
Stability in Barter Exchange Markets
Sushmita Gupta

Department of Informatics, University of Bergen
Bergen, Norway

sushmita.gupta@ii.uib.no

Fahad Panolan
Department of Informatics, University of Bergen

Bergen, Norway
fahad.panolan@ii.uib.no

Saket Saurabh
The Institute of Mathematical Sciences, HBNI

Chennai, India
Department of Informatics, University of Bergen

Bergen, Norway
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University of the Negev

Beersheba, Israel
meiravze@bgu.ac.il

ABSTRACT

The notion of stability is the foundation of several classic problems
in economics and computer science that arise in a wide-variety of
real-world situations, including Stable Marriage, Stable Room-
mate, Hospital Resident and Group Activity Selection. We
study this notion in the context of barter exchange markets. The
input of our problem of interest consists of a set of people offer-
ing goods/services, with each person subjectively assigning values
to a subset of goods/services offered by other people. The goal
is to find a stable transaction, a set of cycles that is stable in the
following sense: there does not exist a cycle such that every person
participating in that cycle prefers to his current “status”. For exam-
ple, consider a market where families are seeking vacation rentals
and offering their own homes for the same. Each family wishes
to acquire a vacation home in exchange of its own home without
any monetary exchange. We study such a market by analyzing a
stable transaction of houses involving cycles of fixed length. The
underlying rationale is that an entire trade/exchange fails if any of
the participating agents cancels the agreement; as a result, shorter
(trading) cycles are desirable.

We show that given a transaction, it can be verified whether or
not it is stable in polynomial time, and that the problem of finding
a stable transaction is NP-hard even if each person desires only a
small number of other goods/services. Having established these
results, we study the problem of finding a stable transaction in the
framework of parameterized algorithms.

KEYWORDS

Algorithm Design; Stability; Barter Exchange; FPT

ACM Reference Format:

Sushmita Gupta, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2018.
Stability in Barter Exchange Markets. In Proc. of the 17th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),

Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,

Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION

A stable assignment as a solution concept was formally studied
by Gale and Shapley [8] in terms of Stable Marriage, a famous
problem in economics, computer science and mathematics. The
input of Stable Marriage consists of a set of people, each person
strictly ranking a subset of people of the opposite sex. The goal is to
find a matching (a set of men-women pairs, no two of which share
a common member) that is stable in the following sense: there does
not exist man-woman pair whose members prefer being matched
to each other over their current “status”. Here, every person prefers
being matched to being unmatched. Algorithms relying on this
notion of stability are routinely employed to handle a wide-variety
of real-world situations, ranging from the assignment of graduating
medical students to their first hospital appointments to the alloca-
tion of servers in a large distributed Internet service. Consequently,
several books are dedicated to the study of Stable Marriage and
its varied applications [9, 17, 18].

Our Model. We extend the idea of stability from pairs of agents
to groups of agents. Informally, the input of our problem of in-
terest, called Stable Barter, consists of a set of agents offering
goods/services, each agent subjectively assigning values to a sub-
set of goods/services offered by other agents. The goal is to find
a set of cycles that is stable in the following sense: there does
not exist a cycle which every agent prefers to its current “status”.
Here, every agent prefers to participate in a trade, rather than
not. Let us also formally define Stable Barter in graph-theoretic
terms, and then discuss the motivation behind the present for-
mulation. We denote an instance of Stable Barter by (G,w, ℓ)
where G is a digraph, w : A(G) → N0 is a cost function, and
ℓ ∈ N. A cycle in G on at most ℓ vertices is called an exchange.
For an exchange X and a vertex v in X , we use payX (v) and
gainX (v) to denote the costs of the unique outgoing and incom-
ing arcs of v in X , respectively. 1 The balance of v in X is given by
balanceX (v) = gainX (v)−payX (v). A transactionC is a set of pair-
wise vertex-disjoint exchanges, where for any vertex v that is part
of some exchange X in C , we define balanceC (v) = balanceX (v),
and otherwise balanceC (v) = −∞. A transaction C is said to be
stable if there is no blocking exchange Y (a cycle of length at most ℓ

1Note that for a fixed exchange X , there is exactly one outgoing arc and exactly one
incoming arc incident on every vertex in X .

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1371

•

•

•

•2

2

2

2

•

•

•

•

2

2

2

2

• •

• •

1

1

3
2

0 −2

11

3
2

1

1

(a) The set C of blue col-

ored cycles is an example of

transaction which is not sta-

ble due to red colored cycle X .

balanceC (v) = 0 for all v par-

ticipating in the transaction C .

The balance of each vertex in

the exchangeX is marked with

red colored digits in the figure.

•

•

•

•

−∞

−∞

1

1

•

•

•

•

1

1

−∞

−∞

• •

• •

0 −2

0−2

1

1

3
2

3
2

1

1

(b) The set C of green colored

cycles is an example of a sta-

ble transaction. The balance of

each vertex in C is marked

with green colored digits in the

figure.

Figure 1: The graph in the figure (on the left side) with the

weight function mentioned on the arcs and ℓ = 4 is an in-

stance of Stable Barter.

inG) such that for every vertexv inY , balanceY (v) > balanceC (v),
that is gainY (v) − payY (v) > gainX (v) − payX (v) where X is the
exchange in C that containsv . The objective of the Stable Barter
problem is to find a stable transaction. See Figure 1 for an illus-
tration. Our definition of stability is similar to the notion of super
stability mentioned in [15] and it is a stronger notion of stabil-
ity compared with the strict stability mentioned in [21], where in
a blocking exchange at least one of the agent strictly prefers the
blocking exchange over the existing one.

Use of negative values. The balance values are “relative”: positive
and negative values do not represent absolute gain and loss. Nega-
tive values do not discourage agents from participating in a trans-
action. In particular, agents would only be incident to arcs they find
acceptable. At first glance, it may look counter-intuitive that both
contributor and receiver agree on the valuation of a tradable object,
i.e. the contributor’s “pay-value” and receiver’s “gain-value” are the
same. However, using a simple trick in the construction of the graph,
we can incorporate situations where the receiver and donor do not
agree. For ease of exposition, we will refer to the above as Model
A and the following as Model B. Formally, in Model B we model
situations where the contributor and receiver differ on their valua-
tion of the trade with each other as follows. We are given a digraph
D, and two cost functions wp ,wд : A(G) → N0 such that wp (uv)
representsu’s evaluation of the trade withv , andwд (uv) represents
v’s evaluation of the trade with u. For an exchange X , let uv,vw
be arcs in X . Then, we define balanceX (v) = wд (uv) −wp (vw).

Next, we show how to reduce Stable Barter in Model B to
Stable Barter in Model A, and thereby exhibit that Model A is just
as general as Model B. Given I = (D, {wp ,wд }, ℓ), an instance of
Stable Barter inModel B, we create an instance J = (D ′, {w }, 2ℓ)
of Stable Barter in Model A as follows. For any arc uv ∈ A(G)

(with contributor u and receiver v), we add a dummy vertex x to
split the arc u,v , such that ux is now an arc outgoing from u and
xv is an arc incoming into v; then, we set w (ux) = wp (uv) and
w (xv) = wд (uv). Note that there is a solution for Stable Barter
in I if and only if there is a solution for Stable Barter in J . Later
in this section, we describe scenarios which are explicitly captured
by Stable Barter in Model B.

Applications. The Stable Barter problem can model scenarios
where transactions eschew financial exchanges for goods/services,
the most obvious ones being where there is a humanitarian or
altruistic consideration at stake. Here, Kidney Exchange is perhaps
a prototype problem. The context is that there are many patients
with kidney disorders who would benefit from a transplantation of
a healthy kidney, and each has a willing donor (e.g. a friend/family
member) who is not medically compatible. The goal is to find a
set of patients (with incompatible donors) who can exchange their
donors among each other so that every patient is matched with a
compatible donor. The common rule in a cycle of transplantations
is that either all of them are carried out, or none. This necessitates
that the length of the cycle be small, since there is always a chance
that one of the members (be it a patient or a donor) backs out from
an agreed upon exchange. In addition, the last argument also clearly
motivates the demand that a transaction would be stable. Academic
research on Kidney Exchange has a long and varied history; we
refer the reader to [1] for an extensive list as well as for a study of
Kidney Exchange in barter exchange markets.

In addition to kidney exchange, and organ donation in general,
there are more traditional objects that are transacted in a simi-
lar non-monetary fashion. For example, we can point to vacation
rentals [13], books [20], shoes [19] as tradable objects that have
their own dedicated exchange markets. In particular, Intervac [13],
the first home exchange network founded in 1953, provides a plat-
form for home exchange for staying in holidays.

Our work, both the theoretical model and the results obtained
for the Stable Barter problem, are applicable to these as well as
to the Kidney Exchange problem as follows. We setwp (uv) = 0
representing the fact that contributor u (i.e “donor” in this case) is
indifferent to who receives his/her organ, whereaswд (uv) encodes
the compatibility of v (the recipient) receiving u’s organ. Conse-
quently, Kidney Exchange can be modeled by Stable Barter
in Model B. Moreover, Kidney Exchange generalizes the Stable
Roommate problem, and thus the latter can also be modeled by
Stable Barter in Model B.

Notice that in Kidney Exchange, the cost functionwp (·) maps
all the edges to 0, but there are scenarios for which both wp and
wд are non-constant functions. For instance, consider a market in
which a large number of families are looking for vacation rentals
and offering their own homes for the same. Each family wishes
to acquire a vacation home in exchange of its own home without
any monetary exchange. We study such a market by analyzing a
stable transaction of houses involving cycles of fixed length. In
this scenario, an arc uv represents an agent u who has a house
in which agent v is interested for his/her vacation. Then,wp (uv)
represents u’s evaluation of v’s suitability (for example: property

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1372

Complexity Implication on

Stable Barter
Problem Existence Max Existence Max

SMTI P [8, 14] NPC [14] NPC
for ℓ = 4

SE(3,3) NPH [2] NPH [2] NPH NPH
for ℓ = 6 for ℓ = 6

Table 1: Here, P is the class of polynomial time solvable prob-

lems. NPH and NPC refer to NP-hard and NP-complete, re-

spectively.

value, non-smoker, no-pets, and so on) andwд (uv) represents v’s
evaluation of u’s property.2

Related Work. The Stable Marriage problem is among the most
well-known matching problems with varied practical applications.
A hard variant of this problem, called Stable Marriage with Ties
and Incomplete Lists (SMTI), allows agents to submit incomplete
preference lists with ties. Finding a stable matching is known to be
polynomial-time solvable, but the finding a maximum sized stable
matching is known to be NP-complete [14]. In recent years, the
Stable Roommate problem, where there is only one type of agent
(as opposed to two types in Stable Marriage), has been used to
model the Kidney Exchange problem. Here also, each agent ranks
a subset of other agents according to an order of preference. The
same underlying idea applies to the Pairwise Kidney Exchange
problem, where compatible donors are ranked by patients, and vice
versa, in terms of the degree of compatibility, and a stable matching
is desired. The Cycle Stable Roommate (CSR) problem, introduced
in [16], extends themodel of Pairwise Kidney Exchange as follows.
Here, the goal is to find a matchingM that admits no blocking cycle,
defined to be a set (call it a coalition) of agents (a0,a1, . . . ,ak−1)
where k ≥ 2, such that for each i , either (i) ai is unassigned in
M and finds ai+1 acceptable, or (ii) ai prefers ai+1 to its partner
assigned in M ; all relations are computed modulo k . A matching
is said to be a cycle stable matching, if it admits no blocking cycle.
Irving [16] proved that deciding if a given instance of the Stable
Roommate problem admits a cycle stable matching allocation is
NP-complete, even when the cycle length is 3. A generalization of
CSR was studied by Biró [2] as the b-way stable ℓ- way exchange

(SE(b, ℓ)) problem where b, l ∈ N; SE(3, 3) is proved to be NP-hard,
even for deciding whether a solution exists. See Table 1 for the
implications of known results for Stable Barter.

The notion of stability in the context of the Stable Marriage
problem is inherently selfish when a outcome is viewed from the
perspective of one side, men or women, but there are many real
life scenarios in which varying degrees of cooperation is necessary
to accomplish certain tasks. These types of applications are studied
under the broad category of coalition games. Hedonic games and
group activity selection are two settings under which cooperative
games are studied. The former is a well-studied paradigm, while
the latter is relatively new. In hedonic games, there are two basic
notions of stability, one based on the individual and the other on the
group. The latter notion corresponds towhat is commonly known as
2Note that u ’s evaluation of v ’s property is scalable based on u ’s evaluation of the
various attributes of v ’s property.

core stability. Our definition of stable transaction is closely aligned
with the standard notion of core stability in hedonic games. We
remark that given the nature of applications modeled by the Stable
Barter problem (altruistic and barter exchange of goods/services),
individual-centric stability is taken for granted. This is because
the nature of the exchange market ensures that no individual can
unilaterally increase his/her payoff without doing the same for a
larger group, which in our case is a cycle of length ℓ. For further
references to core stability in Hedonic games, refer to [11] and [3,
Ch. 15]. A recent paper [12] explores the computational complexity
of the existence of core stable and Nash stable outcomes in the
context of the graph-based Group Activity Selection problem
(gGASP). These results are largely similar to the ones found in
[11] for hedonic games, with subtle differences in the assignment
of activities. This paper is of interest to us because it studies the
parameterized complexity of this problem by showing the existence
of FPT algorithms for computing a Nash stable outcome in trees,
paths, stars, and small component graphs, as well as computing
core stable solutions for small component graphs. A followup work
[10] studies the complexity of computing a core stable solution in
cliques, acyclic graphs, paths, stars, and small component graphs;
the parameters are the number of activities and number of players.

Our Contribution. Our study encompasses various computational
complexity issues concerning stability in barter exchange markets.
Part of our contribution is conceptual: we generalize various stabil-
ity models, while integrating explicit numerical valuations. Specifi-
cally, we present the following array of results for Stable Barter.
Here, we denote an input instance for Stable Barter by (G,w, ℓ),
where G is a directed graph,w is a weight function on the arc set
of G and ℓ is the maximum length allowed in an exchange (cycle)
in a transaction.

(i) A highly efficient and implementable dynamic programming
based polynomial time verification protocol that takes as
input a transaction and verifies if it is indeed stable. Our
algorithm runs in time O (ℓ · |A(G) |2), where A(G) denotes
the arc set in G . Note that the exponent in the running time
does not depend on ℓ.

(ii) An NP-completeness proof of the decision version of the Sta-
ble Barter problem, even when ℓ = 3, the maximum degree
(in-degree + out-degree) is at most 10 and the cost function
assigns values from {1, 2, 3}, as well as an NP-completeness
proof for testing whether there exists a transaction involving
all the agents, even when ℓ = 3, the maximum degree is at
most 6 and the cost function assigns values from {1, 2}.

(iii) A W[1]-hardness proof of Stable Barter where the param-
eter is the number of exchanges in a transaction, i.e., it is
unlikely that there is an algorithm for Stable Barter with
time complexity f (k) · nO (1) for any arbitrary function f ,
where k denotes the number of exchanges in a transaction
and n is the total number of agents/vertices in the graph.

(iv) An algorithm of running time ∆O (k) · |A(G) |O (1) to test
whether there is a stable transaction involving k agents,
where ∆ is the maximum degree of the graph and A(G) is
the arc set of G. In other words, Stable Barter is fixed
parameter tractable when parameterized by the number of

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1373

agents participating in the transaction plus the maximum
degree of the graph.

A detailed description of our results and outlines of our approaches
are as follows.
Verification Protocol: We give a dynamic programming algorithm
which tests whether a given transaction is stable in time O (ℓ ·
|A(G) |2). Our algorithm is fast, simple and highly implementable.
Towards designing the algorithm, we prove that instead of testing
the existence of a blocking exchange, it is enough to check for
a blocking closed walk (a relaxed notion of blocking exchange).
This key lemma allows us to design an efficient polynomial-time
algorithm for verification, while exhaustive search would not even
result in a fixed-parameter tractable algorithm with respect to ℓ, as
its time complexity would be O (ℓ · |A(G) |ℓ).
Hardness of Stable Barter: We prove that Stable Barter is NP-
complete even when ℓ = 3, and the in-degree and out-degree of the
graph are each upper bounded by 5. To derive NP-hardness, we give
a polynomial time many-to-one reduction from an NP-complete
problem, 3-Dimensional Matching. Due to paucity of space, the
proof of this result is deferred to the full version of the paper.

Next, we consider the parameterized complexity of the prob-
lem with respect to various natural parameters. The first one is
the number of agents that are not part of the output transaction.
However, we show that it is already NP-hard to test whether there
is a stable transaction involving all the agents. Then, we show that
it is W[1]-hard to decide if a given instance of Stable Barter has
a stable transaction with k exchanges, when parameterized by k .
Towards that, we give a parameter preserving polynomial time
many-to-one reduction from a W[1]-hard problem, Exact Cover.
Algorithm for Stable Barter: The Stable Barter problem is fixed
parameter tractable when parameterized by the sum of the num-
ber of agents participating in the transaction and the maximum
degree of the graph. Specifically, let (G,w, ℓ) be an instance of Sta-
ble Barter. Then, it is possible to determine if there is a stable
transaction C involving k agents in time ∆O (k) |A(G) |O (1) , where
∆ denotes the maximum degree ofG . Our algorithm uses the notion
of n-p-q-separating collections, a derandomization tool used in the
theory of algorithms.

2 PRELIMINARIES

We use N and N0 to denote the sets {1, 2, . . .} and {0, 1, . . .}, respec-
tively. For n ∈ N, we use [n] to denote the set {1, . . . ,n}. For conve-
nience, [0] represents ∅. The codomain of a function f : D → R is
the set { f (x) | x ∈ D}.

Graphs. For a (di)graph G, we use V (G) and A(G) to denote the
sets of vertices and arcs in G, respectively. An arc from u to v in G
is denoted by uv . The in-neighbors and out-neighbors of a vertex v
in G are denoted by N−G (v) and N+G (v), respectively. For v ∈ V (G),
the indegree and outdegree of v , denoted by d−G (v) and d+G (v), are
the cardinalities of N−G (v) and N+G (v), respectively. The maximum
degree ofG , denoted by ∆(G), is equal to maxv ∈V (G) d

−
G (v)+d+G (v).

A walk in G is a sequence of vertices u1u2 . . .uℓ , where uiui+1 ∈
A(G) for all i ∈ [ℓ − 1] and its length, denoted by |W |, is equal to
ℓ − 1. A walk u1u2 . . .uℓ is called a closed walk when u1 = uℓ . If
W is a walk u1u2 . . .uℓ andW ′ is a walk v1v2 . . .vℓ′ with uℓ = v1,

thenWW ′ denotes the walk u1u2 . . .uℓ−1v1v2 . . .vℓ′ . A walk is
called a path when no vertex in the sequence repeats. A cycle is a
closed walk when only the first and and last vertex is same and all
other vertices do not repeat. A cycle of length 3 is called a triangle.
For a collection of cycles C in a graphG , we useV (C) andA(C) to
denote the sets of vertices and arcs present in C , respectively. The
distance from a vertex u to a vertex v , denoted by d (u,v), is the
minimum length of a path from u to v . For X ⊆ V (G), G[X] and
G\X denote the graphs induced onX andV (G)\X , respectively. For
any graph related definition and notation, which is not explicitly
defined here, we refer to [5].

Parameterized Complexity. A parameterization of a problem is the
association of an integer k with each input instance, which results
in a parameterized problem. The central notion of Parameterized
Complexity is fixed-parameter tractability (FPT). A parameterized
problem Π is said to be FPT if there is an algorithm that solves it
in time f (k) · |I |O (1) , where |I | is the size of the input and f is a
function that depends only on k . Finally, we recall that Parame-
terized Complexity also provides tools to refute the existence of
parameterized algorithms for certain problems (under plausible
complexity-theoretic assumption), in which context the notion of
W[1]-hard is a central one. It is widely believed that a problem that
isW[1]-hard is unlikely to be FPT, and we refer the reader to the
book [4] for more information on this notion in particular, and on
Parameterized Complexity in general.

3 VERIFICATION

In this section we prove the following theorem.

Theorem 3.1. Let (G,w, ℓ) be an instance of Stable Barter. Given
a transaction C , it is possible to determine whether or not C is stable

in time O (ℓ · |A(G) |2)

Given an instance (G,w, ℓ) of Stable Barter, a closed walkW =
v1v2 . . .vrv1 inG , and an integer i ∈ [r], we define balanceW (i) =
w (vi−1vi) −w (vivi+1) (here, v0 = vr and vr+1 = v1). For a trans-
action C we call a closed walk, W = v1v2 . . .vrv1, a witness

walk for C , if the length ofW is at most ℓ and for any i ∈ [r],
balanceW (i) > balanceC (vi).

Lemma 3.2. Let (G,w, ℓ) be an instance of Stable Barter and C
denote a transaction. Then, C is not stable if and only if there exists

a witness walk for C .

Proof. The forward direction of the lemma is trivial. Now we
prove the reverse direction. LetW = v1v2 . . .vrv1 denote a witness
walk for C . Using induction on r we prove that C is not stable.
The base case is given by r = 2. ThenW is a cycle v1v2v1. By our
assumption we know that balanceW (v) > balanceC (v) for any
v ∈ {v1,v2}. This implies that W is an exchange that prevents
transaction C from being stable.

Now consider the induction step, that is, 2 < r ≤ ℓ. IfW is a
cycle, then clearly C is not stable. Suppose thatW is a closed walk
that is not a cycle, that is, a vertex appears more than once inW , say
vi = vj . It is well known that given a closed walk, one can extract a
closed subwalk (in fact, a cycle) of length < |W |. Since vi = vj , we
note thatW ′ = vivi+1 . . .vj is a closed subwalk (of length strictly
less than r) ofW . Thus,W ′′ = v1 . . .vivj+1 . . .vrv1 is also a closed

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1374

subwalk ofW of length < r . Note that for any k ∈ {i + 1, . . . , j − 1},
balanceW ′ (k − (i − 1)) = balanceW (k) > balanceC (vk). Moreover,
as vi = vj , the balance of every vertex v ∈ V (W ′′), excluding vi , is
the same inW ′′ andW .

Consider the following four arcsvi−1vi ,vivi+1,vj−1vj andvjvj+1
(here, if i = 1, then v0 = vr and if j = r , then vj+1 = v1).
By assumption, we know that balanceW (i) > balanceC (vi) and
balanceW (j) > balanceC (vj) = balanceC (vi). Thus, from the defi-
nition of balanceW (·), we have

w (vi−1vi) −w (vivi+1) = balanceW (i) > balanceC (vi) (1)
w (vj−1vj) −w (vjvj+1) = balanceW (j) > balanceC (vi) (2)

By adding Equations 1 and 2, we get thatw (vi−1vi)−w (vjvj+1)+
w (vj−1vj)−w (vivi+1) > 2 balanceC (vi). Then, eitherw (vi−1vi)−
w (vjvj+1) > balanceC (vi) orw (vj−1vj)−w (vivi+1) > balanceC (vi).
Using vi and vj interchangeably (since vi = vj), we can deduce
the following relations. Ifw (vj−1vj) −w (vivi+1) > balanceC (vi),
thenW ′ is a closed walk of length strictly less than r such that for
all s ∈ [|W ′ |], balanceW ′ (s) > balanceC (vs). On the other hand,
if w (vi−1vi) − w (vjvj+1) > balanceC (vi), then the closed walk
W ′′ is of length strictly less than r such that for all s ∈ [|W ′′ |],
balanceW ′′ (s) > balanceC (vs). In either case, by the induction
hypothesis, C is not stable. □

Proof of Theorem 3.1. Because of Lemma 3.2, to test whether
C is stable or not, it is enough to check for the existence of a witness
walk for C . In what follows we design a dynamic programming
(DP) algorithmA which outputs a witness walk for C , if one exists.
We use the term solution for a witness walk for C . Algorithm A
starts by guessing an arc v1v2 of a hypothetical solutionW . The
DP table entries of A are indexed with (i,v) where v ∈ V (G) and
i ∈ {2, 3, . . . , ℓ}. The DP table entry T [i,v] stores a walkW ′ =
v1v2 . . .vi+1 of length i with the following properties.

(i) v = vi+1, and
(ii) for all j ∈ [i] \ {1}, balanceW ′ (j) > balanceC (vj)

Among all such walks,T [i,v] stores a walkW ′ such thatw (vivi+1)
is maximized. The entry for T [i,v] can be computed from the set
{T [i − 1,u] | u ∈ N−G (v)} as follows. We go through all the in-
neighborsu ofv with respect to non-increasing order on the weight
of the arc uv and pick the first non-emptyW ′ from {T [i −1,u] | u ∈
N−G (v)} such thatw (xu) −w (uv) > balanceC (u), where xu is the
last arc inW ′. In other words, we consider the set {w (uv) | uv ∈
A(G)}, and go through it in a non-increasing order and pick the first
non-emptyW ′ from {T [i − 1,u] | u ∈ N−G (v)} such that w (xu) −
w (uv) > balanceC (u), where xu is the last arc inW ′. Then we
storeW ′v in T [i,v]. Otherwise we set T [i,v] = ∅. Notice that for
any j ∈ [ℓ], T [j,v1] either contains a closed walk or it is empty. If
there exists j ∈ [ℓ] such that T [j,v1] contains a witness walk for
C , then algorithm A outputs T [j,v1]. Otherwise A outputs No.

Each T [i,v] can be computed in time O (d−G (v)). The number of
choices for guessing an edge v1v2 is |A(G) |. Hence, the run time of
the algorithm is O (|A(G) |

∑
i ∈[ℓ],v ∈V (G) d

−
G (v)) = O (ℓ · |A(G) |2).

Now we prove the correctness of the algorithm. Clearly when
algorithm A outputs a closed walk, it is a witness walk and hence
C is not stable. Now assume that C is not stable. Then there is a
witness walkW forC . Let |W | = r andW = v1v2 . . .vrv1. Consider
the execution of the algorithm when it first guesses the arc v1v2.

Notice that T [r ,v1] contains a walkW ′ = v ′1v
′
2v
′
3 . . .v

′
rv1 (where

v ′1 = v1 and v ′2 = v2) such that the end vertex is v1 and for all
j ∈ [r] \ {1}, balanceW (j) > balanceC (v ′j). Moreover w (v ′rv1) ≥

w (vrv1). Also, sincew (vrv1)−w (v1v2) > balanceC (v1),w (v ′rv1)−
w (v1v2) > balanceC (v1). This implies thatW ′ is witness walk for
C and T [r ,v1] =W ′. Thus, if C is not stable, then the algorithm
A always outputs a witness walk. □

4 HARDNESS

In this section we show that with respect to various natural parame-
ters such as (a) the number of exchanges in a stable transactions (k)
and (b) the number of agents not participating into a stable transac-
tion (h), we do not expect to design an algorithm with running time
either f (k) · nO (1) or д(h) · nO (1) for any computable functions f
and д depending on k and h alone. In fact, parameterized by h, we
do not even expect an algorithm with running time nO (τ (h)) for
any function τ depending on h alone.

The second parameter is motivated by the following situation.
Ideally, we would like to find a stable transaction which involves
all the agents. So, it is natural to ask whether we can find a sta-
ble transaction which involves at least n − h agents, where h, the
parameter, is expected to be small. But, we show that it is indeed
para-NP-hard.

Theorem 4.1. Let (G,w, ℓ) be an instance of Stable Barter. It is

NP-hard to test whether there is a stable transaction involving all the

agents, even when ℓ = 3 and ∆(G) = 6.

Proof Sketch. We give a polynomial time many-to-one reduc-
tion from an NP-complete problem, 3-Dimensional Matching. An
input to this problem consists of a universe A ⊎ B ⊎C and a family
T ⊆ A × B × C , where |A| = |B | = |C | = n. The objective is to
determine whether there exists a subfamilyM of pairwise disjoint
sets of cardinality n. Here we refer to an element S = (a,b, c) ∈ T
as a ‘set’ and use the notation S = {a,b, c}. We construct an in-
stance (G,w, ℓ) of Stable Barter as follows. For u ∈ A ⊎ B ⊎C ,
let f (u) be the number of sets in T which contain u. For every
set S = {a,b, c} ∈ T , we create a triangle aSbScSaS with each arc
being assigned the weight 1. For an element u ∈ A ⊎ B ⊎ C , let
S1, . . . , Sf (u) be the sets in T that contain u. Now we create a selec-
tion gadget using the (already created) vertex set {uS1 , . . . ,uSf (u) }
and some new vertices as shown in Figure 2. The weight of each
arc is also mentioned in Figure 2. Now we set ℓ = 3. This completes
the construction of the the reduced instance. Notice that ∆(G) = 6.

Now we prove the forward direction of the correctness proof.
Let n = |A| = |B | = |C | andM ⊆ T be a matching of cardinality
n. Now we create a transaction C and then prove that it is stable.
For each S = {a,b, c} ∈ M, let CS denotes the cycle aSbScSaS
and let CM = {CS | S ∈ M}. Now for each u ∈ A ⊎ B ⊎ C , we
create the following set of triangles. Let {S1, . . . , Sf (u) } be the sets
in T that contains u . Furthermore, sinceM is a matching of size
n, there is a set Si ∈ {S1, . . . , Sf (u) } such that Si ∈ M. For each
j ∈ [i − 1], let Cj (u) be the cycle uSjx j (u)yj (u)uSj and C ′j (u) be
the cycle aj (u)bj (u)zj (u)aj (u). For each j ∈ [f (u) − 1] \ [i − 1],
let Cj (u) be the cycle uSj+1x j (u)zj (u)uSj+1 and C

′
j (u) be the cycle

aj (u)bj (u)yj (u)a1 (u). Let Cu = {Cj (u),C
′
j (u) | j ∈ [f (u) − 1]}. We

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1375

• • •
uS1 uS2

1 11 1
x1 (u) xf (u)−1 (u)

• •y1 (u) z1 (u)

· · · • • •

• •

uSf (u)−1 uSf (u)

2 1 1 2 2 1 1 2

• • • •
a1 (u) b1 (u) af (u)−1 (u) bf (u)−1 (u)

2 1 2 1
2 1 2 1

1 1

Figure 2: Selection gadget for u ∈ A ⊎ B ⊎C

define C as follows.

C = CM ∪ *
,

⋃
u ∈A⊎B⊎C

Cu+
-
.

C is a transaction involving all agents. No vertex of the form
xi (u) and ai (u) is not part of any blocking cycle, because in both
triangles they are part of, they have the same balance. Any vertex
of the form uSi is part of at most three cycles and all except one of
them are fully inside the section gadget foru. The balances ofuSi in
the triangles fully contained in the selection gadget are 1, while the
balance of the other triangle in which u is part of (uSivSiwSiuSi ,
where (u,v,w) = Si ∈ T) is 0. This implies that uSi prefers the
triangles inside the section gadget, but its neighbors xi−1 (u) and
xi (u) is not part of any blocking cycle. As a result one can conclude
that C is indeed a stable transaction.

Now towards the reverse direction of the correctness proof, no-
tice that for the selection gadget foru ∈ A⊎B⊎C , the set of disjoint
triangles which cover all the private vertices in the gadget (the ver-
tices other than uS1 , . . . ,uSf (u)) will cover all but one vertex from
{uS1 , . . . ,uSf (u) }. These unmatched vertices should be in a triangle
(exchange) created for an element in T , and these triangles will
form a matching in T . □

Now,we consider the parameterized complexity of Stable Barter
when parameterized by the number of exchanges in a transaction.

Theorem 4.2. Stable Barter isW[1]-hard parameterized by k ,
the number of exchanges in a transaction. Here, the length of the cycle

is part of the input.

Here, the number of cycles in a transaction is a parameter, and
thus we use (G,w, ℓ,k) to denote an input instance of Stable
Barter. We prove Theorem 4.2 by giving a polynomial time many
to one reduction from aW[1]-hard problem, Exact Cover [6]. The
problem is defined as follows.

Exact Cover Parameter: k
Input: A universe U , a family F of subsets of U and k ∈ N.
Question: Is there a subfamily F ′ of F , of cardinality at most
k , such that each u ∈ U is contained in exactly one set in F ′?

We first give a construction that creates an instance of Stable
Barter from an instance of Exact Cover.

Construction. Let (U ,F ,k) be an instance of Exact Cover. We
construct an instance (G,w, ℓ,k ′) as follows. LetU = {u1, . . . ,un }
and F = {S1, . . . , Sm }. For each u ∈ U , we construct a vertex u

• •

•

yi xi

ui

1 1
3
1

2 3

Figure 3: Selection gadget for ui . Each dotted arrow repre-

sents a path with every arc weight in it is specified by the

label. The length of the path from yi to xi is 2n−1, while any

other doted arrow represents a path of length n. The arrow

from xi to yi represents an arc with weight 3.

in G. For each Si = {u1, . . . ,ur } ∈ F , we create r = |Si | vertices
{Si (j) | j ∈ [r]} and create a cycle u1Si (1)u2Si (2) . . .urSi (r)u1 with
each arc having weight 4i . Now for each ui ∈ U , we create a
selection gadget for u as follows. Add two new vertices, xi and yi ,
and the following five paths.

(1) A path Pyiui of length n, from yi to ui with each arc having
weight 1.

(2) A path Pxiui of length n, from xi to ui with each arc having
weight 1.

(3) A path Pyixi of length 2n − 1, from yi to xi with each arc
having weight 1.

(4) A path Puiyi of length n, from ui to yi with each arc having
weight 2.

(5) A path Puixi of length n, from ui to xi with each arc having
weight 3.

Now, we add an arc xiyi with weight 3. This completes the con-
struction of the selection gadget for ui (see Figure 3). The selection
gadgets for all ui and uj (i , j) are disjoint. Finally, we add arcs
{yixi+1 | i ∈ [n − 1]} ∪ {ynx1} with each arc having weight 3. That
is, x1y1x2y2 . . . xnynx1 is a cycle with each arc having weight 3.
This completes the construction of G. We set ℓ = 2n, k ′ = k + 1
and (G,w, ℓ,k ′) as the instance of Stable Barter. Clearly, the
reduction can be done in polynomial time.

Observation 1. For a cycle C in G,
∑
v ∈V (C) balanceC (v) = 0.

Next, we prove the correctness of the reduction.

Lemma 4.3. If (U ,F ,k) is a Yes instance of Exact Cover, then
(G,w, ℓ,k) is a Yes instance of Stable Barter.

Proof. Let F ′ be a solution to (U ,F ,k). We give a stable trans-
action C . For each S = {u1, . . . ,ur } ∈ F ′, let CS denote the cycle
u1S (1)u2S (2) . . .urS (r)u1 and let CF ′ = {CS | S ∈ F

′}. We define
C = CF ′ ∪ {x1y1x2y2, . . . ,xnynx1}. Clearly, each cycle in C has
length at most 2n and |C | ≤ k + 1 = k ′.

Now we prove that C is a stable transaction. Towards that, we
first claim that for any i ∈ [n], there is no blocking exchange for C
containing xi . For a contradiction assume that there is a blocking
exchange C for C containing xi . Notice that balanceC (xi) = 0 and
all the arcs incident with xi have weights 1 or 3 (see Figure 3). Then,
in the blocking exchange C , the weight of the incoming arc to xi
should be 3 and the weight of the outgoing arc from xi should be 1.
There is only one outgoing arc of weight 1 incident with xi , which

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1376

is the first arc on the path Pxiui . This implies that C contains the
path Pxiui (because all the internal vertices in Pxiyi have in-degree
1 and out-degree 1). This implies that ui ∈ V (C) and the weight of
the incoming arc of ui in C is 1. Since all the out-going arcs from
ui have weights strictly larger than 1, balanceC (ui) < 0. This is a
contradiction to the assumption that C is a blocking exchange for
C , because balanceC (v) = 0 for all v ∈ V (C).

Now we show that for any i ∈ [n], there is no blocking exchange
forC containingyi . For a contradiction assume that there is a block-
ing exchangeC ′ for C containing yi . Notice that balanceC (yi) = 0
and the arcs incident with yi have weights 1, 2 or 3 (see Figure 3).
Then, in the blocking exchange C ′, the weight of the outgoing arc
from xi should be 1 or 2. There is no out-going arc fromyi of weight
2. This implies that the weight of the outgoing arc fromyi should be
1. There are two outgoing arcs ofyi that have weight 1, the first arcs
on paths Pyixi and Pyiui . We have already shown that xi < V (C ′).
This implies that Pyiui belongs to C ′. Hence ui ∈ V (C) and the
weight of the incoming arc of ui in C ′ is 1. Since all the out-going
arcs from ui have weights strictly larger than 1, balanceC (ui) < 0.
This is a contradiction to the assumption that C ′ is a blocking
exchange for C .

We have shown that there is no blocking exchange containing
a vertex from {xi ,yi | i ∈ [n]}. Any cycle containing an internal
vertex of a path P ∈ {Puixi , Puiyi , Pyiui , Pxiui , Pyixi }, also contains
a vertex from {xi ,yi | i ∈ [n]}. This implies that if there is a blocking
exchange for C , then it should be in the graph induced on X =
U ∪{Si (j) | i ∈ [n], j ∈ [|Si |]}. Suppose there is a blocking exchange
C for C , fully contained in the graph G[X]. Since, for all u ∈ U ,
balanceC (u) = 0, by the definition of blocking exchange, we have
that balanceC (v) > 0 for all v ∈ V (C) ∩ U . Since for all x ∈
{S (i) | S ∈ F , i ∈ [|S |]} the arcs incident with z have equal weights,
we have that balanceC (z) = 0. This implies that for all x ∈ V (C),
balanceC (x) > 0, which is not possible, by Observation 1. □

Lemma 4.4. If (G,w, ℓ,k ′) is a Yes instance of Stable Barter,

then (U ,F ,k) is a Yes instance of Exact Cover.

To prove Lemma 4.4, we first state some observations and prove
some auxiliary lemmas.

Observation 2. Let i ∈ [n] and z ∈ {xi ,yi }. There is only one

cycle of length at most 2n containing z and ui in G . The unique cycle
of length at most 2n containing z and ui is PuizPzui .

Observation 3. For any i ∈ [n], d (ui , z) > n and d (z,ui) > n,
where z ∈ {x j ,yj | j ∈ [n] \ {i}}.

Lemma 4.5. Let C be a stable transaction on (G,w, ℓ,k ′). Then
for all i ∈ [n], ui ∈ V (C).

Proof. For a contradiction assume that there exists i ∈ [n] such
that ui < V (C). Now we claim that C = Puixi Pxiui is a blocking
exchange for C . Notice that the length of C is 2n. Since ui < V (C),
no internal vertex of Puixi or Pxiui is in V (C). This implies that
either xi < V (C), or the outgoing arc of xi in C has weight 3, while
the incoming arc of xi in C has weight from {1, 3}. In either caseC
is a blocking exchange for C because balanceC (xi) = 2. This is a
contradiction to the assumption that C is stable. □

Lemma 4.6. Let C be a stable transaction and ui ∈ V (C) for some

i ∈ [n]. Then the cycle C ∈ C , containing ui will not contain any

vertex from {x j ,yj | j ∈ [n]}.

Proof. By Observation 3, we have that {x j ,yj | j ∈ [n], i ,
j} ∩ V (C) = ∅. Suppose xi ∈ V (C). Then, by Observation 2, C =
Puixi Pxiui . Also, since all the incoming arcs toyi are from the paths
Pxiyi and P (uiyi), we have that yi < V (C). Since yi < V (C), all
the internal vertices of Puiyi and Pyiui do not belong toV (C). Now
consider the cycleC ′ = Puiyi Pyiui . Notice thatV (C)∩V (C ′) = {ui }
and balanceC ′ (ui) = −1, while balanceC (ui) = −2. This implies
that C ′ is a blocking exchange for C , a contradiction.

Suppose yi ∈ V (C). Then, by Observation 2, C = Puiyi Pyiui .
Also, since all the outgoing arcs from xi are from the paths Pxiyi and
P (xiui), we have that xi < V (C). Since xi < V (C) all the internal
vertices of Pxiyi and Pyixi do not belong to V (C). Now consider
the cycle C ′′ = Pxiyi Pyixi . Notice that V (C) ∩V (C ′′) = {yi } and
balanceC ′′ (yi) = 2, while balanceC (yi) = 1. This implies thatC ′′ is
a blocking exchange for C , a contradiction. □

Proof of Lemma 4.4. LetC be a stable transaction on (G,w, ℓ,k ′)
such that |C | ≤ k ′ = k + 1. By Lemmas 4.5 and 4.6, we know that
U ⊆ V (C), and any cycleC which contains u ∈ U , will not contain
any vertex from {xi ,yi | i ∈ [n]}. This also implies that any cycle
C ∈ C , containing a vertex from U , is fully contained in the graph
induced on X = U ∪ {Si (j) | i ∈ [n], j ∈ [|Si |]}. Let C ′ be the set of
cycles from C which contains at least one vertex fromU . We know
that U ⊆ V (C ′) and all cycles in C ′ are fully contained in G[X].
First we claim that |C ′ | ≤ k . Notice that there is at least one cycle
in G \ X , |C | ≤ k + 1 and C is a stable transaction. This implies
that |C ′ | ≤ k .

Nowwe claim that for everyC ∈ C ′ andv ∈ V (C), balanceC (v) =
0. Suppose not. Then by Observation 1, there is a vertex v ∈ V (C)
such that balanceC (v) < 0. Fix a vertex v such that balanceC (v) <
0. Since all the arcs incident with a vertex in {Si (j) | i ∈ [n], j ∈
[|Si |]} have same weight, we have that v ∈ U . Let v = ui . Since all
the arcs incident with v in G[X] have weights from {4j | j ∈ [n]},
balanceC (ui) ≤ −4. LetC ′ = Puixi Pxiui . Notice that balanceC ′ (xi) =
2, balanceC ′ (ui) = −2 and all internal vertices of Puixi and Pxiui
are not in V (C). This implies that C ′ is a blocking exchange for C ,
a contradiction.

Thus, we have shown that C ′ is a collection of at most k cycles
inG[X],U ⊆ V (C ′) and for all v ∈ V (C ′), balanceC ′ (v) = 0. This
implies that for any C ∈ C ′ all the arcs in C have same weight. For
anyC ∈ C ′, if arcs inC has weight 4i then we define a set SC = Si ..
Notice that SC = V (C) ∩U , because the graph induced on arcs of
weight 4i for any i , inG[X] is the cycleu1Si (1)u2Si (2) . . .urSi (r)u1,
where Si = {u1, . . . ,ur }. Hence {SC | C ∈ C ′} is an exact cover of
(U ,F ,k). □

Lemmas 4.3 and 4.4 together prove Theorem 4.2.

5 STABLE BARTER: ALGORITHM

In this section we show that Stable Barter is FPT parameterized
by the maximum degree ∆ of the input graph and the number of
agents participating in the transaction.

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1377

Theorem 5.1. Let (G,w, ℓ) be an instance of Stable Barter. Then,
it is possible to determine whether or not there is a stable transaction

C involving k agents in time O ((e∆(G))k ℓ |A(G) |2 log |A(G) |).

Towards the proof of Theorem 5.1 we first introduce the notion of
n-p-q-lopsided universal family. Given a universeU and an integer ℓ,
we denote all the ℓ-sized subsets of U by

(U
ℓ

)
. We say that a family

F of sets over a universe U of size n is an n-p-q-lopsided universal
family if for every A ∈

(U
p

)
and B ∈

(U \A
q

)
, there is an F ∈ F such

that A ⊆ F and B ∩ F = ∅.

Lemma 5.2 ([7]). There is an algorithm that given n,p,q ∈ N

constructs ann-p-q-lopsided universal family F of cardinality

(p+q
p

)
·

2o (p+q) logn in time |F | · n

We would also need the following simple observation for our
algorithm, whose correctness follows from the definition of stability.

Observation 4. Let (G,w, ℓ) be an instance of Stable Barter

and C be a stable transaction. Consider V (C), the set of agents par-
ticipating in the transaction C . Then, G \V (C) is a graph that only

contains cycles (if any) of length strictly greater than ℓ.

Proof Theorem 5.1. Let (G,w, ℓ) be an instance of the Stable
Barter, with themaximumdegree (indegree+outdegree) ofG being
at most ∆ = ∆(G). Suppose that there exists a stable transaction C
involving k agents, then we know that C is a collection of vertex
disjoint directed cycles each of length at most ℓ such that the total
number of vertices in the cycles is k . Thus, the number of vertices
and arcs that participate in C is exactly k . Let V (C) and A(C)
denote the set of vertices and arcs that participate in the cycles of
C , respectively.

LetC be a hypothetical stable transaction inG involvingk agents.
For our algorithm we will like to have a function f : A(G) → {0, 1}
with the following property:
(P1) f assigns 1 to every arc in A(C); and assigns 0 to every arc

that is not present in A(C) but is incident to a vertex in
V (C).

A function f satisfying the property (P1) with respect to a trans-
action C is called nice with respect to C . Furthermore, a function
f : A(G) → {0, 1} is said to be nice if f satisfies the property (P1)
for some stable transaction in G involving k agents.

Given a function f : A(G) → {0, 1} our algorithm, A, works as
follows.
Step 1: Let A1 denote the set of arcs in G that have been assigned 1

by f . Let G1 denote the directed graph with the vertex set
V (G) and the arc set A1.

Step 2: First we clean the graph G1 by removing every connected
component inG1 that is not a directed cycle. After the clean-
ing process we know that G1 is a collection of cycles. Let
C⋆ be the set of cycles of length at most ℓ in G1. Next, we
check whether or not |V (C⋆) | = k , if no, then return that
f is bad. Else, using Theorem 3.1 we check whether or not
C⋆ is stable in time O (ℓ · |A(G1) |2). If Theorem 3.1 returns
that C⋆ is stable, then A returns C⋆; else A returns that f
is bad.

To show the correctness of our algorithm we need to run our
algorithm with a nice function f . Towards this end, we first show

that there exists a family of functions, H = { f : A(G) → {0, 1}}
such that if G contains a stable transaction, C , of size k , then there
exists a function f ∈ H such that f is nice with respect to C . We
will call the family of functionsH , a nice family.

Let the arc set A(G) of the graph G be denoted by {1, 2, . . . ,m}.
We will use Lemma 5.2 in our construction of a nice family. By
applying Lemma 5.2 to the universe U = {1, 2, . . . ,m}, p = k and
q = (∆ − 1)k , we obtain anm-p-q-lopsided-universal family F of
size

(p+q
p

)
· 2o (p+q) · logm in time O (

(p+q
p

)
· 2o (p+q) ·m logm). For

every set X ∈ F , we define fX (the characteristic function of X) as
follows: fX (x) = 1 if x ∈ X and fX (x) = 0 otherwise. Finally, we
defineH := { fX | X ∈ F }.

Next, we show thatH is a nice family. Suppose G has a stable
transaction C involving k agents. Let A(C) denotes the set of arcs
that are present in the cycles in C and let B (C) denote the set
of arcs that are not present in A(C) but are incident to a vertex
in V (C). Clearly, |A(C) | = k and |B (C) | ≤ (∆ − 1)k , since every
vertex in V (G) has its degree upper bounded by ∆. Since F is a
m-k-(∆−1)k-lopsided-universal family, we know that there exists a
set X ∈ F such thatA(C) ⊆ X and B (C) ∩X = ∅. By construction,
fX is nice with respect to C . Hence,H is a nice family.

Finally, to test whether there exists a stable transaction C in
(G,w, ℓ) involving k agents, we do as follows. For every fX ∈ H ,
we run the algorithm A. If for any function fX ∈ H , A returns a
stable transaction then we return the same. Else, we know that for
every function fX ∈ H , A returns fX is bad. In this case we return
that G does not have a stable transaction of size k .

To argue the correctness observe that ifG has a stable transaction
C involving k agents, then there exists a nice function f with
respect to C . Let us consider the iteration of A when run with
f . Observe that in G1 every exchange (cycle) C of C occurs as
a connected component such that the arc set of this connected
component is precisely the arc set ofC . Indeed, since f is nice with
respect to C , every arc that is incident to a vertex inC and does not
belong to C has been assigned 0. Furthermore, by Observation 4
we know that ifW = V (C), then G \W has no cycle of length at
most ℓ; soG1 \W is a collection of directed cycles. In particular, the
cleaning operation to obtain G1 (Step 2) preserves all the directed
cycles in C . In other words, the only connected components of G1
are the cycles in C itself and some cycles of length greater than ℓ.
Hence, we can conclude that our algorithm A will correctly output
C . The correctness of last line follows from Theorem 3.1.

Finally, we prove the running time of the algorithm. Quite clearly,
it is upper bounded by the size of H and the running time of A.
Thus, we have

|H | × O (ℓ · |A(G1) |
2) ≤ O (

(
(∆ − 1)k + k

k

)
2o (∆k) · ℓ ·m2 logm)

≤ O (

(
e∆k

k

)k
2o (∆k)ℓ ·m2 logm)

= O ((e∆)k 2o (∆k)ℓ ·m2 logm)

In the second inequality, we have used the well known inequality
that

(n
k

)
≤

(
ne
k

)k
, where e is the base of the natural logarithm.

This concludes the proof. □

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1378

REFERENCES

[1] D. J. Abraham, A. Blum, and T. Sandholm. 2007. Clearing algorithms for barter
exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the

8th ACM conference on Electronic Commerce (EC). 295–304.
[2] Péter Biró. 2007. Stable exchange of indivisible goods with restrictions. In Pro-

ceedings of the 5th Japanese-Hungarian Symposium. Citeseer, 97–105.
[3] F. Brandt, V. Conitzer, U. Endrisss, J. Lang, and A. D. Procaccia (Eds.). 2016.

Handbook of Computational Social Choice. Cambridge Univ. Press.
[4] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.

Pilipczuk, and S. Saurabh. 2015. Parameterized Algorithms. Springer.
[5] R. Diestel. 2012. Graph Theory, 4th Edition. Graduate texts inmathematics, Vol. 173.

Springer.
[6] Rodney G. Downey and Michael R. Fellows. 1995. Fixed-Parameter Tractability

and Completeness II: On Completeness for W[1]. Theor. Comput. Sci. 141, 1&2
(1995), 109–131. https://doi.org/10.1016/0304-3975(94)00097-3

[7] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016.
Efficient Computation of Representative Families with Applications in Pa-
rameterized and Exact Algorithms. J. ACM 63, 4 (2016), 29:1–29:60. https:
//doi.org/10.1145/2886094

[8] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.
The American Mathematical Monthly 69, 1 (1962), 9–15.

[9] Dan Gusfield and Robert W. Irving. 1989. The Stable marriage problem - structure

and algorithms. MIT Press.

[10] A. Igarashi, R. Bredereck, and E. Elkind. 2017. On Parameterized Complexity
of Group Activity Selection Problems on Social Networks. In In Proceedings

AAMAS’17.
[11] A. Igarashi and E. Elkind. 2016. Hedonic games with graph-restricted communi-

cation. In Proceedings of AAMAS’16. 242–250.
[12] A. Igarashi, E. Elkind, and D. Peters. 2017. Group activity selection on social

network. In Proceedings of AAAI’17.
[13] Intervac. [n. d.]. www.intervac-homeexchange.com.
[14] R.W. Irving, K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita. 2002. Hard

Variants of StableMarriage. Theoretical Computer Science 276, 1-2 (2002), 261–279.
[15] Robert W. Irving. 1994. Stable marriage and indifference. Discrete Applied Mathe-

matics 48, 3 (1994), 261 – 272. https://doi.org/10.1016/0166-218X(92)00179-P
[16] R. W. Irving. 2007. The cycle roommates problem: a hard case of kidney exchange.

Inform. Process. Lett. 103, 1 (2007), 1–4.
[17] Donald Ervin Knuth. 1997. Stable marriage and its relation to other combinatorial

problems : an introduction to the mathematical analysis of algorithms. Providence,
R.I. American Mathematical Society.

[18] David F. Manlove. 2013. Algorithmics of Matching Under Preferences. Series on
Theoretical Computer Science, Vol. 2. WorldScientific.

[19] NationalOddShoeExchange. [n. d.]. http://www.oddshoe.org/.
[20] ReadItSwapIt. [n. d.]. http://www.readitswapit.co.uk/TheLibrary.aspx. .
[21] Tayfun Sonmez. [n. d.]. Strategy-proofness and Essentially Single-valued Cores.

Econometrica 67, 3 ([n. d.]), 677–689. https://doi.org/10.1111/1468-0262.00044

Session 36: Coalition Formation AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1379

https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1145/2886094
https://doi.org/10.1145/2886094
https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1111/1468-0262.00044

	Abstract
	1 Introduction
	2 Preliminaries
	3 Verification
	4 Hardness
	5 Stable Barter: Algorithm
	References

