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ABSTRACT
Opportunism is a behavior that takes advantage of knowledge

asymmetry and results in promoting agents’ own value and demot-

ing other agents’ value. It is important to eliminate such a selfish

behavior in multi-agent systems, as it has undesirable results for

the participating agents. However, as the context we study here is

multi-agent systems, system designers actually might not be aware

of the value system for each agent thus they have no idea whether

an agent will perform opportunistic behavior. Given this fact, this

paper designs an epistemic mechanism to eliminate opportunism

given a set of possible value systems for the participating agents:

an agent’s knowledge gets updated so that the other agent is not

able to perform opportunistic behavior, and there exists a balance

between eliminating opportunism and respecting agents’ privacy.
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1 INTRODUCTION
Consider a scenario: A seller sells a cup to a buyer and it is known

by the seller beforehand that the cup is actually broken. The buyer

buys the cup without knowing it is broken. The seller exploits the

knowledge asymmetry about the transaction to achieve his own

gain at the expense of the buyer. Such behavior which is inten-

tionally performed by the seller was named opportunistic behavior

(or opportunism) by economist Williamson [15]. Opportunistic be-

havior is a behavior that takes advantage of relevant knowledge

asymmetry and results in promoting an agent’s own value and

demoting another agent’s value. On the one hand, it is common

in distributed multi-agent systems that agents possess different

knowledge, which enables the performance of opportunism; on

the other hand, opportunistic behavior has undesirable results for

other agents who participate in the system. Thus, we want to de-

sign mechanisms to eliminate opportunism. This paper investigates

an epistemic mechanism, which allows us to eliminate the per-

formance of opportunism in the system by revealing updates. In

papers [6] [7], opportunism is monitored and predicted given a

value system for an agent, i.e., an agent performed and will perform
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opportunistic behavior if he has the value system as we assume.

However, as the context we study here is multi-agent systems, sys-

tem designers might not be aware of the value system for each

agent before designing any mechanism to eliminate opportunism

in the system. The goal of this paper is thus to design mechanisms

to eliminate opportunism given a set of possible value systems

of agents, which contains the value systems with opportunistic

propensity.

In mechanism design, a mechanism is an institute, procedure,

or game for determining outcomes [8] [11]. Differently, we in this

paper consider an operation to the system as an indirect mecha-

nism: a revealing update that can eliminate opportunism through

updating the knowledge of the agent. More precisely, we remove

the precondition of opportunism (knowledge asymmetry) by re-

vealing knowledge to agents such that agents will not be able to

perform opportunistic behavior. Since agents’ value systems are

unknown to the system designer, there might exist privacy norms

that prevent agents from having the knowledge for eliminating

opportunism. We prove formal properties that allow us to check

whether we can eliminate opportunism and respect agents’ privacy

as well.

2 FRAMEWORK
In this section, we introduce the model we use for multi-agent

systems as in [7]. A transition system consists of agents, states of

the world, actions, agents’ epistemic accessibility relations, tran-

sitions which go from one state to another by an action, and a

valuation function that returns for each state the properties of the

environment.

Definition 2.1. Let Φ = {p,q, ...} be a finite set of atomic propo-

sitional variables. A transition system over Φ is a tuple

T = (Aдt , S,Act ,π ,K,R, s0)

where

• Aдt = {1, ...,n} is a finite set of agents;
• S is a finite set of states;

• Act is a finite set of actions;
• π : S → 2

Φ
is a valuation function mapping a state to a set

of propositions that are considered to hold in that state;

• K : Aдt → 2
S×S

is a function mapping an agent in Aдt to a

reflexive, transitive and symmetric binary relation between

states; that is, given an agent i , for all s ∈ S we have sK(i)s;
for all s, t ,u ∈ S sK(i)t and tK(i)u imply that sK(i)u; and
for all s, t ∈ S sK(i)t implies tK(i)s; sK(i)s ′ is interpreted
as state s ′ is epistemically accessible from state s for agent
i; we also use K(i, s) = {s ′ | sK(i)s ′} to denote the set of

agent i’s epistemically accessible states from state s;
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• R ⊆ S × Act × S is a relation between states with actions,

which we refer to as the transition relation labeled with an

action; we require that for all s ∈ S there exists an action

a ∈ Act and one state s ′ ∈ S such that (s,a, s ′) ∈ R, and we

ensure this by including a stuttering action sta that does not

change the state, that is, (s, sta, s) ∈ R; we restrict actions

to be deterministic, that is, if (s,a, s ′) ∈ R and (s,a, s ′′) ∈ R,

then s ′ = s ′′; since actions are deterministic, sometimes we

denote state s ′ as s ⟨a⟩ for which it holds that (s,a, s ⟨a⟩) ∈ R;

we use Ac(s) = {a | ∃s ′ ∈ S : (s,a, s ′) ∈ R} to denote the

available actions in state s;
• s0 ∈ S denotes the initial state.

In the interest of simplicity, we only consider one action that

takes place at a transition, thus the model is not concurrent.

Now we define the language we use. The language LKA, propo-

sitional logic extended with knowledge and action modalities, is

generated by the following grammar:

φ ::= p | ¬φ | φ1 ∨ φ2 | Kiφ | ⟨a⟩φ (i ∈ Aдt ,a ∈ Act)

The semantics of LKA are defined with respect to the satisfaction

relation |=. Given a transition system T and a state s in T , a formula

φ of the language can be evaluated as follows:

• T , s |= p iff p ∈ π (s);
• T , s |= ¬φ iff T , s ̸ |= φ;
• T , s |= φ1 ∨ φ2 iff T , s |= φ1 or T , s � φ2;
• T , s |= Kiφ iff for all t such that sK(i)t , T , t |= φ;
• T , s |= ⟨a⟩φ iff there exists s ′ such that (s,a, s ′) ∈ R and

T , s ′ |= φ;

Other classical logic connectives (e.g.,“∧”, “→”) are assumed to be

defined as abbreviations by using ¬ and ∨ in the conventional

manner. As standard, we write T |= φ if T , s |= φ for all s ∈ S , and
|= φ if T |= φ for all multi-agent systems T . Notice that we can

also interpret ⟨a⟩φ as the ability to achieve φ by action a. Hence,
we write ¬⟨a⟩φ to mean not being able to achieve φ by action a. In
addition of the K-relation being S5, we also place restrictions of

no-forgetting and no-learning based on Moore’s work [9] [10] to

simplify our model. It is specified as follows: given a state s in S , if
there exists s ′ such that s ⟨a⟩K(i)s ′ holds, then there is a s ′′ such
that sK(i)s ′′ and s ′ = s ′′⟨a⟩ hold; if there exists s ′ and s ′′ such
that sK(i)s ′ and s ′′ = s ′⟨a⟩ hold, then s ⟨a⟩K(i)s ′′. Following this
restriction, we have

|= Ki (⟨a⟩φ) ↔ ⟨a⟩Kiφ.

In other words, if an agent has knowledge about the effect of an

action, he will not forget about it after performing the action; and

the agent will not gain extra knowledge about the effect of an action

after performing the action.

One important feature of opportunism is that it promotes agents’

own value but demotes others’ value. In this section we will specify

agents’ value system, as it is the standard of agents’ consideration

about the performance of opportunistic behavior. A value can be

seen as an abstract standard according to which agents have their

preferences over states. For instance, if we have a value denoting

equality, we prefer the states where equal sharing or equal reward-

ing hold. Related work about values can be found in [12] and [13].

Because of the abstract feature of a value, it is usually interpreted

in more detail as a state property, which is represented as a LKA

formula. The most basic value we can construct is simply a propo-

sition p, which represents the value of achieving p. More complex

values can be interpreted such as Kφ, meaning that it is valuable to

achieve knowledge. More examples can be found in [7].

We argue that agents can always compare any two values, as

we can combine two equivalent values as one value. Thus, we then

define a value system as a total order (representing the degree of

importance) over a set of values, which means that agents can

always compare any two values. In other words, every element in

the set of values is comparable to each other and none of them is

logically equivalent to each other. One can see similar approaches

in [3] for the definition of preferences and [1] for the definition of

goals.

Definition 2.2 (Value System). A value system V = (Val,≺) is a

tuple consisting of a finite set Val = {v, ...,v ′} ⊆ LKA of values

together with a strict total ordering ≺ over Val. When v ≺ v ′, we
say that value v ′ is more important than value v as interpreted by

value system V . A value system profile (V1,V2, ...,VAдt ) is a tuple
containing a value system Vi for each agent i .

We also use a natural number indexing notation to extract the

value of a value system, so if we have the orderingv ≺ v ′ ≺ . . . for
a value system V , then V [0] = v , V [1] = v ′, and so on. Note that

different agents may or may not have different value systems. We

now define a multi-agent system as a transition system together

with agents’ value systems. Formally, a multi-agent systemM is

an (n + 1)-tuple:

M = (T ,V1, ...,Vn ),

where T is a transition system, and for each agent i in T , Vi is a
value system.

We now define agents’ preferences over two states in terms of

values, which will be used for modeling agents’ decision making

and the effect of opportunism. We first define how a value gets

promoted and demoted along a state transition:

Definition 2.3 (Value Promotion and Demotion). Given a value v
and an action a, we define the following shorthand formulas:

promoted(v,a) := ¬v ∧ ⟨a⟩v

demoted(v,a) := v ∧ ⟨a⟩¬v .

We say that a valuev is promoted along the state transition (s,a, s ′)
if and only if s |= promoted(v,a), and we say that v is demoted

along this transition if and only if s |= demoted(v,a).

An agent’s value v gets promoted along the state transition

(s,a, s ′) if and only if v doesn’t hold in state s and holds in state s ′;
an agent’s value v gets demoted along the state transition (s,a, s ′)
if and only if v holds in state s and doesn’t hold in state s ′.

We secondly define a function Mpreferred(i, s, s′) that maps a

value system and two different states to the most preferred value

that changes when going from state s to s ′ for agent i . In other

words, it returns the value that the agent most cares about, i.e.

the most important change between these states for the agent,

and all the values that are more important than that value remain

unchanged from state s to state s ′.
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Definition 2.4 (Most Preferred Value). Given a multi-agent system

M, an agent i and two states s and s ′, function Mpreferred : Aдt ×
S × S → Val is defined as follows:

Mpreferred(i, s, s′)M :=Vi [min{j | ∀k > j :

M, s |= Vi [k] ⇔ M, s ′ |= Vi [k]}.]

We write Mpreferred(i, s, s′) for short if M is clear from context.

For example, given agent i’s value system u ≺ v ≺ w , if formula

u,¬v and ¬w hold in state s and formulau,v, and ¬w hold in state

s ′, function Mpreferred(i, s, s′) will return v . This is because value
w remains the same in both states and value v changes from ¬v to

v . With this function we can define agents’ preferences over two

states. We use a binary relation “-” over states to represent agents’

preferences.

Definition 2.5 (State Preferences). Given a multi-agent systemM,

an agent i and two states s and s ′, agent i weakly prefers state s ′ to

state s , denoted as s -M
i s ′, iff

M, s |= Mpreferred(i, s, s′) ⇒ M, s ′ |= Mpreferred(i, s, s′) .

We write s -i s
′
for short if M is clear from context. As standard,

we also define s ∼i s
′
to mean s -i s

′
and s ′ -i s , and s ≺i s

′
to

mean s -i s
′
and s �i s

′
. Moreover, we write S -i S

′
for sets of

states S and S ′ whenever ∀s ∈ S,∀s ′ ∈ S ′ : s - s ′.

The intuitive meaning is that agent i weakly prefers state s ′ to s
if and only if the agent’s most preferred value does not get demoted

(either stays the same or gets promoted). Using the same example

for the illustration of function Mpreferred, given agent i’s value
system u ≺ v ≺ w , if formula u,¬v, and ¬w hold in state s and
formula u,v, and ¬w hold in state s ′, what the agent cares about
is value v . Since it doesn’t hold in state s but holds in state s ′, agent
i will prefer state s ′ to state s . Clearly there is a correspondence

between state preferences and value promotion or demotion by an

action: given a modelM with agent i , state s and available action

a in s , and let v∗ = Mpreferred(i, s, s⟨a⟩),

s ≺i s ⟨a⟩ ⇔ M, s |= promoted(v∗,a)

s ≻i s ⟨a⟩ ⇔ M, s |= demoted(v∗,a)

s ∼i s ⟨a⟩ ⇔ M, s |= ¬(demoted(v∗,a) ∨ promoted(v∗,a)).

One can refer to [7] for the proof. Moreover, the -i relation is

reflexive, transitive and total, which have been proved in [7]. It is

possible that agents have different preferences over states, since

they might not share the same value system.

Sincewe have already defined values and value systems as agents’

basis for decision making, we can start to apply decision theory to

reason about agents’ decision-making. Given a state in the system,

there are several actions available to an agent, and he has to choose

one in order to go to the next state. Before choosing an action to

perform, an agent must think about which actions are available

to him. We have already seen that, for a given state s , the set of
available actions is Ac(s). However, since an agent only has partial

knowledge about the state, we argue that the actions that an agent

knows to be available is only part of the actions that are physically

available to him in a state. For example, an agent can call a person if

he knows the phone number of the person; without this knowledge,

he is not able to do it, even though he is holding a phone. Recall that

the set of states that agent i considers as being the actual state in
state s is the set K(i, s). Given an agent’s partial knowledge about

a state as a precondition, he knows what actions he can perform in

that state, which is the intersection of the sets of actions physically

available in the states in this knowledge set.

Definition 2.6 (Subjectively Available Actions). Given an agent i
and a state s , agent i’s subjectively available actions are the set:

Ac(i, s) =
⋂

s ′∈K(i,s)

Ac(s ′).

Because a stuttering action sta is always included in Ac(s) for
any state s , we have that sta ∈ Ac(i, s) for any agent i . When

only sta is in Ac(i, s), we say that the agent cannot do anything

because of his limited knowledge. Obviously an agent’s subjectively

available actions are always part of his physically available actions

(Ac(i, s) ⊆ Ac(s)). Based on agents’ rationality assumptions, he will

choose an action with his partial knowledge of the current state and

the next state. Given a state s and an action a, an agent considers

the next possible states as the set K(i, s ⟨a⟩). For another action a′,
the set of possible states is K(i, s ⟨a′⟩). The question now becomes:

How do we compare these two possible set of states? Clearly, when

we have K(i, s ⟨a⟩) ≺i K(i, s ⟨a′⟩), meaning that all alternatives of

performing action a′ are more desirable than all alternatives of

choosing action a, it is always better to choose action a′. However,
in some cases it might be that some alternatives of action a are

better than some alternatives of action a′ and vice-versa. In this

case, an agent cannot decisively conclude which of the actions is

optimal, which implies that the preferences over actions (namely

sets of states) is not total. This leads us to the following definition:

Definition 2.7 (Rational Alternatives). Given a state s , an agent i
and two actions a,a′ ∈ Ac(i, s), we say that action a is dominated by

action a′ for agent i in state s iff K(i, s ⟨a⟩) ≺i K(i, s ⟨a′⟩). The set
of rational alternatives for agent i in state s is given by the function

a∗i : S → 2
Act

, which is defined as follows:

a∗i (s) = {a ∈ Ac(i, s) | ¬∃a′ ∈ Ac(i, s) : a , a′ and

a′ dominates a for agent i in state s}.

The set a∗i (s) are all the actions for agent i in state s which

are available to him and are not dominated by another available

action. In other words, it contains all the actions which are rational

alternatives for agent i . Since it is always the case that Ac(i, s)
is non-empty because of the stuttering action sta, and since it is

always the case that there is one action which is non-dominated by

another action, we conclude that a∗i (s) is non-empty. We can see

that the actions that are available to an agent not only depend on

the physical state, but also depend on his knowledge about the state

and the next state. The more he knows, the better he can judge what

his rational alternative is. In other words, an agent tries to make a

best choice based on his value system and incomplete knowledge.

We will illustrate the above definitions and our approach through

the following example.

Example 2.8. Assume that we have a transition system M for

agent i . State s and s ′ are agent i’s epistemic alternatives, that is,

K(i, s) = {s, s ′}. Now consider the actions that are physically avail-

able and subjectively available to agent i . Aci (s) = {a1,a2,a3, sta},
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Aci (s
′) = {a1,a2, sta}. Because Ac(i, s) = Aci (s) ∩ Aci (s

′), agent i
knows that only sta, a1 and a2 are available to him in state s .

Next we talk about agent i’s rational alternatives in state s . Given
agent i’s value system Vi = (u ≺ v ≺ w), and the following valua-

tion:u, ¬v and ¬w hold inK(i, s), ¬u, ¬v andw hold inK(i, s ⟨a1⟩),
and u, v and ¬w hold in K(i, s ⟨a2⟩), we then have the following

state preferences: K(i, s) ≺ K(i, s ⟨a1⟩), K(i, s) ≺ K(i, s ⟨a2⟩) and
K(i, s ⟨a2⟩) ≺ K(i, s ⟨a1⟩), meaning that action a2 and the stuttering
action sta are dominated by action a1. Thus, we have a

∗
i (s) = {a1}.

3 DEFINING OPPORTUNISTIC PROPENSITY
An agent will perform opportunistic behavior when he has the

ability and the desire of doing it, which is called opportunistic

propensity in [7]. By intuition, we can eliminate opportunism in

the system by removing the ability or the desire. In this section, we

will provide the definition of opportunistic propensity, serving as a

prerequisite of the mechanism design for eliminating opportunism.

Opportunism is a selfish behavior that takes advantage of relevant

knowledge asymmetry and results in promoting one agent’s own

value and demoting another agent’s value. It means that it is per-

formed with the precondition of relevant knowledge asymmetry

and the effect of value opposition. Firstly, knowledge asymmetry is

defined as follows.

Definition 3.1 (Knowledge Asymmetry). Given two agents i and
j , and a formula ϕ, knowledge asymmetry about ϕ between agent i
and j is the abbreviation:

Knowasym(i, j,ϕ) := Kiϕ ∧ ¬Kjϕ ∧ Ki (¬Kjϕ).

It holds in a state where agent i knows ϕ while agent j does not
know ϕ and this is also known by agent i . It can be the other way

around for agent i and agent j. But we limit the definition to one

case and omit the opposite case for simplicity. Now we can define

opportunism as follows:

Definition 3.2 (Opportunism Propensity). Given two agents i and j ,
the assertion Opportunism(i, j,a) that action a performed by agent

i is opportunistic behavior is defined as:

Opportunism(i, j,a) :=

Knowasym(i, j, promoted(v∗,a) ∧ demoted(w∗,a))

where v∗ = Mpreferred(i, s, s⟨a⟩) and w∗ = Mpreferred(j, s, s⟨a⟩).

We use OPP(i, j, s) to denote the set of opportunistic behavior that

can be performed by agent i to agent j in state s . That is,

OPP(i, j, s) = {a ∈ Ac(i, s) | M, s |= Opportunism(i, j,a)}.

This definition shows that if the precondition, Knowasym, is

satisfied in a given state then the performance of action a will be

opportunistic behavior. As the definition is given with the value

systems of agent i and agent j, a value system profile (Vi ,Vj ) cor-
responds to one type of opportunistic behavior. The asymmetric

knowledge that agent i has is about the change of the truth value

of v∗ and w∗
along the transition by action a, where v∗ and w∗

are the propositions that agent i and agent j most prefer along

the transition respectively. It follows that agent j is partially or

completely not aware of it. Definition 3.2 follows our definition

of opportunism for reasoning about opportunistic propensity of

an agent in a state. As is stressed in [5], opportunistic behavior is

performed by intent rather than by accident. In this paper, instead

of explicitly modeling intention, we interpret it from agents’ ratio-

nality that they always intentionally promote their own values. We

can derive a proposition from the definition, which is the effect of

opportunism.

Proposition 3.3 (Value Promotion and Demotion). Given a
multi-agent system M and an opportunistic behavior a performed
by agent i to agent j in state s , action a will promote agent i’s value
but demote agent j’s value, which can be formalized as

M, s |= Opportunism(i, j,a) implies s ≺i s ⟨a⟩ and s ≻j s ⟨a⟩.

Proof. From M, s |= Opportunism(i, j,a) we have: M, s |=

Ki (promoted(v∗,a) ∧ demoted(w∗,a)). And thus, since all knowl-

edge is true, we have thatM, s |= promoted(v∗,a)∧demoted(w∗,a).
Since v∗ = Mpreferred(i, s, s⟨a⟩) and w∗ = Mpreferred(j, s, s⟨a⟩),

using Definition 2.5, we can conclude s ≺i s ⟨a⟩ and s ≻j s ⟨a⟩. �

Example 3.4. Figure 1 shows the example of selling a broken

cup: The action selling a cup is denoted as sell and we use two

value systems Vs and Vb for the seller and the buyer respectively.

State s1 is the seller’s epistemic alternative, while state s1 and s2
are the buyer’s epistemic alternatives. We also use a dashed circle

to represent the buyer’s knowledge K(b, s1) (not the seller’s). In
this example, K(s, s1) ⊂ K(b, s1). Moreover,

hm = Mpreferred(s, s1, s1⟨sell⟩),

¬hb = Mpreferred(b, s1, s1⟨sell⟩),

meaning that the seller only cares if he gets money from the transi-

tion, while the buyer only cares about if he doesn’t have a broken

cup from the transition. Note that having a broken cup (hb) is not
the same as the cup is broken. We also have

M, s1 |= Ks (promoted(hm, sell) ∧ demoted(¬hb, sell)),

meaning that the seller knows the transition will promote his own

value while demote the buyer’s value in state s1. For the buyer,

action sell is available in both state s1 and s2. However, hb doesn’t

hold in both s1⟨sell⟩ and s2⟨sell⟩, so he doesn’t know whether he

has a broken cup or not after action sell is performed. Therefore,

there is knowledge asymmetry between the seller and the buyer

about the value changes from s1 to s1⟨sell⟩. Action sell is potentially
opportunistic behavior in state s1.

Figure 1: Selling a broken cup
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4 ELIMINATING OPPORTUNISM USING AN
EPISTEMIC APPROACH

One possible way to eliminate opportunism in the system is to

remove the possibility of being opportunistic for agents. Since the

precondition of opportunistic behavior is knowledge asymmetry

in all states, we can simply prevent the satisfaction of knowledge

asymmetry so that it is impossible for agents to perform oppor-

tunistic behavior. If we are interested in how the system will behave

after updating agents’ knowledge, we enter the field of dynamic

epistemic logic. Dynamic Epistemic Logic is the study of modal

logics of model change by epistemic and doxastic consequences

of actions such as public announcements and epistemic actions

[2][14]. Opportunism can be eliminated through revealing certain

information to the agent involved, such that knowledge asymmetry

is removed. This requires the system or someone else in the system

to be aware of the information that needs to be revealed. Since the

system is not aware of the value system of each agent but has a

finite set of possible value systems for each agent, we argue that

it is still practical for the system to reveal the important facts to

the agent involved. For example, given two possible value systems

of the buyer, namely one that cares about the usage of the cup

and the other one that cares about the appearance of the cup, the

system can make a 3D scan of the cup and then send it to the buyer,

so that the buyer gets valuable information about the transaction

to decide whether to buy the cup. The event or the procedure is

called a revealing update that is performed by the system and re-

sults in updating agents’ knowledge, and we want to study how

to eliminate opportunism by revealing updates in this section. In

this paper, we denote a revealing update as reveal(φ) that reveals
whether or not formula φ is true. Given a multi-agent system, our

logical language L
KA[] is an extension of LKA as follows:

φ ::= p | ¬φ | φ1∨φ2 | Kiφ | ⟨a⟩φ | [reveal(φ)i ]ψ (i ∈ Aдt ,a ∈ Act)

As is standard, formulas with revealing updates are evaluated as

follows: given a multi-agent system M and a state s in M,

• M, s |= [reveal(φ)i ]ψ iff M| reveal(φ)i , s |= ψ

where

M| reveal(φ)i = (Aдt , S,Act ,π ,K ′,R, s0,V1, ...,Vn )

and K ′
is defined as follows:

sK ′(i)s ′ iff (sK(i)s ′ and (M, s |= φ iff M, s ′ |= φ)).

The above semantics shows that, after the system performs the

revealing update reveal(φ) to agent i , agent i’s knowledge about
φ gets updated, in the way that the access regarding to the indis-

tinguishability of the truth value of φ is removed while the rest

of the model remains unchanged. In other words, if φ is true in

state s , the epistemic access of agent i that connects state s with
the states where φ is false will be removed; if φ is false in state s ,
the epistemic access of agent i that connects state s with the states

where φ is true will be removed. Notice that, after performing a re-

vealing update, it is always possible to make the system consistent

with our no-learning and no-forgetting restriction by repeatedly

removing corresponding epistemic access. As this part of making

consistent is not what we want to study in this paper, we skip its

formal definition. We can also see update reveal(φ) as a process

of monitoring performed by the system for the given agent, dis-

tinguishing states which satisfy φ from those which do not satisfy

φ. Since this procedure returns a value from the set {φ,¬φ}, in
the rest of the paper we always discuss two cases where φ holds

and doesn’t hold in the actual state for any definition and proof.

We have the following validity, given a multi-agent system M, a

revealing update reveal(φ)i ,

M |= φ → [reveal(φ)i ]Kiφ,

which means that if φ holds then agent i knows φ after φ is revealed.

Further, if the system reveals something to an agent that he has

already knew, the model will remain the same. We formalize it as

if M |= Kiφ, then M| reveal(φ)i =M .

This is because the revealing update will not cause any epistemic

access removal from the model.

In this paper, we want to investigate how to eliminate the per-

formance of opportunism, typically through removing knowledge

asymmetry in the system. In order to do that, we firstly introduce

the notion Eliminating Opportunism by a Revealing Update: we say
that a revealing update can eliminate opportunism if and only if

the revealing update disables its performance, namely precondition

knowledge asymmetry is removed by the revealing update. Formally,

Definition 4.1 (Eliminating Opportunism by a revealing update).
Given a multi-agent system M, an opportunistic behavior a per-

formed by agent i to agent j in state s , and a revealing update

reveal(ξ )j , we say the revealing update can eliminate opportunistic

behavior a iff

M, s |= [reveal(ξ )j ]

¬Knowasym(i, j, promoted(v∗,a) ∧ demoted(w∗,a)),

where v∗ = Mpreferred(i, s, s⟨a⟩) andw∗ = Mpreferred(j, s, s⟨a⟩).

This definition shows how a revealing update eliminates oppor-

tunistic behavior: revealing update reveal(ξ )j disables the perfor-
mance of opportunistic behavior a by making knowledge asymme-

try false in the new system. Notice that based on the semantics of

our framework, action a, which was opportunistic, is still not re-

moved. However, since there is no knowledge asymmetry between

agent i and agent j, agent j can prevent agent i from performing

opportunistic behavior a, or can still accept it. In the latter case,

action a is no longer opportunistic as knowledge asymmetry is

false. For instance, sell and buy are synchronized to be one action.

After the system reveals to the buyer that the cup is broken, the

buyer will not buy the cup so that the deal cannot be done, or the

buyer will still buy the broken cup as it is his only choice, but the

latter case is not opportunistic behavior since there is no knowledge

asymmetry about the deal. Moreover, as the system is not aware of

the value system of each agent, the system reveals to agent j all the
information that he might most care about in the transition, given

a set of possible value systems of agent j . We can immediately have

the following proposition, which shows the relationship between

revealing updates and asymmetric knowledge:

Proposition 4.2. Given amulti-agent systemM, an opportunistic
behavior a performed by agent i to agent j in state s and a revealing
update reveal(ξ )j , the revealing update can eliminate opportunistic
behavior a if
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• in the case M, s |= ξ , M |= Kj (ξ → (promoted(v∗,a) ∧
demoted(w∗,a))),

• in the case M, s |= ¬ξ , M |= Kj (¬ξ → (promoted(v∗,a) ∧
demoted(w∗,a))),

where v∗ = Mpreferred(i, s, s⟨a⟩) andw∗ = Mpreferred(j, s, s⟨a⟩).

Proof. When ξ holds in state s ,M, s |= Kjξ holds after reveal(ξ )j
is performed. AsM |= Kj (ξ → (promoted(v∗,a)∧demoted(w∗,a)))
implies M |= Kjξ → Kj (promoted(v∗,a) ∧ demoted(w∗,a)), we
have M, s |= Kj (promoted(v∗,a) ∧ demoted(w∗,a)). Thus, there
is no knowledge asymmetry between agent i and agent j about
formula promoted(v∗,a)∧demoted(w∗,a). Therefore, according to
Definition 4.1, reveal(ξ )j eliminate opportunistic behavior a. We

can prove it in a similar way when ¬ξ holds in state s . �

That is what we can directly derive from the definition of oppor-

tunism: to eliminate opportunism by removing the precondition of

knowledge asymmetry between different agents. Notice that agent j
is not aware of the whole formula promoted(v∗,a)∧demoted(w∗,a)
but might know part of the formula, for example demoted(w∗,a).
In that case, the system needs to reveal ξ to agent j and agent j
knows ξ → promoted(v∗,a) or ¬ξ → promoted(v∗,a).

Ideally we can let every agent have exactly the same knowledge

such that there is no knowledge asymmetry thus nobody can per-

form opportunistic behavior. However, it is difficult to implement

such an extreme case in reality, because sometimes we would like to

design a system that can respect agents’ privacy, which is realized

through setting privacy norms. However, since the system designer

is not aware of agents’ value systems thus doesn’t know what

to reveal to agents for eliminating opportunistic behavior, there

might exist privacy norms that prevent the system from revealing

to agents the information that can eliminate opportunism. Namely,

the revealing update performed by the system might reveal the

information that the system wants to keep secret through setting

a privacy norm. One simple example is that the system wants to

reveal φ to an agent for eliminating opportunistic behavior but as

is stated in a privacy norm that the agent should not be aware of

the information about φ. Hence, there exists a balance between

respecting of agents’ privacy and eliminating of opportunism. In

other words, the system can perform revealing updates to agents

for eliminating opportunistic behavior, but also lower the privacy

level in the system. Privacy Norms are formalized as follows:

Definition 4.3 (Privacy Norms). Let i and j be two agents, andγ be

a formula inLKA, a privacy norm is in the form of Knowasym(i, j,γ ),
stating that agent i should have the privacy about the fact γ from

agent j. Given a multi-agent system M with a state s , we say that

privacy norm Knowasym(i, j,γ ) in state s is respected if M, s |=

Knowasym(i, j,γ ), and we use Π(s)M to denote the set of privacy

norms that are implemented in state s . We will write Π(s) for short
if it is clear from context.

In this paper, we assume that there are some privacy norms that

are supposed to be respected in the system. For instance, privacy

norm Knowasym(s,b,oprice) is interpreted as the seller should

keep the original price in secret from the buyer. Privacy norms are

state-sensitive in the sense that a privacy norm can be active in a

state while inactive in another state.

In principle, given a set of possible value system profiles and

a privacy norm, the system has to consider every possible value

system profile in order to identify an action to be opportunistic, and

then think about whether there exists a revealing update that can

eliminate opportunistic behavior and respect the privacy norm as

well. In this paper, we skip the first part for simplification, assuming

that opportunistic behavior is given, in order to focus on the study

about the trade-off between eliminating opportunistic behavior

and respecting the privacy norm. Namely, suppose we already

identified an action to be opportunistic behavior with a possible

value system profile, a question arises: Given opportunistic behavior
and a privacy norm, does there exist a revealing update that can
eliminate opportunistic behavior and respect the privacy norm as
well? Intuitively, an agent gets to know something after something

was revealed to the agent, but the revealing update might disrespect

another agent’s privacy, which is stated by our privacy norms in

the system. The following proposition shows that in which case a

revealing update respects a privacy norm:

Proposition 4.4. Given a multi-agent system M in a state s ,
a privacy norm Knowasym(i, j,γ ) ∈ Π(s) with respect to formula
γ , and a revealing update reveal(ξ )j , the revealing update respects
privacy norm Knowasym(i, j,γ ) if:

• in the case M, s |= ξ ,M, s |= ¬Kj (ξ → γ ),
• in the case M, s |= ¬ξ ,M, s |= ¬Kj (¬ξ → γ ),

Proof. In order to respect privacy norm Knowasym(i, j,γ ), ac-
cording toDefinition 3.1, we need to ensureM, s |= [reveal(ξ )j ]¬Kjγ
so that M, s |= [reveal(ξ )j ]Knowasym(i, j,γ ). In the case where

ξ holds, M, s |= [reveal(ξ )j ]Kjξ after the revealing update is per-

formed to agent j. Furthermore,M, s |= ¬Kj (ξ → γ ) implies that

there exists s ′ ∈ K(j, s) : M, s ′ |= ¬(ξ → γ ), which is equivalent to

M, s ′ |= ξ ∧¬γ . Since agent j’s epistemic access which connects ¬ξ -
state to state s gets removed after the revealing update is performed,

state s ′ where ξ ∧ ¬γ holds is still in agent j’s knowledge set. In
other words, there exists s ′ ∈ K(j, s) : M| reveal(ξ )j , s

′ |= ξ ∧ ¬γ .
Therefore, we can conclude that M, s |= [reveal(ξ )j ]¬Kjγ and it

leads toM, s |= [reveal(ξ )j ]Knowasym(i, j,γ ). We can prove it in

a similar way when ¬ξ holds in state s . �

The proposition shows that privacy norm Knowasym(i, j,γ ) is
respected if agent j is not aware of the inference. Conversely, if
the above statement doesn’t hold, the revealing update will reveal

the information that the system wants to keep in private between

agents. From Proposition 4.2 and Proposition 4.4, we can see our

research problem is equivalent to the problem whether there exists

a formula ξ such that the formulas from both propositions hold.

Therefore,

Proposition 4.5. Given a multi-agent system M in state s , an
opportunistic behavior a performed by agent i to agent j, a privacy
norm Knowasym(i, j,γ ) ∈ Π(s) and a revealing update reveal(ξ )j ,
reveal(ξ )j can eliminate opportunistic behavior a and respect privacy
norm Knowasym(i, j,γ ) if:

• in the case M, s |= ξ , M, s |= Kj (ξ → (promoted(v∗,a) ∧
demoted(w∗,a))) ∧ ¬Kj (ξ → γ ),

• in the caseM, s |= ¬ξ ,M, s |= Kj (¬ξ → (promoted(v∗,a)∧
demoted(w∗,a))) ∧ ¬Kj (¬ξ → γ ),
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where v∗ = Mpreferred(i, s, s⟨a⟩) andw∗ = Mpreferred(j, s, s⟨a⟩).

Proof. The statement is the combination of the statements from

Proposition 4.2 and Proposition 4.4. When agent j is aware of

ξ → (promoted(v∗,a) ∧ demoted(w∗,a)), reveal(ξ )j can eliminate

opportunistic behavior a; when agent j is not aware of ξ → γ ,
reveal(ξ )j respects privacy norms Knowasym(i, j,γ ). Again, we
can prove it in a similar way when ¬ξ holds in state s . �

Essentially, the above proposition shows the relation among

a revealing update, agents’ value systems and a privacy norm: if

what an agent cares about, which his value system reflects, is not

respected by the system through setting corresponding privacy

norms, such a revealing update to the agent doesn’t exist. In other

words, it is dependent on the compatibility between agents’ value

systems and the privacy norms in the system. For example, for the

case where ξ holds, in order to eliminate opportunistic behavior

a, the system has to reveal (verify) ξ to agent j, who knows that

ξ implies value opposition along the transition. However, if he is

also aware of the formula ξ → γ , such a revealing update will

reveal to agent j the information about γ , which is against the

privacy norm. Hence, there is no revealing update that can eliminate

opportunistic behavior a and respect the privacy norm with respect

to γ as well. Further, sometimes formula ξ → γ is valid inM thus it

becomes universal knowledge in the system. In that case, revealing

update reveal(ξ ) will always reveal the information about γ we

want to keep in private. Thus, we have to remove privacy norm

Knowasym(i, j,γ ) so that it is allowed to perform revealing update

reveal(ξ ) to eliminate opportunistic behavior a, which can be seen

as an alternative normative approach.

Example 4.6. We again consider the senario shown in Example

3.4. There is knowledge asymmetry between the seller and the

buyer,

Knowasym(s,b, promoted(hm, sell) ∧ demoted(¬hb, sell)),

which is equivalent to

Knowasym(s,b,¬hm ∧ ⟨sell⟩hm ∧ ¬hb ∧ ⟨sell⟩hb).

In this scenario the seller knows the transition will promote his

own value while demote the value of the buyer, but the buyer is

not aware of the demotion part, as ⟨sell⟩hb doesn’t hold in both

state s1 and state s2. Now the buyer performs revealing update

reveal(broken)b to check whether the cup is broken or not, and he

also knows that his value will get demoted while the buyer’s value

will get promoted if the cup is broken, that is,

M, s |= Kb (broken → (promoted(hm, sell) ∧ demoted(¬hb, sell))),

which implies

M, s |= Kbbroken → Kb (promoted(hm, sell)∧demoted(¬hb, sell)).

Since the cup is actually broken (M, s |= broken), the buyer gets to
know the cup is broken after the system performs revealing update

reveal(broken)b to him (M, s |= Kbbroken) and thus he knows his

value will get demoted while the buyer’s value will get promoted,

M, s |= Kb (promoted(hm, sell) ∧ demoted(¬hb, sell)).

Therefore, there is no knowledge asymmetry about the transition

between the seller and the buyer (shown in Fig. 2), which pre-

vents the seller from opportunistically selling the broken cup to

the buyer, according to Definition 3.2. Next we suppose a privacy

norm Knowasym(s,b,oprice) in the system, which means that the

seller should keep the original price in private. Since inference

broken → oprice is not valid in M intuitively, the buyer is not

aware of it,

M, s |= ¬Kb (broken → oprice).

Therefore, revealing update reveal(broken)b won’t reveal the origi-

nal price to the buyer and privacy norm Knowasym(s,b,oprice) is
still respected in the updated system.

Figure 2: Update by revealing update reveal(broken)b

5 RELATION TO MECHANISM DESIGN
Mechanism design is a field to design a game with desirable prop-

erties (outcomes) for various agents to play [8] [11]. Given agents’

preferences - and an assumed solution concept д that defines

agents’ way of finding optimal outcomes, we can make a prediction

of the outcomes that will be achieved, which is represented as д(-).

Given agents’ preferences- and a social choice rule f that specifies

the criteria of the desirable outcomes, we say that f (-) are the

set of social optimal outcome, which are the outcomes we want to

have. Since agents’ preference might be unknown to us, our goal is

to design mechanisms such that for all the possible preference -
the predicted outcomes д(-) coincide with (or is a subset of) the

desirable outcomes f (-) (more elaboration can be found in [4]). In

this paper, we take a slightly different view of mechanism design

from the traditional one above: we consider a mechanism as an

operation or an update to the system, which is a revealing update.

When applying the theory of mechanism design to eliminate oppor-

tunism, we see agents’ rational alternatives as predicted outcomes,

opportunistic behaviors as undesirable outcomes, and our goal is

to design revealing updates to the system such that for all the pos-

sible value system profiles the intersection of an agent’s rational
alternatives (using our decision theory) and opportunistic behaviors
in the new system is empty. In this section, we will discuss how a

revealing update implements non-opportunism respectively.
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Given an opportunistic behavior, we know what kind of infor-

mation the system needs to reveal to an agent for eliminating it.

However, if we take into account an agent’s decision-making, it

can be the case where it is not optimal for the agent to perform

such an opportunistic behavior thus it is not necessary to elimi-

nate it. In this sense, we connect revealing updates with rational

alternatives. Hence, the goal of this paper is to find out an update,

namely a revealing update, such that it is not optimal for the agent

to behave opportunistically after it is implemented. Given a value

system for agent i , we know the set of agent i’s rational alternatives
a∗i (s). Given a value system profile for agent i and j , we can identify

the set of opportunistic behaviors OPP(i, j, s) that agent i and j are
involved in. We use a∗i (s)| reveal(ξ )j and OPP(i, j, s)| reveal(ξ )j to
denote the set of rational alternatives and the set of opportunis-

tic behaviors after reveal(ξ )j is performed in state s respectively.
Because opportunistic behavior is undesired from the perspective

of the system and agents form their rational alternatives (possi-

bly opportunistic) based on their value systems, it is important to

know whether a revealing update implements non-opportunism.

Formally, we define non-opportunistic implementation as follows:

Definition 5.1 (Non-opportunistic Implementation). Given a multi-

agent system M with two agents i and j in state s , and a re-

vealing update reveal(ξ )j , we say that reveal(ξ )j implements non-

opportunism iff a∗i (s)| reveal(ξ )j ∩ OPP(i, j, s)| reveal(ξ )j = ∅.

A revealing update implements non-opportunism if and only if

the intersection between rational alternatives and opportunistic

behaviors becomes an empty set after the revealing update is per-

formed. Clearly, this concerns the update that a revealing update

brings to the system.With our update logic of revealing updates, we

now discuss how a revealing update influences an agent’s decision-

making and the identification of opportunistic behavior.

Proposition 5.2. Given a multi-agent system M with two dif-
ferent agents i and j in state s , and a revealing update reveal(ξ )j ,
agent i’s rational alternatives will remain the same after reveal(ξ )j is
performed in state s , which is formalized as a∗i (s) = a∗i (s)| reveal(ξ )j .

Proof. Since revealing update reveal(ξ )j is performed by the

system to agent j, agent i’s epistemic structure will remain the

same after reveal(ξ )j is performed. Hence, according to Definition

2.6 and 2.7, agent i’s subjectively available actions and rational

alternatives will remain the same after reveal(ξ )j is performed. �

Proposition 5.3. Given a multi-agent system M with two dif-
ferent agents i and j in state s , and a revealing update reveal(ξ )j ,
opportunistic behaviors performed by agent i to agent j will not
become more after reveal(ξ )j is performed, which is formalized as
OPP(i, j, s) ⊇ OPP(i, j, s)| reveal(ξ )j .

Proof. Given a value system profile for agent i and j, we can
identify the set of opportunistic behaviors OPP(i, j, s) in a state.

Because reveal(ξ )j causes update of agent j’ knowledge, knowledge
asymmetry will become false after reveal(ξ )j , and thus some actions

will become non-opportunistic. Because the systemmight reveal the

information that is not relevant to any opportunistic behavior, it is

possible that all the opportunistic behaviors remain unchanged. �

If we limit a revealing update to the one that is performed to

agent j, agent i’s rational alternatives will remain the same while

opportunistic behaviors performed by agent i to agent j will remain

the same or become less, after reveal(ξ )j is performed. Therefore, if

a revealing update can eliminate all the actions in the intersection

of rational alternatives and opportunistic behavior, it implements

non-opportunism. Notice that action a, which was opportunistic

behavior, is still in agent i’s rational alternatives, but it is not op-
portunistic any more because knowledge asymmetry regarding

opportunistic behavior a is already removed. As for Example 4.6,

we see that reveal(broken)b can eliminate opportunistic behavior

sell. Even though the seller can still sell the broken cup to the buyer,

it is not opportunistic behavior any more because the buyer already

know that he will have a broken cup. Therefore, we can conclude

that given a set of value system profiles V̂ = {(Vs ,Vb )} revealing
update reveal(broken)b implements non-opportunism.

6 CONCLUSION
Opportunism is a behavior that takes advantage of relevant knowl-

edge asymmetry and results in promoting an agent’s own value

and demoting another agent’s value. As opportunistic behavior has

undesirable results for other agents who participate in the system,

it is important to design mechanisms to eliminate opportunism.

In this paper we developed an epistemic approach to eliminate

opportunism in multi-agent systems: we eliminated opportunism

by removing the precondition of opportunism knowledge asymme-
try, which disables the performance of opportunism. Knowledge
asymmetry is removed by agents’ revealing updates, which might

reveal the information that the system wanted to keep private be-

tween agents through setting privacy norms. So we investigated the

balance between eliminating opportunism and respecting agents’

privacy. Finally, we related our approach to the theory of mech-

anism design. However, we do recognize some downsides of our

proposed mechanism. Firstly, in order to eliminate opportunism,

the system has to reveal to an agent the information that he might

care about for the transition given his possible value systems. This

is indeed an ideal practice because it will be difficult to achieve

it when the set of possible value systems become large. Secondly,

in order to reveal useful information to agents, the system has to

first identify if a given action is opportunistic behavior with a set

of value system profiles for the agents involved, and then reveal

appropriate information to the agents to eliminate opportunism.

Those revealing updates should not be demotivated by the system

through setting privacy norms. This indeed puts a burden on the

designer before implementing any privacy norms, as agents’ value

systems are initially unknown. An agent performs opportunistic

behavior when he has the ability and the desire of doing that. In-

stead of removing the ability, future work can be done by removing

the desire, namely making the choice of being opportunistic not

optimal. As there exists trade-off between eliminating opportunism

and respecting agents’ privacy, it will be interesting to eliminate

opportunism through removing privacy norms.
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