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ABSTRACT
Team formation consists in finding the least expensive team of
agents such that a certain set of skills is covered. In this paper, we
formally introduce recoverable team formation (RTF), a generaliza-
tion of the above problem, by taking into account the dynamic na-
ture of the environment, e.g. after a team has been formed, agents
may unexpectedly become unavailable due to failure or illness. We
analyze the computational complexity of RTF, provide both com-
plete and heuristic algorithms, and empirically evaluate their per-
formance. Furthermore, we demonstrate that RTF generalizes ro-
bust team formation, where the task is to build a team capable of
covering all required skills even after anyk agents are removed. De-
spite the high complexity of forming a recoverable team, we argue
that recoverability is a crucial feature, and experimentally show
that it is more appropriate for some applications than robustness.
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1 INTRODUCTION
Team formation (TF) is the problem of selecting a team of agents
withminimum cost such that a certain set of skills is covered1. This
is an important problem in multi-agent systems and has been stud-
ied in the contexts of RoboCup rescue teams [17], unmanned aerial
vehicle operations [9], social networks [16, 18], online football pre-
diction games [19], among others. Moreover, TF is closely related
to set covering and hitting sets [8], well known NP-complete prob-
lems. More precisely, we are given a set of agents and a set of skills
to be covered. Each agent possesses a subset of skills and is associ-
ated with a cost. A subset of agents (referred to as a team) is said
to be efficient if for every required skill there is at least one agent

1In the literature sometimes the term task [23] is used instead of skill , but the
problem remains the same.
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in the team possessing that skill. The goal is to select an efficient
team with minimum cost.

Once a team has been formed, we can expect it to undergo chan-
ges with time. For example, agents may unexpectedly become un-
available due to failure or illness, possibly making the team no
longer efficient. This results in additional expenses, inconveniences,
and in some applications in complete system failure. Therefore, in
addition to the team’s cost, it can be of crucial importance to ana-
lyze its ability to react to changes: how resilient the team is.

One aspect of resilience for TF has been introduced in [23], name-
ly the concept of robustness. A team is said to be k-robust if the
team remains efficient even after k agents are removed from it. Ro-
bustness is clearly a desirable property as it allows the underlying
system to remain functional after an unfortunate change happens.
Interestingly, the computational complexity of the robust TF prob-
lem is the same as the standard TF problem: it is also NP-complete.

However, considering robustness alone may have the following
drawback: while highly robust teams can easily withstand unfor-
tunate changes, this is achieved by introducing a high degree of
redundancy to over-prepare for the future, which may result in
prohibitively expensive teams. To circumvent this negative aspect
while accounting for unfortunate changes, we introduce the con-
cept of recoverability for TF. This concept has been considered in
the literature as another main feature of resilience [4, 14, 26], as
the capacity to cope with unanticipated dangers after they have
become effectively manifested on the system, and described as the
ability of a system to return to an equilibrium state after some
temporary disturbance. Indeed, a resilient system must find an ap-
propriate balance between robustness (sometimes called also re-
sistance [26], see our related work section) and recoverability. In
TF, we introduce recoverability by considering an additional cost
which indicates the expense that might need to be incurred to re-
store the team’s efficiency if k agents are removed from the team.
Considering recoverability allows for more flexibility in TF: where-
as robustness underlies a fully proactive strategy where we over-
prepare for every possible future event, recoverability provides a
balance between proactive and reactive approaches where we ana-
lyze both the initial and the next-step cost that will be needed if an
undesirable event takes place and effectively damages the team.
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(a) An efficient team T1 (de-
ployment cost: 80).
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(b) An optimal efficient
team T2 (deployment cost:
60).
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(c) An optimal 1-robust
team T3 (deployment cost:
140).
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(d) An optimal 1-
recoverable team T4
(deployment cost: 80).
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(e) Recovering T4 after a
clinic collapses (1-recovery
cost: 20).

Figure 1: Illustrative example: efficient, robust and recoverable deployment strategies of health care facilities.

Example 1.1. Consider the task of developing health care facil-
ities on an earthquake-risk area given in Fig. 1. The area consists
of a 3*3 grid where each subarea (i.e., each “box” in the grid) (i)
accommodates citizens who must have access to a facility, and (ii)
can itself host a facility. Three types of facilities are available for
construction: hospitals, clinics, and rescue centers. The following
assumptions are considered: only one hospital can be erected, but
the other types of facilities can be deployed at several places. As
hospitals and clinics need time to be built, only rescue centers may
be built on short notice in case of an emergency. A cost and a ser-
vice range is associated with each facility. Each hospital, clinic and
rescue center is respectively associated with a deployment cost of
80, 20 and 20 2 and a service range of 2, 1 and 0; that is, each sub-
area of coordinates (x ,y) can access to a facility F with range rF
located at coordinates (xF ,yF ) iff |x −xF |+ |y−yF | ≤ rF . The goal
is to ensure that every subarea has access to at least one facility.

In this example, “agents” refer to facilities and “teams” refer to
sets of facilities. Fig. 1(a) and 1(b) depict two efficient teamsT1 and
T2: each of them allows any subarea to access to a facility. T1 has
a deployment cost of 80 and T2 is an optimal one since it has a
deployment cost of 60 which is minimal among all efficient teams.
Now assume that a disaster damages one of the subareas of the
grid, effectively rending the facility at the corresponding location
as nonfunctional. In this case, none of the teamsT1,T2 are satisfac-
tory. Indeed, inT1 if the hospital becomes nonfunctional, the whole
area is left without medical care and nine rescue centers — the only
type of facility which can be deployed in an emergency situation
— need to be deployed, at a prohibitive 1-recovery cost of 180. In
T2, if one of the clinics is damaged, then in the worst case (if the
clinic at coordinates (2, 3) collapses) four subareas become out of
reach of the remaining clinics, which requires building four rescue
centers, at a 1-recovery cost of 80. The 1-overall cost (deployment
cost + 1-recovery cost) invested may then be 80+ 180 = 260 forT1,
and 60 + 80 = 140 for T2. The team T3 (cf. Fig. 1(c)) has a deploy-
ment cost of 140. It is not only efficient, but if one of the facility
collapses in case of disaster, any subarea of the grid is still under
the reach of one of the remaining facilities. That is, T3 is 1-robust.
Moreover, it is the optimal 1-robust team. Deploying T3 is appro-
priate when it is of utmost importance to provide service to every
subarea at all times. However, such a solution might still be seen
as infeasible due to budget limitations. Instead, one might consider
2These values are arbitrary and only reflect the relative cost of deployment between
the different types of facilities.

deploying T4 (cf. Fig. 1(d)) which consists of four clinics. T4 has a
deployment cost of 80 which is considerably less than the cost of
T3. In the unfortunate event where one facility is lost to an unex-
pected event, one can check that in any of the four cases only one
rescue center needs to be deployed (Fig. 1(e) depicts an example).
Thus, in the worst case, deploying T4 requires an additional cost
of 20, assuming one of the facility may be lost. One can see in this
example thatT4, the “recoverable” alternative, is more satisfactory
than the one of T3 in terms of overall cost: 80 + 20 = 100 for T4
in the worst case (deployment + 1-recovery cost), versus 140 for
deploying T3.

Our contributions are as follows. We define the recoverable TF
problem and prove its computational complexity to beΣP3 -complete.
Given that the standard and robust TF problems are both “only”
NP-complete problems, conventional techniques for TF can no long-
er be applied. To deal with the complexity shift, we introduce a
novel algorithmwith two key components: nonlinear cuts to prune
teams with suboptimal substructures, and a search strategy to im-
plicitly simplify the cuts. In addition, we propose a heuristic cut to
provide a trade-off between computational time and solution qual-
ity. Lastly, we experimentally show that even though the recov-
erable TF problem is more complex than the robust TF problem,
we are able to compute optimal solutions for a number of bench-
marks. Interestingly, our experiments show that recoverable teams
are more satisfactory than robust ones in terms of overall cost.

For space reasons, most proofs are omitted. An extended version
of the paper containing all the proofs is available from https://staff.
aist.go.jp/nicolas-schwind/AAMAS2018.pdf.

2 (ROBUST) TEAM FORMATION
We provide the main definitions and theorems for (robust) team
formation (TF). More details can be found in [23].

Definition 2.1. (TF Problem Description) A TF problem descrip-
tion is a tuple TF = ⟨A, S, f ,α⟩ where A = {a1, a2, ...,an } is a set
of agents, S = {s1, s2, ..., sm } is a set of skills, f : 2A → N is a cost
function, and α is a mapping from A to 2S . T ⊆ A is called a team.

It is assumed that the cost of a teamT is given by the sum of the
costs of each agent, i.e., f satisfies f (T ) = ∑

ai ∈T f ({ai }).

Definition 2.2. Team T is said to be c-costly if f (T ) ≤ c .

Definition 2.3. Team T is efficient if S =
∪
ai ∈T α(ai ).
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The decision problem for TF (labeled Skill Efficient Team Forma-
tion - SETF), given a TF problem description and a nonnegative
integer c as input, asks if there exists a team T ⊆ A such that T is
c-costly and efficient.

Theorem 2.4. [23] SETF is NP-complete.

Definition 2.5. [23] A team T is said to be k-robust if for every
set of agentsT ′ ⊆ T such that |T ′ | ≤ k , the teamT \T ′ is efficient.

Note that robustness generalizes efficiency (for k > 0). The de-
cision problem for robustness (labeled Skill Oriented Robust Team
Formation - SORTF), given a TF problem description and integers
c and k , asks if there exists a teamT ⊆ A such thatT is c-costly and
k-robust.

Theorem 2.6. [23] SORTF is NP-complete.

The optimization variant of SORTF asks for a robust team with
minimum cost.

3 RECOVERABLE TEAM FORMATION
We now introduce recoverable team formation (RTF), a generaliza-
tion of the standard TF problem, where in addition to the team’s
initial cost we consider the recovery cost that represents the cost
required to restore efficiency after any k agents are removed; effi-
ciency is restored by adding agents that have not been previously
selected.

Definition 3.1 (Recoverable Team Formation Problem Description).
An RTF problem description is a tuple ⟨A, S, f ,α ,h⟩ where A =
{a1,a2, ...,an } is a set of agents, S = {s1, s2, ..., sm } is a set of skills,
f : 2A → N ∪ {+∞} is the deployment cost function, α is a map-
ping from A to 2S , and h : 2A → N ∪ {+∞} is the recovery cost
function.

As in the robust TF setting, we assume that the cost functions
f and h satisfy f (T ) = ∑

ai ∈T f ({ai }) and h(T ) = ∑
ai ∈T h({ai })

for each team T . The function f is used to characterize the cost
of deploying a given team in a “standard” or “initial” situation, as
in the standard and robust TF settings. The function h, however, is
used to define the cost of deploying a rescue team in an “emergency”
situation, i.e., to restore the team’s efficiency after a set of agents
has been removed from the initially formed team.

We are now ready to introduce our property of interest, i.e.,
team recoverability. Beforehand, let us introduce the notion of “k-
recovery cost” of a given team, a key additional component in RTF.
Given a team T and a number k , the k-recovery cost of T corre-
sponds to the minimum recovery cost necessary to restore the effi-
ciency loss of T after removing k agents from it in the worst case.
Formally:

Definition 3.2 (Recovery and Overall Cost). Let ⟨A, S, f ,α ,h⟩ be
an RTF problem description. Given a teamT ⊆ A and a non-negative
integer k , the k-recovery cost of T , denoted rc(T ,k), is defined as

rc(T ,k) = max
T ′⊆T ,
|T ′ |=k

rcS(T ,T ′),

where rcS(T ,T ′) corresponds to the cost involved in recovering the
team T after being deprived of T ′ from it, i.e.,

rcS(T ,T ′) = min
Trec ⊆A\T ,

(T \T ′)∪Trec efficient
h(Trec ).

The k-overall cost, denoted oc(T ,k), is defined as

oc(T ,k) = f (T ) + rc(T ,k).
The k-recovery cost represents the amount that needs to be paid

in the worst case when k agents are removed from the team.While
a robust team is required to remain efficient after k agents are re-
moved, a recoverable team aims for a low k-overall cost, having a
relatively “harmless” recovery cost if k agents are lost.

Definition 3.3 (Team Recoverability). Given an RTF problem de-
scription ⟨A, S, f , α ,h⟩ and a team T , T is ⟨k, c2⟩-recoverable if
rc(T ,k) ≤ c2, that is, if for every T ′ ⊆ T such that |T ′ | ≤ k , there
existsTrec ⊆ (A\T ) such that the team (T \T ′)∪Tr ec is an efficient
team and h(Trec ) ≤ c2. Additionally, if f (T ) ≤ c1, then T is said to
be ⟨c1,k, c2⟩-recoverable.

Interestingly, our notion of recoverability can be viewed as a
generalization of the notion of robustness, i.e., both notions coin-
cide when restoring the team’s initial efficiency must be done with
no k-recovery cost. Indeed:

Proposition 3.4. Let ⟨A, S, F ,α ,h⟩ be a RTF problem description
such that h is defined for each ai ∈ A as h({ai }) > 0. Then for every
efficient team T ⊆ A and every k ≥ 0, T is k-robust and c-costly if
and only if T is ⟨c,k, 0⟩-recoverable.

Example 3.5 (continued). Let us formalize the health care facil-
ity location example provided in the introduction. For each facility
of type t = {H ,C,R} (where H ,C,R respectively stand for hos-
pital, clinic and rescue center) and each pair of coordinates (x ,y)
where the facility can be deployed, we introduce an agent denoted
atxy . Recall that clinics and rescue centers can be placed anywhere,
but a hospital can be deployed only at coordinates (2, 2). That is,
the set of agents A is defined as A = {atxy | t ∈ {C,R},x ,y ∈
{1, 2, 3}}∪{aH22}. A skill is associated with each subarea of the grid,
i.e., each pair of coordinates (i, j), i ∈ {1, 2, 3} is associated with the
skill denoted si j , and the set of skills S is defined as S = {si j | i, j ∈
{1, 2, 3}}. An agent atxy ∈ A has a skill si j ∈ S if the subarea rep-
resented by si j is within the reach of the facility of type t located
at coordinates (x ,y). Hence, for each atxy ∈ A, α(atxy ) = {si j ∈ S |
|x − i | + |y − j | ≤ ranдe(t)}, where ranдe(H ) = 2, ranдe(C) = 1 and
ranдe(R) = 0. In addition, f (H ) = 80, f (C) = f (R) = 20 (it costs
80 to deploy a hospital and 20 to deploy a clinic or a rescue cen-
ter). Lastly, h(H ) = h(C) = +∞ and h(R) = 20 (only rescue centers
are available for construction on short notice, when needed after
a disaster occurs).

The four teams depicted in our introductive example (cf. Fig. 1)
are defined as T1 = {aH12}, T2 = {a

C
11,a

C
31,a

C
23}, T3 = T1 ∪ T2, and

T4 = {aC12,a
C
21,a

C
23,a

C
32}. Table 1 provides for each team Ti its de-

ployment cost and its k-recovery cost for k = {1, . . . , 4}, i.e., the
cost of recovering the team’s efficiency in the worst case after los-
ing k agents. T1 and T2 are efficient teams and T2 is optimal in
the sense that f (T2) is minimal among all efficient teams. T3 is 1-
robust and is optimal as well (w.r.t. f ).T4 is, for instance, ⟨80, 1, 20⟩-
recoverable. It can be seen thatwhileT4 appears to be initiallymore
costly thanT2 and is not 1-robust (asT3 is), it exhibits an interesting
compromise in terms of k-recovery costs: for each k ∈ {1, . . . , 3},
rc(T4,k) is strictly lower than the other teams, which means that
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Ti f (Ti ) rc(Ti , 1) rc(Ti , 2) rc(Ti , 3) rc(Ti , 4)
T1 80 180 180 180 180
T2 60 80 120 180 180
T3 140 0 80 120 180
T4 80 20 60 100 180
Table 1: The (k-recovery) costs of each team.

recoveringT4 in the case of any number of agent loss up to three is
guaranteed to be less costly than the optimal efficient and robust
teams T2 and T3. In addition, it can be checked that the 1-overall
cost of T4, f (T4) + rc(T4,k), in any disaster case up to four facility
loss (i.e., for any k < 4), is strictly lower than the other teams.

4 COMPUTATIONAL COMPLEXITY
This section provides a computational complexity analysis of the
recoverability issue. More precisely, we consider the following de-
cision problem:

Definition 4.1. (Recoverable Team Formation Problem - RTF)
• Input: A RTF problem description RTF = ⟨A, S, f ,α ,h⟩
such that f ,h are computable in polynomial time, and three
non-negative integers c1, k , c2.
• Question: Does there exist an efficient team T ⊆ A such
that T is ⟨c1,k, c2⟩-recoverable?

We assume that the reader is familiar with the complexity class
NP (see [24] for more details). Higher complexity classes are de-
fined using oracles. In particular, ΣP2 = NPNP corresponds to the
class of decision problems that are solved in non-deterministic poly-
nomial time by deterministic Turing machines using an oracle for
NP in polynomial time, and ΣP3 is the class of decision problems
that are solved in non-deterministic polynomial time by determin-
istic Turing machines using an oracle for ΣP2 in polynomial time.

We remarked previously that the standard TF problem, i.e., SETF,
is equivalent to theHitting Set problem [8]. Our strategy to provide
a hardness result for our problem of interest RTF is as follows. We
(i) introduce an adaptation of the recoverability issue to the more
canonical Hitting Set problem; (ii) provide a hardness result for the
“recoverable” Hitting Set problem; (iii) provide a polynomial-time
reduction from it to our SETF problem.

Let us introduce some notations and vocabulary related to the
Hitting Set problem. Let E be a finite set of elements called a uni-
verse and C be a collection of subsets of E, called a set of constraints
based on E. A set T ⊆ E is said to be a hitting set for C if for every
U ∈ C, T ∩U , ∅.

Given a universe E, a set of constraints C based on E, two map-
pings f ,h : E 7→ N ∪ {+∞}, and three non-negative integers
c1,k, c2, we say that a given set T ⊆ E is ⟨c1,k, c2⟩-recoverable
if T is such that

∑
x ∈T f (x) ≤ c1, T is a hitting set for C, and for

any set U ⊆ T with |U | ≤ k , there exists a set V ⊆ E \T such that∑
x ∈V h(V ) ≤ c2 and (T \U ) ∪V is a hitting set for C.

Definition 4.2. (REC-HITTING-SET)
• Input: A universe E, a set of constraints C based on E, two
functions f ,h : E 7→ N ∪ {+∞} computable in polynomial
time, and three non-negative integers c1,k, c2.

• Question: Does there exist a set T ⊆ E such that T is
⟨c1,k, c2⟩-recoverable?

We get the following complexity result:

Proposition 4.3. REC-HITTING-SET is ΣP3 -hard.

Proof sketch. We intend to prove that ΣP3 -hardness holds for
REC-HITTING-SET by consider a reduction in polynomial time to
REC-HITTING-SET from the validity problem for 3-CNF quanti-
fied boolean formulas (QBFs) of the form ∃X∀Y∃Z .α where X =
{x1, . . . ,x2n }, Y = {y1, . . . ,yn } and Z = {z1, . . . , zn } are three
disjoint sets of propositional atoms and α is 3-CNF propositional
formula such that Var (α) = X ∪ Y ∪ Z . Consider such a QBF
∃X∀Y∃Z .α , and let us associate with it a universe E, a set of con-
straints C based on E, cost functions f ,h : E 7→ N ∪ {+∞} and
non-negative integers c1,k, c2 as follows. Let us define:
• the mappings a, e associating any literal over X with an ele-
ment of E, defined for every (possibly negated) literal xi as
a(xi ) = ai and e(xi ) = ei if xi is a positive literal, otherwise
a(xi ) = āi and e(xi ) = ēi ;
• the mapping b associating any literal over Z with an ele-
ment of E, defined for every (possibly negated) literal zi as
b(zi ) = bi if zi is a positive literal, otherwise b(zi ) = b̄i ;
• the mapping τ associating any literal overY with an integer
from {1, . . . ,n}, defined for every (possibly
negated) literal yi as τ (yi ) = 2i − 1 if yi is a negative lit-
eral, otherwise τ (yi ) = 2i .

Additionally, we assume that α is viewed as a set of clauses written
as (li , lj , lk ), where li , lj , lk are literals fromX∪Y∪Z , and such that
the literals li , lj , lk are ordered in such away that if li ∈ Y (resp. lj ∈
Y ) then lj , lk ∈ Y ∪ Z , (resp. lk ∈ Y ∪ Z ) and if li ∈ Z (resp. lj ∈ Z )
then lj , lk ∈ Z , (resp. lk ∈ Z ). Then a clause (li , lj , lk ) ∈ α can be of
the form (xi ,x j ,xk ), (xi ,x j ,yk ), (xi ,x j , zk ), (xi ,yj , zk ), (xi , zj , zk ),
(yi ,yj , zk ), (yi , zj , zk ), (zi , zj , zk ) (each literal is possibly negated.)
The presence of clauses of the form (yi ,yj ,yk ) make the QBF triv-
ially not valid, while clauses (xi ,yj ,yk ) can be removed by unit
propagation.

Given the QBF ∃X∀Y∃Z .α , the universe E, functions f ,h, set of
constraints C based on E and integers c1,k, c2 are characterized in
Algorithm 1. Obviously enough, this algorithm runs in polynomial
time in the size of the QBF, its input.

Then the proof takes advantage of the following lemmata:

Lemma 4.4. If the deployment candidate set T is a hitting set for
C and is such that

∑
x ∈T f (x) ≤ c1, then the following conditions

are satisfied:

(i) a0 belongs to T ;
(ii) ∀i ∈ {1, . . . , 2n}, exactly one element among {ai , āi } is se-

lected in the deployment candidate set T ;
(iii) ∀i ∈ {1, . . . , 2n}, ei (resp. ēi ) is selected in the deployment

candidate set T if and only if ai (resp. ēi ) is also selected;

Lemma 4.5. If the deployment candidate set T is a hitting set for
C such that

∑
x ∈T f (x) ≤ c1, and if one of the following conditions

is not satisfied:

(i) a0 belongs to the removal set U ;
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Algorithm 1: Characterization of E, f , h, C, c1, k , c2
input: The QBF ∃X∀Y∃Z .α
ouput: E , f , h, C, c1, k, c2

1 begin
// definition of E , f and h

2 E ← {a0, b++, b0 };
3 f (a0) ← 0; f (b++), f (b0) ← +∞;
4 h(a0) ← +∞; h(b++) ← n(n + 1); h(b0) ← 0;
5 for i ← 1 to n do
6 E ← E ∪ {a2i−1, ā2i−1,a2i , ā2i ,e2i−1, ē2i−1,e2i , ē2i };
7 f (a2i−1), f (ā2i−1), f (a2i ), f (ā2i ) ← 1;
8 f (e2i−1), f (ē2i−1), f (e2i ), f (ē2i ) ← 1;
9 h(a2i−1), h(ā2i−1), h(a2i ), h(ā2i ) ← +∞;

10 h(e2i−1), h(ē2i−1), h(e2i ), h(ē2i ) ← +∞;
11 E ← E ∪ {bi , b̄i , b+i };
12 f (bi ), f (b̄i ), f (b+i ) ← +∞;
13 h(bi ), h(b̄i ) ← 1; h(b+i ) ← n;

// definition of C
14 C ← {{a0, b++ }};
15 for i ← 1 to n do
16 C ← C ∪ {{a2i−1, ā2i−1, b+i }, {a2i , ā2i , b+i }};
17 C ← C ∪ {{e2i−1, ē2i−1, b0 }, {e2i , ē2i , b0 }};
18 C ← C ∪ {{a2i−1, ē2i−1, b0 }, {a2i , ē2i , b0 }};
19 for i ← 1 tom do
20 C ← C ∪ {{a0, bi , b̄i }};
21 for (li , lj , lk ) in α do
22 switch (li , lj , lk ) do
23 case (xi , x j , xk ) do
24 C ← C ∪ {{a(xi ), a(x j ), a(xk ), b0 }};
25 case (xi , x j , yk ) do
26 C ← C ∪ {{a(xi ), a(x j ), b0 }};
27 case (zi , zj , zk ) do
28 C ← C ∪ {{a0, b(zi ), b(zj ), b(zk )}};
29 case (yi , zj , zk ) do
30 C ← C ∪ {{aτ (yi ), āτ (yi ), b(zj ), b(zk )}};
31 case (yi , yj , zk ) do
32 C ← C ∪ {{aτ (yi ), āτ (yi ),
33 aτ (yj ), āτ (yj ), b(zk )}};
34 case (xi , x j , zk ) do
35 C ← C ∪ {{a0, e(xi ), e(x j ), b(zk )}};
36 case (xi , zj , zk ) do
37 C ← C ∪ {{a0, e(xi ), b(zj ), b(zk )}};
38 case (xi , yj , zk ) do
39 C ← C ∪ {{a0, e(xi ), aτ (yj ), āτ (yj ), b(zk )}};

// definition of integers c1, k, c2
40 c1 ← 4n; k ← n + 1; c2 ← 2n(n + 1);

(ii) ∀i ∈ {1, . . . ,n}, exactly one element from
{a2i−1, ā2i−1, a2i , ā2i } belongs to the set U ;

(iii) ∀i ∈ {1, . . . ,n}, no element from {e2i−1, ē2i−1, e2i , ē2i } be-
longs to the set U ,

then there exists a k-recovery candidate set V ⊆ E \ T such that∑
x ∈V h(V ) ≤ c2 and (T \U ) ∪V is a hitting set for C.

Lemma 4.6. If the deployment candidate set T is a hitting set for
C such that

∑
x ∈T f (x) ≤ c1, all conditions (i), (ii) and (iii) from

Lemma 4.5 are satisfied, and there exists a setT ⊆ E that is ⟨c1,k, c2⟩-
recoverable, then the k-recovery candidate setV is such that for each
i ∈ {1, . . . ,n}, exactly one element among {bi , b̄i } belongs to V .

Then by using lematta 4.4, 4.5 and 4.6 above, one can verify that
the QBF is valid if and only if there exists a set T ⊆ E which is
⟨c1,k, c2⟩-recoverable. Therefore, REC-HITTING-SET is ΣP3 -hard.

□

Taking advantage of Prop. 4.3, we are now ready to characterize
the complexity of RTF. Indeed, REC-HITTING-SET and RTF are
equivalent problems:

Proposition 4.7. RTF is ΣP3 -complete.

Intuitively, the increase in complexity stems from the fact that
for each feasible team T , one needs to consider every possible re-
moval of k agents and compute its k-recovery cost. The number
of combinations is exponential with respect to k , and for each re-
moval computing the k-recovery cost amounts to solving a stan-
dard TF problem, which is itself NP-hard. In a sense, the parame-
ter k is the reason for the complexity shift. If we consider k as a
constant that is part of the problem definition (denoted as k-RTF),
rather than as an input parameter, we obtain a significant drop in
computational complexity:

Proposition 4.8. For k ≥ 0, k-RTF is NP-complete.

5 ALGORITHMS
We now describe our complete and heuristic algorithms. Given an
RTF description and an integer k , our goal is to find a team T that
minimizes the k-overall cost (Def. 3.2). We call such an optimal
team, denoted Tbest , a k-optimal team. An outline of our proce-
dure is given in Algorithm 2. Iteratively, we compute a team that
satisfies the constraints of the problem. Based on the team, we
generate a cut (Eq. 4), which is added to the set of constraints,
that prunes suboptimal teams with a similar substructure from the
search space. Therefore, at the end of the algorithm, a k-optimal
team Tbest is produced.

The cuts are nonlinear. However, by traversing the search space
in increasing cost of the teams, they can be simplified. To further
speed up the algorithm at the cost of losing optimality, we intro-
duce heuristic cuts. The main components of the algorithm are dis-
cussed in the following sections.

5.1 Computing Teams
We model TF as a set of linear equations with binary variables.
Initially, the set of equations consists of the efficiency constraints
(Eq. 1). In each iteration, a new team is computed that satisfies all
the equations. Based on the newly computed team, a new equation
(cut) is added to the set of equations (Eq. 2), which prunes subopti-
mal teams (wrt the k-overall cost) with similar substructure from
future search. This process is repeated until no new teams satisfy-
ing the equations exist. At this point, the complete search space has
been explored and the optimal solution has been found in one of
the prior iterations. In our model, a solution x = (x1,x2, ...,x |A |) is
the assignment of values to the binary decision variables xi , which
indicate if the ith agent is in the team T . Thus, every assignment
for the xi variables uniquely corresponds to a team and vice versa.
The model used is as follows:∑

i ∈A∧s ∈α (i)
xi ≥ 1 ∀s ∈ S (Def.2.3) (1)

x does not violate any cuts (Eq.4) (2)

xi ∈ {0, 1} ∀i ∈ A (3)
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In our experiments, solutions were obtained by using IBM ILOG
CPLEX 12.8.0, an integer programming (IP) solver. The IP solver is
a search-based branch-and-bound algorithm, which is complete: it
is guaranteed to find a solution, if it exists. We note that solving TF
is a NP-hard problem and hence in each iteration we make a call
to a NP-hard solver.

Algorithm 2: Algorithm Outline for RTF
input: An RTF description ⟨A, S, f ,α ,h⟩, an integer k
ouput: A k-optimal team Tbest

1 begin
2 Tbest ←− ∅
3 while not all f easible teams have been explored do
4 Tcur ←− selectNewTeam()
5 дenerateCut(Tcur ,a∗k ,Tbest ,RTF ,k)
6 if oc(Tcur ,k) < oc(Tbest ,k) then
7 Tbest ←− Tcur
8 return Tbest

5.2 Cut for Pruning Suboptimal Teams
Given a solution Tcur to Eq.1-3, the goal is to produce a cut (an
equation) that prunes suboptimal teams similarly structured asTcur .

Before providing the cut, we introduce the following notation:
M(S) is the set of agents that posses at least one of the skills from
the set of skills S , S(T ,Ak ) is the set of skills that become uncovered
when agents inAk are removed fromT ,Tbest is thek-optimal team
found so far during the search, andCthresh (T ,Tbest ) = oc(Tbest ,k)
−f (T ) − 1 is the threshold value of the k-recovery cost for team T
that must not be exceeded to be considered better thanTbest . Note
that computing rc(T ,Ak ) (Def. 3.2) amounts to solving a team for-
mation problemwith the skills S(T ,Ak ) and agentsM(S(T ,Ak ))\T .

LetTcur be the currently analyzed team, A∗k is the set of agents
such that rc(Tcur ,A∗k ) > Cthresh (Tcur ,Tbest ), and T is any future
team uniquely defined by the variables xi that would be considered
as a solution to Eq.1-3. We now present the cut:

Cthresh (T ,Tbest ) < rc(Tcur ,A∗k ) ⇒
∑

i ∈M (S (Tcur ,A∗k ))\A
∗
k

xi ≥ 1 (4)

The cut forces the inclusion of at least one agent from the set
M(S(T ,A∗k )) \ A

∗
k under the condition that the left-hand side is

satisfied. If the cut is violated, the resulting k-recovery cost will
be greater than the threshold value. Essentially, the partial assign-
ment of Tcur concerning agents from M(S(T ,A∗k )) \ A

∗
k is respon-

sible for the high k-recovery cost.

Example 5.1. Consider a cut for the 1-recoverable health care
facility location example provided in the introduction. To further
simplify, we only allow building clinics in the first step and res-
cue centers in the second step. For the team Tcur given in Fig.
2(a), the set A∗1 consists of a single clinic (circled), f (Tcur ) = 80,
rc(Tcur ,A∗1) = 40, and we assume thatTcur is the best team found
so far (Tbest = Tcur ). The area that would become uncovered
after the removal of A∗1 (S(Tcur ,A∗1)) is marked in Fig. 2(b). Fig.

2(c) shows the possible clinics that can cover the uncovered area
(M(S(Tcur ,A∗1)). In Fig. 2(d) the same clinics without without A∗1
are shown. The cut is then 119− f (T ) < 40⇒ x(1,2)+x(2,2)+x(2,3)+
x(3,3) ≥ 1, which states that for every team T with f (T ) ≥ 80, at
least one of the clinics from the right-hand side (Fig. 2(d)) must be
built, otherwise T will have a 1-recovery cost of at least 40, mean-
ing it would not be better than Tbest . One of the teams pruned
from the search space by the generated cut is given in Fig. 2(e).

Proposition 5.2. The cut in Eq. 4, given two teams Tbest and
Tcur with oc(Tbest ,k) ≤ oc(Tcur ,k), and A∗k such that rc(Tcur ,A∗k )
> Cthresh (Tcur ,Tbest ), does not prune any teamT for whichoc(T ,k)
< oc(Tbest ,k) holds.

Given that both the integer programming search procedure to
calculate teams is complete and cuts (Eq. 4) does not exclude opti-
mal solutions (Prop. 5.2), we arrive at the following corollary:

Corollary 5.3. Algorithm 2 is complete, that is, it computes the
optimal solution.

The final issue remaining is computingA∗k . This is done by enu-
meration, searching for the A∗k that yields the maximum value
cr ec = rc(Tcur ,A∗k ) or stopping at the first A∗k that shows that
Tcur is suboptimal, as outlined in Algorithm 3.

Algorithm 3: Cut Generation for Pruning Teams
input: RTF = {A, S, f ,α ,h}, k , a pruning team Tcur , best

team Tbest
ouput: a cut pruning teams with same substructure as input

team Tcur
1 begin
2 cmax

rec ←− 0
3 A∗k ←− ∅

// calculate the maximum k-recovery cost w.r.t.
// removals of Ak

4 foreach Ak ∈ {A′ : A′ ⊆ Tcur ∧ |A′ | = k} do
5 crec = h(Tcur ,Ak )
6 if cr ec ≥ cmax

rec then
7 cmax

rec ←− crec
8 A∗k ←− Ak

9 if Cthresh (Tcur ,Tbest ) < cmax
rec then

10 exit loop

11 return Eq. 4 and 5 w.r.t. (Tcur ,A∗k ,Tbest ,RTF )

5.3 Search Strategy for Cut Simplification
A key observation is that if we knew the deployment cost of the
team we are searching for, the left-hand side of the cut in Eq. 4
would be obsolete. We exploit this information in our search strat-
egy: we traverse the search space by considering teams in increas-
ing deployment cost. Therefore, teamsT are examined before teams
T ′ when f (T ) < f (T ′). This effectively linearizes the cut, as the
left-hand side is no longer necessary. Note that every cut gener-
ated based on a teamT1 is still valid even for teamsT2 with f (T1) ≤
f (T2). Such linear cuts are preferred over nonlinear cuts, as they
are typically easier to solve in practice.
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(a) An efficient team Tcur
(deployment cost: 80 and 1-
recovery: 40) with singleton
A∗1 circled.

1 2 3

1

2

3

(b) Areas that become un-
covered after A∗1 is removed
from Tcur (S (Tcur , A∗1))

1 2 3

1

2

3

(c) Possible clinics that can
cover the uncovered areas
(M (S (Tcur , A∗1))).

1 2 3

1

2

3

(d) Possible clinics without
A∗1 (M (S (Tcur , A∗1)) \ A∗1)

1 2 3

1

2

3

(e) A team pruned by the
cut generated based on
Tcur .

Figure 2: Illustrative example: cut generation.

5.4 Heuristic Cut
We introduce a heuristic cut as a means of reducing the computa-
tional time at the expense of possibly losing optimality. In the base
cut (Eq. 4), the removal agentsA∗k are the cause of high k-recovery
costs. The intuition for the heuristic cut is that by pruning all teams
with A∗k the same problem cannot be encountered again:∑

i ∈A∗k

xi ≤ |A∗k | − 1 (5)

The cut has stronger pruning power, but it might remove the op-
timal solution, therefore the algorithm becomes incomplete. In our
experimental analysis, we observed that good solutions can still be
obtained while using the heuristic cut. In our heuristic algorithm
variant, the heuristic cut is generated in addition to the base cut.

6 EXPERIMENTAL RESULTS
The goal of our experimentation is to show that recoverability has
a much lower cost than robustness, at the expense of higher com-
putational complexity. Solutions for reasonably sized teams can be
found, despite RTF being a ΣP3 -hard problem. The results are pre-
sented in Fig. 3 and Tables 2 and 3.

6.1 Experimental Setup
We considered small, medium, and large random instances. The
small instances (from 10 to 30 agents and 3 to 11 skills) correspond
to the robust TF instances given in [23]. The medium ones (from
100 to 150 agents and 20 to 30 skills) are set covering instances used
in [2, 29]. The large ones (1000 agents and 200 skills) are classical
instances found in the OR Library [1] under the scp4x package,
used in set covering works (e.g. [7, 15, 20]). In our experiments we
set h = f (recall Definition 3.3).

All tests were performed on an Intel Core i7-7700HQ CPU @
2.80GHz with 32 GB RAM using a computation limit of one hour.
To compute solutions for robust TF, we used IBM ILOG CPLEX
12.8.0 and integer programming in C++, as it was significantly faster
than the previous approaches proposed in [5] and [23].

6.2 Comparison with Robust Team Formation
The comparison with robustness is shown in Fig. 3 for instances
with 150 agents and 30 skills (the values are averaged over ten in-
stances). Small instances from [23] are solved within seconds for

Figure 3: Comparison on instances with 150 agents and 30
skills. Average for ten instances presented.

k = {1, 2, 3}. The k-optimal teams T in RTF have a significantly
lower k-overall cost than k-robust TF for the different values of k ,
and the gap increases as k grows; which confirms our expectations
given our running example. Therefore, for applications where re-
coverability is sufficient, more desirable results can be achieved
with recoverability than with robustness. Robustness provides de-
sirable properties and is easier to compute, but it is noticeablymore
expensive. The parameter k plays an important role in the compu-
tational time, as expected due to Prop. 4.8. The heuristic cut (Eq. 5)
provides a means to combat the increase in computational time.

6.3 Algorithm Variants
We considered adding the heuristic cut (Eq. 5) in addition to the
base cut (Eq. 4), and our search strategy of going through teams in
increasing deployment cost. Detailed results in Table 2 on a few se-
lected instances (as similar results are obtained for other instances).
Aggregated results for small and medium benchmarks are given
in Table 3. Overall, both our search strategy and our heuristic cut
have more impact as the size of the instance and k grow, reducing
the execution time while maintaining high solution quality.

7 RELATEDWORK
The notions of recoverability and robustness have been introduced
as general concepts for resilient systems. Robustness can be seen
as one of its two main characteristics [4], as the capability to keep
some “level of demand” without suffering degradation, while re-
coverability is defined as the capacity to cope with unanticipated
dangers after they have become effectively manifested on the sys-
tem. Recoverability has also been considered for constraint-based
dynamic systems in [26], where the authors reviewed a number
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(|A|,|S |) k (s,h) (s,h) (s,h) (s,h)

(150, 30) 1 1478 (26s) 1536 (20s) 1478 (5s) 1536 (1s)

(150, 30) 2 1828 (260s) 1828 (60s) 1828 (350s) 1828 (9s)

(150, 30) 3 1962 (1820s) 1962 (160s) 1962 (2640s) 1962 (270s)

(1000, 200) 1 487 (45s) 487 (20s) 487 (20s) 487 (4s)

(1000, 200) 2 532 (2700s) 535 (260s) 532 (3600sto ) 535 (450s)

Table 2: Different variants of our algorithm. Crossing let-
ters s and h indicates whether our search strategy and/or the
heuristic cut is used.

(|A|,|S |) k=1 k=2 k=3

#o g i t #o g i t #o g i t

(30, 11) 7 6.5% 15, 5 1, 0 8 2.7% 60, 20 3.5, 1 10 0 190, 94 20, 9

(150, 30) 5 3.6% 15, 5 11, 7 3 3.0% 159, 50 1312, 49 3 2.% 1324, 455 5515, 918

Table 3: Analysis of the cuts on small and medium bench-
marks (ten instances of each). Legend: #o - number of opti-
mal solutions by the heuristic cut;д - average optimality gap
for suboptimal values; i and t - average number of iterations
and execution time by the complete and heuristic variant.

of qualitative definitions of resilience in various disciplines and
formalized the property of resilience as a combination of several
properties. Among them, resistance and recoverability were consid-
ered. Resistance deals with the system’s ability to resist to exter-
nal fluctuations: a system’s trajectory is l-resistant if its “quality”
is always kept above a certain threshold l . Recoverability refers
to the system’s “elasticity”, i.e., its ability return to a satisfactory
state after temporarily suffering from some external disturbances:
a system’s trajectory is ⟨p,q⟩-recoverable if whenever its “quality”
goes below a certain threshold p, it bounces back to an acceptable
state (above p) within a certain window of accumulative cost spec-
ified by q. The latter definition (see [26] for more formal details)
is based on the same intuition as in this paper in the context of
TF. Interestingly, it can be checked that l-resistance coincides with
⟨p,q⟩-recoverability in the case where q = 0, i.e., when no accumu-
lative cost is allowed at all; this in in accordance with our results
(Prop. 3.4), which shows that in TF, recoverability can be viewed
as a generalization of robustness.

TF is somewhat related to coalition structure generation (CSG),
where the task is to partition a set of agents into teams (so-called
“coalitions”) in order to maximize the sum of the coalition utility
values. However, while in TF a single team is formed out of a pool
of agents, in CSG already preselected agents are split into teams.
Thus TF and CSG are respectively related to set covering and set
partitioning so that our results cannot be trivially adapted. We di-
rect the interested reader to [25] for a survey on CSG.

Robust TFwas extended in [22] to handlemultiple teams. Heuris-
tic and approximation algorithms for robust TF were studied in [5].

On the algorithmic side, the cut component of our algorithm
for RTF is related to clause learning for Boolean satisfiability (SAT)
[27, 28] and no goods in constraint programming (CP) [6, 21], which

also analyze conflicting solutions and generate cuts. However, these
techniques are not applicable to RTF, since they are designed for
NP-complete problems, while RTF is ΣP3 -complete.

The notion of resilience is related to previous work on robust-
ness for combinatorial problems. The notion of (a, b)-super models
was introduced [10] for Boolean satisfiability. A (a, b)-super model
is a propositional model such that if variables in a set of size a or
less change their values (breakage), another model can be obtained
by modifying the value of a disjoint set of variables of size at most
b (repair). The notion was later extended to (a, b)-super solutions
[12] for constraint satisfaction problems, where the focus is laid
on the special case of (1, 0)-super solutions. Optimization variants
were also studied, such as computing the (1, 0)-super solution that
maximizes the number of repairable variables [12], or finding the
best model that is a (1, 0)-super solution [11].

For certain problems, basing robustness solely on the number of
repairs is not appropriate, as some repairs might be easier to per-
form than others. Such a formalism, which is closest to our work,
is the extension for maxSAT [3], where the task is to compute a
solution with minimum cost such that after changing the values
of any a variables, it can be repaired by changing the values of
other b variables, so that the cost does not decrease by more than
a given β . Probabilistic weighted variants, named (α , β)-weighted
super solutions, were introduced [13], where a is substituted by α ,
the breakage probability, and β , the cost of the repair.

While the mentioned super solution works share similarities,
there are notable differences with our work. First, the constraint
programming based techniques [12] cannot be practically adapted
to our problem. Indeed, constraint programming approaches are
known to be ineffective for set covering (and thus, for TF) when
compared to integer programming approaches. This is why we in-
troduced here a novel cut-based algorithm for solving RTF. Second,
the reformulation approach for maxSAT [3] adds an exponential
number of constraints (O(na )withn being the number of variables)
and thus seems unpromising for RTF. Last but not least, to the best
of our knowledge, the computational complexity of the problem
(cf. Prop. 4.7) was yet unknown. In contrast, the complexity of the
counterpart problem in computing super models and super solu-
tions has been characterized only for the special case when the
parameter a is a constant, which is analogous to Prop. 4.8.

8 CONCLUSION
We introduced a framework for recoverable team formation (RTF),
where in addition to the team’s cost we examine the cost related
to restoring its functionality after k agents have been removed.
Therefore, we provided a framework for building teams resilient to
change, which ismore general than thework in [23], at the expense
of a complexity shift to ΣP3 -hardness. Our algorithms, by using our
proposed cuts and search strategy, were able to solve reasonably
sized problems despite the high computational complexity. Our re-
sults have shown the drastic difference in overall cost, in favor of
recoverability. Computing multiple teams, stochastic settings, and
introducing recoverability to other computational problems are all
topics for future work.
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