E : u,v ∈ S} and wS is the

restriction ofw to ES . We denote by δS (v), the set of edges incident
to v and S , i.e., δS (v) = {uv ∈ E : u ∈ S}, and by NS (v) (resp. NS [v])

the open (resp. closed) neighborhood of v in S . A clique (resp. inde-

pendent set) of G is a set of pairwise adjacent (resp. non-adjacent)

vertices of G.
A clustering C ofG is a partition ofV into clustersC1,C2, . . . ,Cc ,

for some positive integer c . We use the term cluster for bothCi and
the weighted graph G[Ci ]. Two clusters Ci and Cj are adjacent if

there exist vi ∈ Ci and vj ∈ Cj with vivj ∈ E. For a vertex v ∈ V ,
we denote by C(v) the unique cluster Ci ∈ C such that v ∈ Ci . For
two positive integers α and k , we say that a clustering C is (α ,k)-
bounded if |C| ≤ k and |Ci | ≤ α , for every Ci ∈ C. We suppose

that α ≥ 2 and k ≥ 2.

We denote byw(Ci ) the total weight of the edges of G[Ci ]. The

fractional weight of a cluster Ci iswF (Ci ) =
w (Ci )
|Ci |

. Clearly, when

Ci is an independent set, and in particular a single vertex, we have

wF (Ci ) = w(Ci ) = 0. We refer to the unique vertex of a singleton

cluster of C as an isolated vertex of C. When G is unweighted

we have wF (Ci ) =
|Ci |−1

2
whenever Ci is a clique, and wF (Ci ) =

1 − 1

|Ci |
whenever G[Ci ] is a tree.

The weight of a clusteringC isw(C) =
∑
Ci ∈Cw(Ci ), and its frac-

tional weight is wF (C) =
∑
Ci ∈CwF (Ci ). We name the clustering

{V } as the GrandCoalition.
Let Π be a maximization problem with objective function f , and

I an instance of Π. We denote by OPTΠ(I ) an arbitrary optimal

solution of I . Given an algorithm A for Π, we denote by A(I )
a solution returned by A on input I . A feasible solution S of an

instance I is a ρ-approximation if f (S) ≥
f (OPTΠ(I ))

ρ . An algorithm

A is a ρ-approximation algorithm for Π if every solution A(I ) is a
ρ-approximation for every instance I of Π.

An instance of an online optimization problem Π is a sequence

I = σ1,σ2, . . .. An online algorithm has to produce partial out-

put for every σi without the knowledge of the future entries, i.e.
σi+1,σi+2, . . .. Furthermore, the output produced by the algorithm

at step i cannot be modified at later steps. An online algorithm

A is c-competitive for Π if there exists some b ≥ 0 such that

f (A(I )) ≥
f (OPTΠ(I ))

c − b for every instance I . If b = 0 then A

is strictly c-competitive. The (strict) competitive ratio of A is the

smallest c such that A is c-competitive [13]. In this Extended Ab-

stract we consider only the strict competitive ratio in our lower

bounds. When no ambiguity arises we omit the subscript Π, the
instance I and the objective function f . In such cases OPT stands

for OPTΠ(I ) and also for f (OPTΠ(I )). Similarly, A may stand for

either A(I ) or for f (A(I )) besides being the name of an algorithm.

We consider the following two optimization problems under the

online setting in which the vertices of G are presented one at a

time in the order v1,v2, . . . ,vn and one has to decide on the cluster

C(vi ) of every vi upon its arrival.

MaxWC(MaximumWeight Clustering)

Input A weighted graph G = (W , E,w). Two positive integers α
and k .
Output (α ,k)-bounded clustering C.
Objective Maximizew(C).
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MaxFWC(Maximum Fractional Weight Clustering)

Input A weighted graph G = (W , E,w). Two positive integers α
and k .
Output An (α ,k)-bounded clustering C.
Objective MaximizewF (C).

3 MAXIMUMWEIGHT CLUSTERING

3.1 Unbounded Cluster Size

Note that when the size of a cluster is unbounded the case of non-

negative weights is trivial, since GrandCoalition is optimal in

this case. Therefore, in this section we consider only instances

containing both positive and negative edges. We first consider the

case where the number of clusters is unbounded, and subsequently

the bounded one.

3.1.1 Unbounded Number of Clusters.

Theorem 3.1. The strict competitive ratio of every deterministic

online algorithm for MaxWC is at leastW · (n − 2).

Proof. Let A be a strictly c-competitive deterministic online

algorithm for MaxWC. Consider the online input that is supplied to

A by the following adversary. The adversary releases two adjacent

vertices v1 and v2. If A does not put both vertices in the same

cluster the adversary stops. In this case OPT = 1 and A = 0,

thus the strict competitive ratio of A is unbounded. Therefore,

A puts v1 and v2 in the same cluster, say C1. At this point the

weight of the solution is 1. The adversary releases x additional

vertices each of which is adjacent only to v1 and v2 with edges of

weightW and −W , respectively. The weight of the clustering of

A remains 1, since every vertex will add zero to f (A) regardless
whether the vertex joins clusterC1, joins any other cluster or forms

a new cluster. Consider the clustering C = {v1,V \ {v1}}. We have

OPT ≥ w(C) = x ·W . Therefore the competitive ratio of A is at

least:
OPT
A
≥ x ·W =W · (n − 2). �

We now consider the following greedy algorithm. Upon presen-

tation of a vertex vi , algorithm Greedy adds it to the clusterCj that

brings the maximum positive increase in the weight of the current

clustering. If no cluster brings a positive increase in the weight,

Greedy creates a new cluster {vi }.

Theorem 3.2. Greedy is strictly (W · (n − 1))-competitive.

Proof. First, we show that every cluster returned by Greedy is

connected in G+. A newly created cluster that consists of a single

vertex is trivially connected. On the other hand, whenever a vertex

vi is added to an existing cluster Cj , since the weight of the cluster

increases, there is at least one positive-weighted edge in δCj (vi ).

Therefore, Cj remains connected in G+. Let ci be the number of

clusters of Greedy with i vertices. since the smallest weight is 1,

and a connected graph on i vertices has at least i − 1 edges we have
that Greedy ≥

∑n
i=1(i − 1)ci .

Let I be the set of isolated vertices of Greedy. It is easy to see

that I is an independent set of G+. Indeed, otherwise there are

two vertices vi ,vj ∈ I with j > i , adjacent in G+. In this case vj
would be added to cluster of vi by Greedy. The second observation

is that for every vertex v ∈ I and every cluster C the number of

positive-weighted edges between v andC is at most |C | − 1. Indeed,

otherwise v is adjacent to every vertex of C in G+. If v arrives

after C is created then v is added to C by Greedy. Otherwise, v

arrives before the first vertex u of C in which case u should be

added to the cluster {v} by Greedy. Clearly, the number of non-

isolated vertices of Greedy is n − |I | =
∑n
i=2 i · ci . We have that

2 · Greedy ≥ 2

∑n
i=1(i − 1)ci ≥

∑n
i=2 i · ci = n − |I | . Since I is an

independent set of G+ and every vertex of I is adjacent to at most

i − 1 vertices of every cluster with i vertices, we get:

OPT ≤ W ·
��E+��

≤ W ·

((
n − |I |

2

)
+ |I | ·

n∑
i=2
(i − 1)ci

)
≤ W ·

(
n − |I |

2

)
+W · |I | · Greedy.

Therefore,
OPT

W ·Greedy ≤ |I | +
(n−|I |)(n−|I |−1)

2·Greedy
≤ |I | + (n − |I | − 1) =

n − 1. �

3.1.2 Bounded Number of Clusters. In this section we present

two impossibility results for the case where the number of clusters

is bounded by some k ≥ 2, the case of k = 1 being trivial. In the

following result, the adversary releases an independent set of at

most k + 1 vertices until two vertices vi ,vj are put together, and

then one vertex only adjacent to vi and vj , with edges of weights 1

and −1 respectively.

Theorem 3.3. No deterministic algorithm is strictly competitive

for MaxWC for any k ≥ 2, even whenW = 1.

Proof. Suppose that there is c-competitive algorithm A for

MaxWC. The adversary releases an independent set of at most

k + 1 vertices until A puts two vertices vi ,vj in the same cluster.

Then it releases a vertex adjacent to only vi and vj with edges of

weights 1 and −1 respectively. Then, regardless of the decisions of

A, we have A = 0. Moreover, one can form a cluster consisting of

vi and the last vertex. ThereforeA = 0 < OPT
c , a contradiction. �

The next result is obtained by exploiting a polynomial reduction

from the k-colorability problem, in which given an unweighted and

undirected graphG ′ and k colors, the answer is yes if and only if it

is possible to find a mapping of all vertices ofG ′ to colors {1, . . . ,k}
such that for any edge of G ′ the colors associated to its endpoints

are different.

Theorem 3.4. The offline variant of the problem MaxWC is inap-

proximable for any k ≥ 3, unless P = NP .

Proof. Given an instance G ′ of k-colorability, we construct the
following edge-weighted graphG .G is complete graph on the same

vertex set asG ′. The weight of an edge e ofG is 1 if e is a non-edge
ofG ′ and − |E(G ′)| otherwise. If k = n the instance is clearly a YES

instance. Therefore, we assume k < n. To conclude the proof we

show that G ′ is k-colorable if and only if OPT > 0.

Suppose that G ′ is k-colorable. Then its vertex set can be par-

titioned into k ′ ≤ k independent sets that induces a clustering

C with k ′ clusters. The weight of an independent set I of G is

w(I ) =
( |I |
2

)
≥
|I |−1
2

. Therefore, OPT ≥ w(C) ≥ n−k ′
2
> 0. Con-

versely, suppose that OPT > 0. Then, there is a clustering C of G
with w(C) > 0 and |C| ≤ k . We claim that every cluster of C is
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an independent set of G ′. Suppose that C contains a cluster C that

is not an independent set. Then G[C] contains an edge of weight

− |E(G ′)|. Sincew(E+) = |E(G ′)| we conclude thatw(C) ≤ 0. �

3.2 Bounded Cluster Size

When both the size of a cluster and the number of clusters is

bounded, the size of the instance becomes bounded in which case

every algorithm is 1-competitive. Therefore, in this section we as-

sume that the number of clusters is unbounded. Since in this case

GrandCoalition is not necessarily a feasible solution, the case

of positive weights is not trivial. We analyze the cases of general

weights and positive weights in two different sections.

In this section we consider the variant of Greedy that does not

consider clusters of size α as possible clusters for the presented

vertex.

3.2.1 General Weights. We show that Greedy is an optimal

deterministic online algorithm for MaxWC.We start with the lower

bound.

Theorem 3.5. The strict competitive ratio of every deterministic

online algorithm for MaxWC is at least 2W · (α − 1).

We proceed with the analysis of Greedy. We denote by ci the
number of clusters with exactly i vertices in a given clustering

returned by Greedy. The following is a technical lemma.

Lemma 3.6. (1) The set of isolated vertices of Greedy is an

independent set of G+.
(2) If all the weights are positive, G+ contains an independent set

that intersects every component of Greedy with less than α
vertices.

(3) Greedy ≥
∑α
i=1(i − 1)ci .

Proof. (1) Suppose that Greedy contains two isolated ver-

tices {vi } and {vj } with wvi ,vj > 0, and without loss of

generality i < j. Then, when vj is presented to Greedy it

would be added to {vi } contradicting the fact that vj is an

isolated vertex of Greedy.

(2) Consider the set I consisting of the first vertex of every clus-

ter of Greedy with less than α vertices. Clearly, I intersects
every cluster of size less than α . It remains to show that I is
an independent set of G+. Suppose, for a contradiction, that
there are two vertices vi ,vj ∈ I with i < j and wvi ,vj > 0.

When vj is presented to Greedy the option of adding vj to

the cluster of vi brings an increase of at least wvi ,vj > 0

since all the edges have positive weights. This contradicts

the fact that vj is the first vertex of its cluster.

(3) Whenever a vertex is added to an existing cluster it increases

the weight of the clustering by at least 1.

�

Theorem 3.7. Greedy is a strictly (2W · (α − 1))-competitive de-

terministic online algorithm for MaxWC.

Proof. Let I be the set of isolated vertices of Greedy. Clearly,

n − |I | =
∑α
i=2 i · ci . Combining with Lemma 3.6 (3.) we have

2 · Greedy ≥ n − |I |. By Lemma 3.6, I constitute an independent

set of G+. Therefore, every edge of G+ is incident to at least one

of the n − |I | other vertices. Every such vertex has degree at most

α − 1 in every solution. Therefore,OPT ≤W · (n− |I |)(α − 1). Then,

the strict competitive ratio of Greedy is at most:
W ·(n−|I |)(α−1)

Greedy
≤

2W · (α − 1). �

3.2.2 Positive Weights. We observe that the proof of Theorem

3.5 is not valid in this case, since the adversary uses negative edges.

In this section we show that the lower bound of Theorem 3.5 does

not hold in this case, and that Greedy is almost optimal.

Theorem 3.8. The strict competitive ratio of every determinis-

tic online algorithm for MaxWC is at least
W ·(α−1)
o(W ) even when all

weights are positive.

Proof. Let A be a strictly c-competitive deterministic online

algorithm for MaxWC. Consider the online input that is supplied to

A by the following adversary. The adversary releases a sufficiently

big independent set of vertices until A forms either i) a cluster of

size α , or ii) α−1 clusters. In case i), letC1 be the cluster of α vertices

formed byA. Then, the adversary releases another vertexu incident

only to some node v ∈ C1. We have that OPT = 1 and A = 0,

because A cannot add v to C1, thus the strict competitive ratio of

A is unbounded. In case ii), there are α − 1 clusters C1, . . . ,Cα−1
each of which is an independent set of at most α − 1 vertices. Let
vi be an arbitrary vertex of Ci , for every i ∈ [α − 1]. The adversary
releases additional vertices u1,u2, . . . untilA creates a new cluster

(which must happen at some step j ≤ (α−1)2+1). Every vertexuj is
adjacent to the vertices v1, . . . ,vα−1, andwuj ,v1

= · · · = wuj ,vα−1 .

Moreover,wuj ,v1
≫ wuj−1 ,v1

. At this point, by settingW = wuj ,v1
,

we have that OPT ≥ W · (α − 1) and A = o(W ). Therefore, the

competitive ratio of A is
OPT
A
≥

W ·(α−1)
o(W ) . �

The proof of the following theorem exploits Lemma 3.6, and it is

a bit more involved than the proof of Theorem 3.7.

Theorem 3.9. The strict competitive ratio of Greedy is (α ·W )
when all the weights are positive.

Proof. By Lemma 3.6, G+ contains an independent set I of size∑α−1
i=1 ci . Clearly, n =

∑α
i=1 i · ci , thus n − |I | =

∑α−1
i=1 (i − 1)ci +αcα .

Every edge ofG+ is incident to at least one of the remaining n − |I |
vertices of Greedy. Every such vertex has degree at most α − 1 in
every solution. Therefore,

OPT ≤ W · (α − 1)(n − |I |)

= W · (α − 1)

(α−1∑
i=1
(i − 1)ci + αcα

)
≤ W · (α − 1)(Greedy + cα ).

Clearly, Greedy ≥ (α − 1)cα . Then

OPT ≤W · (α − 1)

(
Greedy +

Greedy

α − 1

)
=

α ·W · Greedy.

We now show an example showing that the competitive ratio of

Greedy is at least α ·W . LetG be the following graph on α2 vertices.
v1,v2, · · · ,vα is a path each edge of which has weight 1. Greedy

will put all these vertices in one clusterC1 withw(C1) = α − 1. The
rest of the input is an independent set I . Since C1 has already α
vertices, every other vertex will be isolated in Greedy. Therefore,
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we have Greedy = α−1. The vertices of I are grouped into α groups

of α − 1 vertices and every vertex v of group i is adjacent to vi with
an edge of weightW . A possible solution consists of α stars each

of which is centered at one of the vertices v1, . . . ,vα and has α − 1
leaves from I . Therefore,OPT ≤W ·α(α − 1) =W ·α ·Greedy. �

4 MAXIMUM FRACTIONALWEIGHT

CLUSTERING

In this section our objective is to maximize the fractional weight

of the clustering. We note that, as opposed to problem MaxWC,

for non-negative weights, GrandCoalition is not necessarily an

optimal solution even when cluster size is unbounded.We start with

a general lower bound and then analyze the cases of unbounded

and bounded cluster sizes separately.

Theorem 4.1. No deterministic online algorithm for MaxFWC is

strictly (4W · (1 − 1/α))-competitive.

4.1 Unbounded Cluster Size

4.1.1 General Weights. In this section we analyze the MaxFWC

problem when the cluster size is unbounded. For this case the

following result is known.

Theorem 4.2. [Theorem 5 in: [4]] Any maximal matching is a

4W -approximation.

A maximal matching is a clustering in which every cluster is

connected and consists of at most two vertices. Moreover, for any

pair of non-matched vertices, they are not connected by a positive

weight edge. A maximal matching can be computed online by the

following algorithm that we name as MaximalMatching. When-

ever a vertex vi is presented it is added to an existing cluster of size

one that is adjacent to vi by means of a positive weight edge. If no

such cluster exists, a new cluster {vi } is created.

We note that MaximalMatching is an optimal algorithm for

this case because Theorem 4.1 implies a matching lower bound

of 4W . We observe that the adversary in the proof of Theorem

4.1 uses edges with negative weights. Therefore, it makes sense to

consider the case of positive weights. We start with the analysis

of unweighted graphs and in which then proceed with the case of

general positive weights.

4.1.2 Unweighted Graphs. Since MaximalMatching is 4W
competitive in general, it is clearly 4-competitive for unweighted

graphs. It is possible to show that this is the best possible for deter-

ministic algorithms in this case.

Theorem 4.3. There is no (4 − ϵ)-competitive deterministic online

algorithm for MaxFWC even in unweighted graphs, for any ϵ > 0.

Proof. Consult Figure 1 for the following discussion. Let A

be a (4 − ϵ)-competitive deterministic online algorithm for some

ϵ > 0. The adversary first releases two adjacent vertices v1,v2 that

must be taken to the same cluster, say C1, by A, since otherwise

A is not competitive. Then the adversary releases a sequence of

vertices v3,v4, ... where the vertices with odd (resp. even) indices

are adjacent only to v1 (resp. v2). This sequence ends when one of

the vertices is added toC1 byA. We show that this must eventually

happen. Indeed, suppose that none of the vertices v3, . . . ,v2i are

𝑣1 
𝑣2 

𝑣6 𝑣3 
𝑣4 𝑣5 

𝑣𝑗 

𝑣𝑘 𝑣𝑗+1 
𝑣𝑗+2 𝑣𝑗+3 𝑣𝑗+4 

𝑣𝑘+1 𝑣𝑘+2 𝑣𝑘+3 𝑣𝑘+4 𝑣𝑘+5 𝑣𝑘+5 𝑣𝑘+6 𝑣𝑘+7 

Figure 1: Lower bound of 4 − ϵ for the unweighted case. The

edges drawn by thin solid lines are taken byA and the thick

solid edges form four stars that is used to prove the lower

bound if the adversary reaches the last stage.

added toC1. Then,A = wF (C1) = 1/2 andOPT ≥ 2(i−1)/i which is
the fractional weight of the solution that dividesV into two clusters,

namely the cluster of odd vertices and the cluster of even vertices,

each of which is a star on i vertices. Then OPT /A ≥ 4(1 − 1/i),
and for sufficiently big i we have OPT /A ≥ 4 − ϵ , a contradiction.

Let vj be the first vertex (after v1 and v2) added toC1 byA. At his

stage the adversary releases a sequence of vertices vj+1,vj+2, . . .

where vj+1 is adjacent to v1, vj+2 is adjacent to v2, vj+3 is adjacent

to vj , vj+4 is adjacent to v1, and so on. This continues until one of

these vertices is added toC1 byA. If this does not happen during a

sequence of 24 vertices, we haveA = 2/3, andOPT ≥ 3 · 8/9 = 8/3

since there is a solution consisting of three clusters each of which

is a star on 9 vertices. Then OPT /A ≥ 4 > 4 − ϵ , a contradiction.
Therefore, this sequence ends after at most 24 additional vertices

are released.

At this stage a vertex vk is added to C1. Now the adversary re-

leases a final sequence of i ′ vertices vk+1,vk+2, · · · where each

vertex is adjacent exactly one of the four vertices v1,v2,vj ,vk in a

round robin manner and then stops. In this case the best option for

A is to add every new vertex to C1, since this is the only option

that increases the fractional weight of the solution which consists

of a single tree whose fractional weight is at most one and isolated

vertices. Therefore, A < 1. On the other hand an optimal solu-

tion consists of four stars centered at v1,v2,vj and vk for a total

fractional weight of 4(1 − 1/i ′) which is bigger than 4 − ϵ for a

sufficiently big i ′. �

4.1.3 Positive Weights. In the previous sections we have shown

that MaximalMatching is an optimal algorithm for the general

case and also for the unweighted case. In this section we show

that quite surprisingly this is not the case for positive weights. We

present an O(log2W )-competitive algorithm and also a matching

lower bound of Ω(log2W ).
Our algorithm partitions the edges into classes according to

their weights. We denote the class of an edge e by class(e) and it

is equal to the smallest integer i such thatw(e) < 2
i
. We note that
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class(e) > 0. The class of a cluster Ci is denoted by class(Ci ) and
is equal to the class of its heaviest edge. Upon presentation of a

vertex vi , Algorithm Classify considers the edges incident to vi
in descending order and adds vi to a cluster whose class is lower

than the edge under consideration. If this is not possible, it creates

a new cluster (See Algorithm 1).

Algorithm 1 Classify

Initialization:

1: C← ∅.

When vertex vi arrives:

2: for all edge e = vivj in descending order ofw(e) do
3: if class(e) > class(C(vj )) then
4: Add vi to the cluster C(vj )
5: return

6: Create a new cluster {vi }.

Theorem 4.4. Classify is strictly (O(min {n, 1 + logW })2)-
competitive.

Proof. Consider an optimal clustering OPT , and a clustering

C = {C1,C2, . . . ,Cc } returned by Classify. Denote by OPTEXT
(resp.OPTI NT ) the set of edges whose endpoints fall within a same

cluster of OPT , i.e., contribute to wF (OPT ), but within different

clusters (resp. a same cluster) of C. We denote by OPTEXT and

OPTI NT also the contribution of these edges towF (OPT ). Clearly,
OPT = OPTEXT +OPTI NT . In the sequel we upper bound each of

these values.

Upper bounding OPTEX T : We exploit the following property:

For every edge vv′ ∈ OPTEXT there exists a cluster C(vv′) ∈
{C(v),C(v′)} such that class(C(vv′)) ≥ class(vv′).

In fact, let vv′ ∈ OPTEXT , C = C(v) and C ′ = C(v′). Assume

without loss of generality that v′ appears before v in the input. If

v is the first vertex of C , since v is not added to C ′ by Classify

we conclude that class(C ′) ≥ class(vv′) and we are done. Oth-

erwise, v is not the first vertex of C thus there exists an edge e
incident to v that caused Classify to add v toC . Ifw(e) ≥ wv ,v ′ we

have class(C) ≥ class(e) ≥ class(vv′) and we are done. Otherwise,

wv ,v ′ > w(e) thus vv′ was considered before e by Classify and v

was not added to C ′. Therefore, class(C ′) ≥ class(vv′).

Consider a clusterCj ∈ C, and letOPTEXT ,Cj be the set of edges

e ∈ OPTEXT such that C(e) = Cj . Since Cj contains an edge of

weight at least 2
class(Cj )−1

, the contribution of the edges in Cj to

the Classify is

wF (Cj ) ≥
2
class(Cj )−1��Cj

�� . (1)

Consider a vertex v ∈ Cj , the setOPTEXT ,v of edges ofOPTEXT ,Cj

incident to v, and let a =
��OPTEXT ,v

��
. Let also h be the class of

the heaviest edge of OPTEXT ,v . Clearly, the edges of OPTEXT ,v
are in the same cluster of OPT , that contains at least a + 1 vertices.
Therefore, the contribution of the edges inOPTEXT ,v toOPT is less

than
a ·2h
a+1 < 2

h ≤ 2
class(Cj )

. Summing up for all vertices v ∈ Cj
and using (1) we get

OPTEXT ,Cj <
��Cj

�� · 2class(Cj ) ≤ 2

��Cj
��2wF (Cj )

≤ 2

(
max

j ∈[c]

��Cj
��)2wF (Cj ).

Finally, we sum up over all clusters Cj , and obtain

OPTEXT < 2

(
max

j

��Cj
��)2 · Classify.

Upper boundingOPTI N T : The contribution toOPT of the edges

of OPTI NT that fall within some cluster Cj is at most half of the

sum of weights of all edges of Cj , since every edge has to be in a

cluster of at least two vertices. Therefore,

OPTI N ,Cj ≤
∑

e ∈OPTI NT ,Cj

w(e)

2

≤
∑

e ∈E(Cj )

w(e)

2

≤

��Cj
��

2

·wF (Cj ) ≤
maxj ∈[c]

��Cj
��

2

·wF (Cj ),

and summing up over all clusters we get:

OPTI NT ≤
maxj∈[c ] |Cj |

2
· Classify ≤

OPTEXT
4

.

Upper boundingOPT : Now we note that

��Cj
�� ≤ class(Cj ) by the

way vertices are added to Cj by Classify. Therefore,

max

j ∈[c]

��Cj
�� ≤ max

j ∈[c]
class(Cj ) = ⌈logW ⌉ ≤ 1 + logW .

Clearly, maxj ∈[c]
��Cj

�� ≤ n. We conclude that

OPT = OPTEXT +OPTI NT ≤
5

4

OPTEXT

<
5

2

(
max

j

��Cj
��)2 · Classify

≤
5

2

(min {n, 1 + logW })2 · Classify.

�

Theorem 4.6 provides a matching lower bound. In order to prove

it, we need the following technical lemma whose proof will appear

in the full version of this paper.

Lemma 4.5. Given any integer k , there exists h ≥ k such that, for

any sequence of non-negative integers y1,y2, . . . ,yk , . . . ,yh with

y1 = 1 and yi ≤ 2
i−1

for any i = 1, . . . ,h,

σ 2

h
αh
≥

h2

2
10
,

where σh =
∑h
i=1 yi and αh =

∑h
i=1

yi
2
h−i , i.e., αh = yh +

yh−1
2
+

yh−2
4
+ . . . +

y1
2
h−1 .

Theorem 4.6. The strict competitive ratio of any deterministic

online algorithm for MaxFWC is Ω(log2W ) even when all weights

are positive.

Proof. Let A be any deterministic online algorithm for

MaxFWC. The adversary works in phases i = 1, 2, . . .. In phase

1, she releases a vertex v1. The adversary is able to maintain the

following invariant: at the end of each phase, the solution of A

contains a single component C1 in C. In fact, let σi be the number

of vertex in the (unique) connected component built by A at the

end of phase i , and let v1,v2, . . . ,vqi be the nodes belonging to this
component. Clearly, σ1 = 1. The adversary releases, in phase i (for
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i = 2, 3, . . .), σi−1 vertices u1,u2, . . . ,uσi−1 , such that every uj (for

j = 1, . . . ,σi−1) is adjacent to vj by an edge of weight 2
i−2

. Let

yi the number of nodes that A adds to the unique component in

phase i . It follows that σi = σi−1 + yi and yi ≤ σi ≤ 2
i−1

. First

of all, notice that A cannot stop adding new nodes to the unique

component, because otherwise it would be not competitive, given

that the weights of edges are geometrically increasing. Given any

integer k ′, let k ≥ k ′ the first phase after phase k ′ such that yk ≥ 1.

Clearly, σi =
∑i
j=1 yj . It can be easily checked that, after phase i ,

the measure of the solution computed byA iswF (Ci ) =
∑i
j=1 yj 2

j−2

σi .

Moreover, another clustering C′ = (C1, . . . ,Cσi−1 ) exists in which

each edge added by the adversary in phase i constitutes a separate

cluster. This solution has measurewF (C′) =
σi−12i−2

2
. Therefore, the

measure of an optimal solution C∗i iswF (C∗i ) ≥
σi−12i−2

2
. Given that

(for any i = 1, 2, . . .) σi+1 ≤ 2σi , we obtainwF (C∗i ) ≥
σi 2i−1

8
. Thus,

we obtain that the competitive ratio of A at the end of phase i is

at least

wF (C∗i )
wF (Ci )

=
σ 2

i 2
i−1

8

∑i
j=1 yj 2j−2

=
σ 2

i 2
i−1

4

∑i
j=1 yj 2j−1

=
σ 2

i

4

∑k
j=1 yj 2j−i

=
σ 2

i
4αi ,

where αi =
∑i
j=1

yj
2
i−j . Since any phase i the maximum edge weight

isW = 2
i−2

, it holds that i = Ω(logW ).
By Lemma 4.5, we obtain that, for any integer k , there exists

h ≥ k such that

wF (C∗h )
wF (Ch )

≥ h2

2
12
= Ω(log2W ). Therefore, the claim

follows by letting the adversary continue until phase h. �

4.2 Bounded Cluster Size

4.2.1 Unweighted Graphs. For the case of unweighted graphs,

we are able to prove that algorithm MaximalMatching provides

the best possible competitive ratio of 4
α−1
α .

Theorem 4.7 proves the lower bound. The proof is very similar

to the one of Theorem 4.3.

Theorem 4.7. There is no (4α−1α − ϵ)-competitive deterministic

online algorithm for MaxFWC even in unweighted graphs, for any

ϵ > 0.

The following theorem provides a matching upper bound to

Theorem 4.7. Its proof exploits and refines arguments introduced

in the proof of Lemma 1 in [11].

Theorem 4.8. Algorithm MaximalMatching is a (4α−1α )-

competitive deterministic online algorithm for MaxFWC in un-

weighted graphs.

4.2.2 Weighted Graphs. From Theorem 4.2, we know that, for

any α ≥ 2, MaximalMatching is strictly 4W -competitive for gen-

eral weights. It is not difficult to show that this bound is asymptoti-

cally tight, even when all the weights are positive.

Theorem 4.9. The strict competitive ratio of any deterministic

online algorithm for MaxFWC is Ω(W ) even when all weights are

positive.

Proof. LetA be a deterministic online algorithm for MaxFWC.

Consider the online input that is supplied to A by the following

adversary. The adversary releases a star v1,v2, . . . centered at v1
until A creates its second cluster C2 =

{
vj

}
. The weights are such

thatwvj+1 ,v1
≫ wvj ,v1

for every j > 1. By settingW = wvj ,v1
, we

have that OPT ≥ W
2

and A = o(W ). Therefore, the competitive

ratio of A is at least
OPT
A
≥

W /2
o(W ) = Ω(W ). �

4.3 Bounded Number of Clusters

In this section we consider the case where the number of clusters

is bounded by some k ≥ 2, the case of k = 1 being trivial.

4.3.1 General Weights. By exploiting a proof similar to the one

of Theorem 3.3, it is possible to prove the following result.

Theorem 4.10. No deterministic algorithm is strictly competitive

for MaxFWC for any k ≥ 2, even whenW = 1.

4.3.2 Positive Weights.

Observation 1. For positive weights, GrandCoalition is
n
2
-

competitive. In fact, GrandCoalition =

∑
e∈E(G )w (e)

n , and OPT ≤∑
e∈E(G )w (e)

2
, since the weight of any edge is shared by at least its two

endpoints.

Theorem 4.11. The strict competitive ratio of every deterministic

online algorithm for MaxFWC for any k ≥ 2, is at least
n
2

W
W +o(W ) ,

when all weights are positive.

Proof. LetA be a deterministic online algorithm for MaxFWC.

Consider the online input that is supplied to A by the following

adversary. The adversary releases a star v1,v2, . . . centered at v1.

The weights are such thatwvj+1 ,v1
≫ wvj ,v1

, for every j > 1. Let

us call C1 the cluster where algorithm A puts vertex v1. If at some

step j, A puts the vertex vj into a different cluster than C1, then

the adversary stops. In this case, by settingW = wvj ,v1
, we have

that OPT ≥ W
2
and A ≤

o(W )
n−1 , and the theorem holds. However,

if algorithm A puts all the vertices into cluster C1, the competitive

ratio of A is at least
OPT
A
≥ n

2

W
W +o(W ) . �

5 CONCLUSION AND OPEN PROBLEMS

We studied the online version of the online coalition structure

generation problem on edge-weighted graphs, considering two

different utility functions for the coalition profit.

We point out that our lower bounds hold also for general (i.e.

non-strict competitive ratio). All the related proofs will appear in

the full version of the paper.

Basic extensions and open problems include the following: (1)

more involved profit functions can be considered, depending on

specific applications. One might also consider costs associated with

nodes, or taking into account the topological properties of the sub-

graphs induced by the clusters, such as the diameter, the average

distance between the nodes, measures depending on the centrality

indices in social networks, etc. (recent papers considering such

measures are [7, 8]). (2) In this paper we considered the classic on-

line setting where the decision about the cluster where to allocate

the next agent is irrevocable. It is worth to extend this research

to the case where the clustering can be modified by migrating

nodes from cluster to cluster by paying some penalty (as consid-

ered in [1]), or the case where there is a bound on the number of

possible migrations. (3) Finally, it would be interesting to under-

stand whether randomized algorithms can achieve significantly

better performance than deterministic ones.
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