
Preference Elicitation with Interdependency
and User Bother Cost

Tiep Le

New Mexico State University

Las Cruces, NM, USA

tile@cs.nmsu.edu

Atena M. Tabakhi

Washington University in St. Louis

St. Louis, MO, USA

amtabakhi@wustl.edu

Long Tran-Thanh

University of Southampton

Southampton, UK

l.tran-thanh@soton.ac.uk

William Yeoh

Washington University in St. Louis

St. Louis, MO, USA

wyeoh@wustl.edu

Tran Cao Son

New Mexico State University

Las Cruces, NM, USA

tson@cs.nmsu.edu

ABSTRACT
Agent-based scheduling systems, such as automated systems that

schedule meetings for users and systems that schedule smart de-

vices in smart homes, require the elicitation of user preferences in

oder to operate in a manner that is consistent with user expecta-

tions. Unfortunately, interactions between such systems and users

can be limited as human users prefer to not be overly bothered

by such systems. As such, a key challenge is for the system to

efficiently elicit key preferences without bothering the users too

much.

To tackle this problem, we propose a cost model that captures

the cognitive or bother cost associated with asking a question. We

incorporate this model into our iPLEASE system, an interactive

preference elicitation approach. iPLEASE represents a user’s pref-

erences as a matrix, called preference matrix, and uses heuristics to

select, from a given set of questions, an efficient sequence of ques-

tions to ask the user such that the total bother cost incurred to the

user does not exceed a given bother cost budget. The user’s response

to those questions will partially populate the preference matrix.

It then performs an exact matrix completion via convex optimiza-

tion to approximate the remaining preferences that are not directly

elicited. We empirically apply iPLEASE on randomly-generated

problems as well as on a real-world dataset for the smart device

scheduling problem to demonstrate that our approach outperforms

other non-trivial benchmarks in eliciting user preferences.

KEYWORDS
Preference Elicitation; Matrix Completion; User Bother Cost

ACM Reference Format:
Tiep Le, Atena M. Tabakhi, Long Tran-Thanh, William Yeoh, and Tran Cao

Son. 2018. Preference Elicitation with Interdependency and User Bother

Cost. In Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018,
IFAAMAS, 10 pages.

1 INTRODUCTION
Multi-agent researchers have proposed agent-based systems to

solve a number of scheduling problems, including the scheduling of

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

meetings [26, 33, 36] and the scheduling of smart devices in smart

homes [14, 32]. Such scheduling problems have the unique property

that its utility function is highly dependent on users, that is, the

agents responsible for performing the scheduling task need to know

the preferences of its users to ensure that the proposed schedule

is consistent with user expectations. For example, in a meeting

scheduling problem, the agent will need to know if users have

specific time periods for which no meetings should be scheduled as

well as preferred time periods for when certain types of meetings

should be scheduled. We call this class of scheduling problems

preference-dependent scheduling (PDS) problems. The objective in

PDS problems is to find a schedule that is optimized for a given

set of user preferences. This characteristic is in contrast to other

scheduling problems, such as job-shop scheduling problems [3],

where the goal is to find a schedule that minimizes the makespan.

Unfortunately, PDS systems cannot have an unlimited amount

of interactions with users to elicit all preferences; human users are

likely to be bothered by the questions asked and are willing to only

answer few questions. As such, a key challenge in this area of prefer-
ence elicitation is the identification of the limited set of questions to

ask users in order to obtain as much useful information as possible.

Most existing methods have thus far made the assumption that all

possible questions asked are equally bothersome or, in other words,

they all have the same bother costs (e.g., [35]). As this assumption

is not likely to hold in practice – users are likely to be less bothered

by a simple yes/no question compared to an open-ended one – we

incorporate a cost model that models the cognitive or bother cost

associated with asking a question. We relate this bother cost to the

amount of information obtained through the answers provided by

users. Then, we seek to identify the best set of questions to ask

such that its respective total bother cost is within a user-defined

bother cost budget.

Additionally, we assume that in PDS problems, there are strong

inter-dependencies between the preferences. For example, in meet-

ing scheduling problems, the preferences for a meeting with one

colleague are likely very similar to the preferences for a meeting

with a different colleague. Similarly, in smart device scheduling

problems, the preferences for scheduling a smart light is likely very

similar to the preferences for other lights in the same room. To

exploit this assumption, we first represent the preferences in a pref-
erence matrix, which is a matrix whose rows correspond to the tasks

that need to be scheduled (e.g., meetings in meeting scheduling

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1459

problems or smart devices in smart device scheduling problems) and

columns correspond to time steps for when they can be scheduled.

Then, we perform exact matrix completion via convex optimiza-

tion [6] to approximate the remaining preferences in the matrix

that are not directly elicited.
1
At a high level, exact matrix com-

pletion attempts at minimizing the nuclear norm of the preference

matrix under the assumption that rank of the matrix is small.

We combine both orthogonal contributions – bother costs and

matrix completion that exploit inter-dependencies between prefer-

ences – into a single integrated framework, which we call iPLEASE

(interactive preference learning and elicitation without annoying

users). At a high level, iPLEASE will ask questions to elicit prefer-

ences, each of which fills some elements in the preference matrix,

and approximate the remaining elements using matrix completion

techniques [6]. Its goal is to identify a set of questions to ask users

such that the preference matrix can be approximated as accurately

as possible and that the total bother cost incurred by all the ques-

tions asked does not exceed a user-defined bother cost budget.

Towards this end, iPLEASE formulates this resource-constrained

optimization problem as a variant of the knapsack problem, and

uses novel heuristics to identify the set of questions to ask users.

Application to the Smart Home Domain: While iPLEASE can

be used in the elicitation of preferences for any PDS problems, we

use the demand-side management (DSM) of smart homes as an ex-

ample application in this paper. In this application, autonomous

software agents are deployed in smart plugs in homes, acting on

behalf of the homeowners to remotely switch devices (e.g., lights

and washing machines) on and off. By considering the cost of elec-

tricity, which differs throughout the day, each agent can schedule

the device usage during off-peak hours, when electricity is cheaper.

The aim in most state-of-the-art DSM approaches is to find a

solution (i.e., schedule for all devices) that maximizes monetary

savings to the homeowners as well as the comfort level of home-

oweners [29, 43]. A key limitation of these techniques is that they

typically ignore both the bother cost and the inter-dependencies

between preferences (see Related Work for more details) during

their elicitation phase. Thus, with iPLEASE we propose the first

DSM system that can efficiently manage the energy consumption

of homeowners while taking into account their bother costs and

the interdependencies between preferences inferred.

Our Contributions:
• We introduce iPLEASE, the first preference elicitation approach

that takes into account user bother costs as well as exploit the

inter-dependencies between preferences during the questioning

process.

• We propose two heuristics for choosing questions to ask: (1)

A greedy myopic heuristic that repeatedly chooses the ques-

tion that provides the largest utility given the current partially-

filled preference matrix, subject to the constraint that the bother

cost of the question is no larger than the remaining bother cost

budget; and (2) A more holistic approach that chooses a sub-

set of questions that provides the largest utility given the initial

1
Our approach can be easily extended to tensors, which can capture more complex user

preference structures, by replacing matrix completion methods with tensor completion

algorithms. However, for the sake of simplicity, we only consider preference matrices

in this paper.

partially-filled preferencematrix, subject to the sum of the bother

cost of the questions is no larger than the total budget.

• We compare these heuristics on random and a well-known real-

world dataset from the DSM domain, and show that they out-

perform non-trivial benchmarks in preference elicitation.

2 BACKGROUND
We review the topic of exact matrix completion via convex optimiza-

tion [6], which will be used to recover approximately the complete

preference matrix.

Let M ∈ Rm×n be a matrix. Mi, j refers to the entry of row i
and column j ofM . Assume that we would like to know aboutM
as precisely as possible but the only information available about

M is a set of observed entries Mi, j , where (i, j) ∈ Ω and Ω ⊆
{1, . . . ,m} × {1, . . . ,n}. Let PΩ : Rm×n 7→ Rm×n be the orthogonal

projection onto the subspace of matrices that vanishes outside of

Ω (i.e., (i, j) ∈ Ω iff Mi, j is observed), i.e., Y = PΩ (X) is defined by
Yi, j = Xi, j if (i, j) ∈ Ω and Yi, j = 0 otherwise.

Therefore, the information available aboutM is summarized by

PΩ (M).M can, in principle, be recovered from PΩ (M) by solving

the nuclear norm minimization problem

min | |X | |∗=
∑
k

σk (X) s.t. Xi, j = Mi, j ∀(i, j) ∈ Ω (1)

where, σk (X) are singular values of a matrixX and can be computed

via singular value decomposition (SVD) of X : X =
∑r
k=1 σkukv

∗
k,

where r is the rank of X , the uk’s and vk’s are the left and right sin-
gular vectors of X . Since nuclear norm is a convex function, it can

be optimized efficiently in Equation (1) via semidefinite program-

ming [6]. Furthermore, if Ω is sampled uniformly at random among

all subset of cardinalitym, andM obeys a low coherence condition,

then with large probability, the unique solution to Equation (1) is

exactlyM . As a result, it is claimed by Candès and Recht [6]:

Remark 1. Low-rank or approximately low-rank matrices can be
recovered as the solution to Equation (1) using exact matrix completion
via convex optimization.

Note that it is important that Ω is sampled uniformly without

replacement to avoid trivial situations in which a row or a column

is not observed, since matrix completion is clearly impossible in

such cases. Furthermore, the rank of a matrixM corresponds to the

maximal number of its linearly independent rows ofM .

3 PROBLEM DEFINITION
For the sake of simplicity, we adopt the concept of home device

scheduling, in which we aim to schedule devices in time. Our model

can be adopted to other settings in preference-dependent scheduling

(PDS) problems without the loss of generality, for example, devices

in home device scheduling can be seen as meetings in PDS problems.

As such, our preference elicitation problem is defined formally as:

Definition 3.1. A preference elicitation problem is a tuple

⟨A,T ,Q,B (·),B⟩, where

• A = {1, 2, . . . , |A|} is the set of devices and T = {1, 2, . . . , |T |}
is the set of discrete time steps, whose preferences need to be

elicited;

• Q is a finite set of questions that can be asked;

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1460

*.
,

Time Steps 1 2 3 4 5 6 7 8 9 10 11 12

Light #1 4 1 1 7 4 8 8 2 5 5 7 8

Kitchen Outlet 1 1 4 7 2 8 6 3 6 8 3 1

Light #2 5 2 1 6 4 9 8 1 5 5 7 8

+/
-

Figure 1: A preference matrix for home device scheduling.

• B (·) : 2Q → R+ is the bother cost function that takes as input a

sequence of questions and determines the bother cost of asking

those questions; and

• B > 0 is the bother cost budget (i.e., the maximum amount of

bother cost that can be incurred).

Preference Matrix: The preferences of a user for having devices
A scheduled inT is modeled as a matrixM , called preference matrix,
where each row corresponds to a device a ∈ A and each column

corresponds to a time step t ∈ T 2
. We use pi (j) = Mi, j to denote the

preference of the user having device i ∈ A scheduled at time step

j ∈ T , where the greater the value of pi (j), the more likely the user

will run device i at j. For simplicity and without loss of generality,

we assume that these preferences are integers in [1, . . . , 10]. Figure 1

illustrates an example preference matrix M for the smart device

scheduling problem with 3 devices (i.e., |A| = 3) and 12 time steps

(i.e., |T | = 12).M2,6 = 8 andM2,5 = 2 mean that the user prefers to

use the kitchen outlet at time step 6 than at time step 5.

As a row inM represents the scheduling preference of a device,

the linear dependency between two rows a and b ofM imply that

the user has similar preferences on a andb. In preference-dependent
scheduling (PDS) problems, including the DSM application, it is

reasonable to assume that tasks (smart devices in DSM) that need

to be scheduled are interdependent (see e.g., [40]). This implies

that the preference matrix is approximately low rank, which allows

us to perform exact matrix completion via convex optimization to

recover the preference matrix (see Remark 1).

Preference Elicitation Questions: Each question q ∈ Q is asso-

ciated with:

• a cognitive bother cost c (q) > 0 (i.e., cognitive effort required of

the user to answer the question).

• a set of entries f (q) ⊆ {(i, j) | i ∈ A, j ∈ T } and a set of values

{p
q
i (j) | (i, j) ∈ f (q)}.

Intuitively, given a user’s response to a question q ∈ Q, the sys-
tem fills a preference value p

q
i (j) into the entry (i, j) of the pref-

erence matrix M (i.e., Mi, j = p
q
i (j)) for each element of f (q). We

assume that users are honest in that when two different questions

fill some common entries, the preference values are consistent,

i.e., ∀q1,q2, (i, j) ∈ f (q1) ∩ f (q2) : p
q1
i (j) = p

q2
i (j). Therefore, for

convenience, we omit the superscript q in p
q
i (j) from here on.

Example 3.2. We provide here two preference elicitation ques-

tions q1 and q2 with respect to the preference matrix in Figure 1,

assuming that a day starts in time step 1 and ends in time step 12

(i.e., each time step corresponds to 2 hours).

• q1: How likely are you to use the kitchen outlet from 12-2pm?

2
It is worth noting that the periodicity of the device usage’s preferences can also be

represented by preference matrices and, thus, can be handled by our approach.

• q2: How likely is that you would turn on the light #1 from 4-8pm?

where we use the following scale:

HIGHLY UNLIKELY EXTREMELY LIKELY

1 2 3 4 5 6 7 8 9 10

Since time step 7 represents the time between 12-2pm, and time

steps 9 and 10 represent the time between 4-8pm, we have f (q1) =
{(2, 7)} and f (q2) = {(1, 9), (1, 10)}. In addition, a possible bother

cost function is one that assigns c (q1) = 2 and c (q2) = 3, as a user

is likely to be less bothered answering a single question that asks

the preferences over two time steps than two questions that each

asks the preference for a single time step. Hence, c (q2) ≤ 2c (q1).

Given a question q ∈ Q and preference matrix M , M (q) is the
update ofM by q based on the user’s response to q and is defined as

M (q)i, j = pi (j) if (i, j) ∈ f (q) andM (q)i, j = Mi, j otherwise. For a
sequence of questions Q = ⟨q1,q2, . . . ,qℓ⟩, let f (Q) =

⋃
q∈Q f (q)

and M1 = M (q1), M2 = M1 (q2), . . . , M (Q) = Mℓ = Mℓ−1 (qℓ),
i.e.,M (Q) is the result of recursively updatingM by questions q1,
q2, . . . , qℓ . It is easy to see that the order of questions by which a

matrix is updated does not affect the resulting matrix.

Bother CostModel: Our proposed framework is generic and there-

fore it is compatible with any bother cost model. However, in this

paper, we use the model proposed by Fleming [15] since (i) it has
been used in a large body of literature (e.g., [9, 30]), and (ii) it also
gives the bother cost function with more exponential and logarith-

mic appearances for more unwilling and willing users, respectively,

that fits the users’ typical behavior in smart home domains [39].

Let Q ⊆ Q be a sequence of questions that has been asked thus

far. The bother cost model by Fleming [15] defines “bother cost so
far" (BSF) as

BSFQ =
∑
q∈Q

c (q)βe (q) (2)

where 0 < β ≤ 1 is a discount factor used to represent the dimin-

ishing impact of interactions over time (i.e., questions asked long

ago will be less bothersome than questions recently asked) and e (q)
is the amount of elapsed time since q was asked. The total bother
cost is then computed as

B (Q) = Init +
1 − αBSFQ

1 − α
(3)

where
3 α = 1.26 − 0.05w , Init = 10 − w , and w denotes the

willingness of a user to interact (i.e., answering questions) on a scale

of 0 (for unwilling users) to 10 (for willing users).

In our application, we assume that the system will ask questions

consecutively and will thus use the number of questions that has

been asked after asking q as the value for e (q). For example, assume

the sequence of questionsQ = ⟨q1,q2,q3⟩, then e (q1) = 2, e (q2) = 1,

and e (q3) = 0. With β = 0.95 and c (qi) = 1 for 1 ≤ i ≤ 3, we have

BFSQ = 1 + 0.951 + 0.952 = 2.8525.

Objective Function: LetM be a preference matrix, where all en-

tries are initially set to null and M (Q) be the update of M by a

3
Intuitively, α is intended to give a nearly linear bother curve for users with moderate

willingness values (i.e,w = 5) while giving bother curves with more exponential and

logarithmic appearances for more unwilling and willing users, respectively. The value

of Init is intended to reflect the cost of bothering a user for the first time in which

Init will be negligible (resp. quite high) for a very willing (resp. an unwilling) user.

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1461

sequence of questions Q ⊆ Q. Our goal is to estimate the null
entries of M (Q) using the non-null entries in M (Q) using matrix

completion techniques described in the background. Given a matrix

completion algorithm L, let GML (Q) be resulting estimated matrix

by L with input M (Q). When L is unspecified or clear from the

context, we will omit it from the superscript.

Finally, the goal of the problem is to identify an optimal sequence

of questions Q∗ from Q and matrix completion algorithm L∗:

⟨Q∗,L∗⟩=argmin

Q,L

| |

W (Q,L)︷ ︸︸ ︷
M − GML (Q) | |1
|A| × |T | − | f (Q) |︸ ︷︷ ︸

Z (Q)

s.t. B (Q) ≤ B (4)

whereB is the bother cost budget;M is the true (oracle) preference

matrix that can be achieved in the ideal scenario where preferences

for all devices at every time step should be elicited; and | |X | |1 is
the L1 norm (i.e., sum of all absolute values of entries) of matrix

X . In Equation (4),W (Q,L) denotes the differences between two

matricesM and
GML (Q), and Z (Q) denotes the number of unfilled

entries inM (Q).

4 iPLEASE SYSTEM
Our approach, iPLEASE, identifies solutions of Equation (4) by using

a heuristic to identify Q∗, and then employing the “matrix comple-

tion via convex optimization" (denoted with CO from here on) for

algorithm L∗. The reasons behind this choice are: (i) a matrix is

completed as a solution to a nuclear norm minimization problem

(see Equation (1)); (ii) as discussed by Candès and Recht [6] the

matrix completion problem can be formulated in terms of semidef-

inite programming (e.g., see [41]), and there exist many efficient

algorithms and high-quality softwares for solving these types of

problems.

We propose two heuristics to identify Q∗:

• One-shot heuristic is a wholistic approach that chooses a subset

of questions that provides the largest total utility given the initial

partially-filled preference matrix, subject to the bother cost is

no larger than the bother cost budget.

• Multi-shot heuristic is a greedy myopic approach that repeatedly

chooses the question that provides the largest utility given the

current partially-filled preference matrix, subject to the bother

cost of the question is no larger than the remaining bother cost

budget. In each iteration, the utility of questions will be updated.

We next describe how to compute Q∗. Assume that we have a

preference matrixM that might be partially filled.

One-shot Heuristic: We formalize the problem of identifying Q∗

by formulating it as a 0-1 Knapsack Problem [28], denoted with 0-1

KP. This formalization requires the utilities of the questions in Q.

Given that iPLEASE uses CO as its matrix completion algorithm,

and CO assumes that the set Ω of observed entries is sampled

uniformly without replacement, it is reasonable to assume that

f (Q) exhibits a uniform distribution.

Based on this assumption, the utility of a (partially-filled) matrix

should be defined based on two criteria: (1) The larger the number

of non-null entries in the matrix, the larger its utility; and (2) Popu-
lating an entry in a row or column with few non-null entries results

in a larger increase in utility than populating an entry in a row or

columnwith many non-null entries. Sigmoid functions satisfy these

two criteria and are widely used to define human-decision-based

utility (e.g., [12] and [21]). We thus follow the literature and also

apply sigmoid functions to estimate the utility of a (partially-filled)

matrix, and the utility of a question is defined as the difference in

the utility of the preference matrices before and after asking that

question.

Definition 4.1 (Utility of a matrix). Let M be a (partially-filled)

matrix of size m × n. The utility of M , denoted with UM , can be

estimated as a sigmoid function

UM =
∑

1≤i≤m

n

1+e−(rfillM,i−1)
+
∑

1≤j≤n

m

1+e−(cfillM, j−1)
(5)

where rfillM,i (resp. cfillM, j) is the number of non-null entries in

the row i (resp. column j) ofM .

The utility of a question q is defined along with a matrix (i.e.,

the current matrix before asking q).

Definition 4.2 (Utility of a question). Let M be a matrix. The

utility of a question q, denoted withUM (q), is defined as:UM (q) =
UM (q) −UM .

Because the sigmoid function is monotonic and updating M by q
will not increase the number of null entries, UM (q) ≥ 0. It is easy

to see that the following holds.

Proposition 1. For q1 , q2,UM ({q1,q2 }) ≤ UM (q1) +UM (q2) . The
equality happens when f (q1) ∩ f (q2) = ∅

Since the constraint in 0-1 KP is linear, we need to estimate the

bother cost of a sequence of questions as a linear equation. BSF
β=y
Q

be the BSFQ in which β = y. From Equation (2), since 0 < β ≤ 1, it

is straightforward to have the following lemma.

Lemma 4.3. Let Q ⊆ Q be a sequence of questions that has been
asked, and given a BSFQ with respect to an arbitrary β (0 < β ≤ 1).

Then, BSFQ ≤ BSF
β=1
Q .

From Equation (3), it is straightforward to show:

Lemma 4.4. Assume a bother cost budget B > 0, and let Q ⊆ Q
be a sequence of questions that has been asked. Then, B (Q) ≤ B iff

BSFQ ≤
loд10

(
1 − (B − 10 +w) (1 − α)

)
loд10α

(6)

Intuitively, Lemma 4.4 says that the “bother cost so far" ofQ satisfies

Equation (6) if and only if the total bother cost B (Q) does not exceed
the bother cost budget B.

Let TB,w denote the right-hand side of Equation (6). Based on

Lemmas 4.3-4.4, we have the following theorem.

Theorem 4.5. Given a bother cost budget B > 0 and a sequence
of questions Q ⊆ Q that has been asked, if BSF β=1Q ≤ TB,w , then
B (Q) ≤ B.

Since TB,w can be seen as a constant which depends on the

inputs B andw (since α is computed fromw), Theorem 4.5 allows

us to check whether B (Q) ≤ B by checking BSF
β=1
Q ≤ TB,w ,

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1462

Algorithm 1: one-shot(Q,M,B,w)

Input :A set of questions Q; a matrix M ; a bother cost budget B; a

willingness value w
Output :A set of question Q∗ ⊆ Q

1 return Q∗ = 0-1KP(Q, M, B, w)

Algorithm 2: multi-shot(Q,M,B,w)

Input :A set of questions Q; a matrix M ; a bother cost budget B; a

willingness value w
Output :A set of question Q∗ ⊆ Q

2 Let Q∗ = { }
3 while true do
4 Compute B′ = r emain (Q, B, β, w)

5 Compute q = one-shot-one-question(Q, M, B′, w)

6 if q , null then Q∗ = Q∗ ∪ {q }
7 else return Q∗

making it possible to identify Q∗ using the 0-1 KP. This is done as
follows.

Given the set of questions Q = {q1, . . . ,qn }, a matrixM , a bother

cost budgetB, and a willingness valuew , the 0-1 Knapsack Problem

for selecting a subset of questions Q ⊆ Q such that

maximize

n∑
k=1

UM (qk)xk (7)

subject to

n∑
k=1

c (qk)xk ≤ TB,w (8)

where, for 1 ≤ k ≤ n

xk =

1, if question qk ∈ Q
0, otherwise

(9)

We writeQ = 0-1KP(Q,M,B,w) to indicate thatQ is a solution of

the above problem, and Q = ∅ when the problem has no solution.

Algorithm 1 shows the pseudo-code of using the one-shot heuris-

tic given a set of questions Q, a matrix M , a bother cost budget

B, and a willingness value w . It selects a subset of question Q∗,
denoted with Q∗ = one-shot(Q,M,B, β,w) based on this heuristic

and returns that subset as the solution of the preference elicitation

problem.

Note that

∑n
k=1 c (qk)xk in Equation (8) is identical to BSF

β=1
Q∗

where Q∗ = 0-1KP(Q,M,B,w). Theorem 4.5, the knapsack con-

straint (8), and Algorithm 1 imply the next theorem.

Theorem 4.6. If Q∗ = one-shot(Q,M,B,w) then B (Q∗) ≤ B

Multi-shot Heuristic: The one-shot heuristic is simple but it has

some undesirable consequences. It chooses a subset of questions

based on utilities of questions that depend solely on the current

(partially-filled) matrix. Therefore, it does not take into account of

the mutual effect of questions in that subset. In particular, in an

extreme case, if questions in that subset elicit too many cells of the

same rows or of the same columns, by Proposition 1, the objective

function in Equation (7) will overly estimate the actual improved

utility of preference matrix after asking that subset of questions.

Initialize Preference Matrix

Elicit Preferences in Matrix

Completed Matrix

Find a Subset of
Questions to ask

Interact with User

Run Matrix Completion via CO

Initial
Phase

Filling-Up
Phase

Completion
Phase

Figure 2: iPLEASE Workflow

This motivates the multi-shot heuristic that repeatedly chooses one

question at a time until the budget cost is exhausted. In this paper,

we will use a greedy algorithm for implementing this heuristic,

i.e., at any step, we select the question that provides the largest

updated utility given the current partially-filled preference matrix,

subject to the constraint that the bother cost of that question is no

larger than the remaining bother cost budget.

Given Q,M , B, β , andw , as in the one-shot heuristic formaliza-

tion, we define the one-shot-one-question problem as the problem

of selecting one question q ∈ Q such that UM (q) = max{UM (q) |
q ∈ Q, c (q) ≤ B}. When no such q exists, we write q = null . We

also write q = one-shot-one-question(Q,M,B,w) to denote that q
is a solution of this problem.

Let Q be a sequence of questions ⟨q1, . . . ,qk ⟩. We denote with

remain(Q,B, β,w) the remaining bother cost budget after asking

the questions in Q , i.e.,

remain(Q,B, β,w) = TB,w −
∑
qk ∈Q

c (qk)β
e (qk)+1

(10)

Algorithm 2 shows the pseudo-code of using the multi-shot

heuristic given a set of questions Q, a matrixM , a bother cost bud-

get B, and a willingness value w . It selects a subset of question

Q∗, denoted with Q∗ = multi-shot(Q,M,B, β ,w) based on this

heuristic and returns that subset as the solution of the preference

elicitation problem. In more detail, it first initializesQ∗ as an empty

set (Line 2), and then iteratively adds to Q∗ a question q that is

the solution of the problem one-shot-one-question(Q,M,B′,w) in
which B′ is updated as B′ = remain(Q,B, β ,w) (Lines 3-7). This
iterative update ends when one-shot-one-question(Q,M,B′,w) re-
turns null (i.e., all questions that are not in Q∗ have a bother cost
that is larger than the remaining bother cost budget). It is straight-

forward to see that this algorithm is guaranteed to terminate since

the bother cost of all questions is positive and the remaining bother

cost budget is reduced after each iteration.

iPLEASEWorkflow: Given ⟨A,T ,Q,B (·),B⟩, a diminishing factor

β , and a willingness valuew of a user to interact with the bother cost

function defined in the previous section, our iPLEASE system has an

extra parameter, an integer I. It uses this parameter to initialize the
preferencematrixM with a random set I ⊆ {1, . . . , |A|}×{1, . . . , |T |}
of positions inM such that |I | = I before focusing on selecting the

set of questions that will be used to completeM . This is a reasonable

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1463

●

●

●
●

●

●
● ● ● ●

●

0.5 1 3 5 7 9 11 13 15 17 19

1

2

3

4

5

Bother Cost Budget (/1000)

Er
ro

rs

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(a) Rank = 5

●

●

● ●

● ●

●
●

● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

1

2

3

4

5

Bother Cost Budget (/1000)

Er
ro

rs

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(b) Rank = 10

●

●

● ●

● ● ● ●
●

●
●

0.5 1 3 5 7 9 11 13 15 17 19

1

2

3

4

5

Bother Cost Budget (/1000)

Er
ro

rs

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(c) Rank = 20

●

●

● ●
●

● ●
● ● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

1

2

3

4

5

Bother Cost Budget (/1000)

Er
ro

rs

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(d) Rank = 30

Figure 3: Error Results on Randomly Generated Problems

assumption as it is acceptable for a system to ask users to answer

questions in a survey prior to the first time in using the system.

We consider this initialization process (see Initial Phase below) as

a preprocessing phase to pre-populate the preference matrix. The

workflow of iPLEASE (see Figure 2) has the following phases:

• Initial Phase: iPLEASE solves the 0-1 integer linear programming

problem defined by: Select a subset of questions Q that fills

positions in I inM such that

minimize

n∑
k=1

c (qk)xk (11)

subject to

n∑
k=1

c (qk)xk ≤ TB,w (12)

n∑
k=1

yi, jxk ≥ 1 ∀(i, j) ∈ I (13)

where, for 1 ≤ k ≤ n, xk is defined in Equation (9), and

yi, j =

1, if qk is selected ∧ qk ∈ д(i, j)
0, otherwise

(14)

where д(i, j) = {q ∈ Q | (i, j) ∈ f (q)}.
We write Q = Initial_Fill (Q, I ,B,w) to say that Q is the solu-

tion of the initial phase. When there is no solution, Q = {∅}.

• Filling-Up Phase: Assume that Q = Initial_Fill (Q, I ,B,w). If
Q , {∅}, iPLEASE uses the one-shot or multi-shot heuristic to

fill the matrixM under the condition that the total budget cost

is B′ = B − B (Q).

• Completion Phase: iPLEASE uses CO to completeM , the result

of the second phase whose result is M̂ .

5 EXPERIMENTAL RESULTS
We empirically evaluate the iPLEASE framework on randomly-

generated problems (i.e., randomly-generated preference low rank

matrices) as well as demand-side management (DSM) problems

using the real-world REDD dataset [22].

We implemented iPLEASE with the one-shot heuristic (iP-1)

and iPLEASE with the multi-shot heuristic (iP-m) using MATLAB
®

Release 2016b, in which we used CVX, a package for specifying

and solving convex programs [11, 18], to solve the nuclear norm

minimization problem in Equation (1). To the best of our knowledge,

there is no algorithm that directly solves our problem described in

Equation (4). Therefore, we implement three benchmark elicitation

frameworks to compare against our proposed framework:

• Random (Rand): This framework iteratively asks the user a

random (non-duplicated) question from the given set of questions

until the remaining bother cost budget is insufficient to ask any

other question. Then, it uses CO, the same matrix completion

algorithm used by iPLEASE, to complete the resulting partially-

filled matrix.

• One-shot Disagreement (Dis-1) and Multi-shot Disagree-
ment (Dis-m): The Dis-1 and Dis-m frameworks consist of 3

phases that are the same as the 3 phases in iP-1 and iP-m, re-

spectively. The only exception is that they compute the utility

of questions differently, based on the level of disagreement pro-
posed by Chakraborty et al. [8] and Lan et al. [24]. Specifically,

a committee of matrix completion algorithms – that consists of

CO [6] and “Matrix completion from a few entries" [20]
4
– are

applied on the partially-filled matrix from Step 2 to impute null
entries. The variance of imputing (among committee members)

of each entry is taken as a measure of uncertainty of that entry.

The utility of a question is computed as in Definition 4.2 in which

the utility of a matrix is the summation of the uncertainty of all

of its entries, which is different from Definition 4.1.

In our experiments, we set |A| = 55, |T | = 24, β = 1, w = 5, and

I = 150 (see Further Discussion subsection later for the choice of

I). Then, the size of the preference matrix is 55 × 24. We created

1790 questions (i.e., |Q| = 1790). Intuitively, each question straight-

forwardly asks the user their preference for using k devices in ℓ

time steps (i.e., 1 ≤ k ≤ 55, 1 ≤ ℓ ≤ 24). The cost of each question

q is set to the following: c (q) = k if ℓ = 1 and c (q) = k × ⌊ℓ/2⌋
otherwise. Its intuition is that each different device will require 1

unit of cognitive cost to answer. The component ⌊ℓ/2⌋ intuitively

reflects our assumption that the user is less bothered answering

one question that asks for preferences on multiple time steps com-

pared to answering multiple questions, each of which asks for the

preference for one time step. In our experimental setup, the range

of cognitive costs of the 1790 questions is [1, 72]. We report the

error in the solutions found as well as the runtimes of the differ-

ent algorithms, averaged over 30 randomly generated instances

per configuration. The error in a solution is computed using the

4
We use a publicly-available implementation found at goo.gl/9EnrXN

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1464

goo.gl/9EnrXN

● ● ● ● ● ● ● ● ● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

0

4

8

12

16

20

24

Bother Cost Budget (/1000)

ru
nt

im
e

(s
ec

)

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(a) Rank = 5

● ● ● ● ● ● ● ● ● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

0

4

8

12

16

20

24

Bother Cost Budget (/1000)

ru
nt

im
e

(s
ec

)

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(b) Rank = 10

● ● ● ● ● ● ● ● ● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

0

4

8

12

16

20

24

Bother Cost Budget (/1000)

ru
nt

im
e

(s
ec

)

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(c) Rank = 20

● ● ● ● ● ● ● ● ● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

0

4

8

12

16

20

24

Bother Cost Budget (/1000)

ru
nt

im
e

(s
ec

)

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(d) Rank = 30

Figure 4: Runtimes on Randomly Generated Problems

objective function in Equation (4), i.e., | |W (Q,L) | |1/Z (Q). All ex-
periments are performed on 2.8 GHz Intel Core i7 machine with

16GB of memory.

Randomly Generated Problems: We vary the rank of the oracle

preference matrix, denoted with rank and the bother cost budget.

The r -rank oracle preference matrix is generated as follows. First

we generate a matrixM0
of size r × 24 whose entries’ value are

randomly generated from the range [1, 10], and thus, rank ofM0

is r . Then the oracle preference matrix of size 55 × 24 is generated

in the way that each of its row is selected randomly from rows

ofM0
. In all experiments on random dataset, we make sure that

the oracle preference matrices have the rank as indicated. Figure 3

and Figure 4 show the average error and runtime, respectively. We

make the following observations:

• As expected, for all algorithms, the solutions improve (their

error decreases) as the budget B increases. The reason is that

the algorithms are able to ask more questions, which results in

the need to approximate fewer entries in the preference matrix.

• In general, the ordering of algorithms from best to worst (in

terms of the quality of solutions found) is iP-m, iP-1, Dis-m,

Dis-1, and Rand. iP-m is consistently better than the others,

and Rand is consistently worse than the others. iP-1, Dis-m,

and Dis-1 algorithms find similar solutions with no statistically

significant differences in quality. This observation shows that

the use of sigmoid functions to define the utility of questions

(see Definitions 4.1 and 4.2) coupled with the ability of iP-m to

take into account the mutual effect of questions by updating

the utility of questions in each iteration results in statistically

improved results.

• The error for iP-m error increases with increasing rank, and the

error for the other algorithms remain relatively unchanged for

all ranks.

• As expected, for all algorithms, the runtimes increase as the

budget B increases. The reason is that the algorithms need to

identify more questions to ask as the budget increases.

• The increase in runtime is negligible for Rand, iP-1, and Dis-1.

The reason is that the additional computation needed to identify

the additional questions is minimal.

• The increase in runtime is significant for iP-m and Dis-m as they

need to re-evaluate the utility of all unchosen questions in each

iteration in addition to choosing an additional question to ask.

●

●

●
●

● ●

● ● ● ●
●

0.5 1 3 5 7 9 11 13 15 17 19

1.0

2.0

2.5

Bother Cost Budget (/1000)

Er
ro

rs

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

● ● ● ● ● ● ● ● ● ● ●

0.5 1 3 5 7 9 11 13 15 17 19

0

4

8

12

16

20

24

Bother Cost Budget (/1000)

ru
nt

im
e

(s
ec

)

● Rand
Dis−1
Dis−m
iPLEASE−1
iPLEASE−m

(a) Error Results (b) Runtime Results

Figure 5: Experiment Results on REDD Dataset

• In general, the ordering of algorithms from fastest to slowest is

Rand, iP-1, Dis-1, iP-m, and Dis-m. The runtimes of iP-1 and Dis-

1 are statistically similar. Rand is the fastest as it does not need

to compute the utility of questions. The one-shot algorithms,

iP-1 and Dis-1, are both faster than their multi-shot counterparts

as they need to compute the utility of questions once only. In

contrast, the multi-shot algorithms, iP-m and Dis-m, both need

to update the utility of questions repeatedly in each iteration.

Finally, iP-m is faster than Dis-m because it needs to run the

matrix completion algorithm once only. In contrast, Dis-m needs

to run all the matrix completion algorithms in its committee of

algorithms in each iteration.

Therefore, in summary, iP-m is able to find the best solution but at

a cost of large runtimes. In contrast, iP-1 and Dis-1 are able to find

worse solutions at smaller runtimes. This range of algorithms thus

allow users to trade off solution quality for smaller runtimes based

on the requirements in their applications.

REDDDataset:We use the Reference Energy Disaggregation Data

Set (REDD) [22], which includes electrical usage data from six

different houses for approximately 35 days. We use data of 9 devices

in house 1, collected from April 18, 2011 to May 24, 2011, as they

provide the most detailed data. The raw data in the dataset contains

power consumption of devices with a granularity of 3 seconds,

which we converted to a list of cyclic on-off events. If a device i is
turned on or off at a time step j on a specific date d , the preference
for using i at time step j on date d is set to 8 or 2, respectively.

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1465

We then average the preferences over all dates. We first create a

matrixM1
of size 9 × 24 where each row is the preferences for

using 1 (out of 9) device for 24 time steps. We then generate the

oracle preference matrix of size 55 × 24, which has rank of 9, in the

way that each of its rows is selected randomly from rows ofM1
.

Figure 5 shows the average error and runtime, where, in general,

the trends from the randomly generated problems apply here as

well. However, the magnitude of the errors in this dataset is up to

50% smaller than in the randomly generated problems. The reason

is likely due to the underlying strong interdependencies between

the preferences – the approximate rank of the dataset is around 5.

Further Discussions: We discuss here the intuition of setting I =

150 in our experiments. We observe that if I is set to a smaller

value, e.g., I = 100, “Matrix completion from a few entries" in

Dis-1 and Dis-m takes too long to converge and fails to converge

at times. Moreover, if we set I to a larger value, for experiments

with B = 500, the remaining bother cost budget for computing

heuristics in Filling-Up Phase of iPLEASE is very small and, thus, it

will not clearly show the advantage of our proposed heuristics.

6 RELATEDWORK
As iPLEASE performs active matrix completion to solve prefer-

ence elicitation problems, we describe how it relates to these two

broad areas. There is a large body of research on active matrix
completion: Boutilier et al. [5] used collaborative filtering to query

ratings for products to maximize the increase in the expected value
of information. Extending this work, Jin and Si [19] assumes prior

information, and proposed a Bayesian approach that query entries

to minimize model uncertainty. In a different approach, Rish and

Tesauro [31] suggested a margin-based approach that queries en-

tries with the least completion confidence that are closest to the

decision boundary of the completion model. Chakraborty et al. [8]

proposed distribution- and committee-based querying strategies,

which were later extended by Sutherland et al. [34] to strategies

that minimize the uncertainty of the completed model, using prob-

abilistic matrix factorization methods. However, unlike iPLEASE,

they all do not consider bother costs in their querying strategies.

There is also a large body of research on preference elicitation [17].
Due to space restrictions, we focus on the techniques that are most

closely related to our approach. They include passive elicitation
techniques—that make use of machine learning methods to learn

users’ preferences based on historical data [27, 39]—and static elici-

tation techniques that either asks users a number of preset ques-

tions [38] as well as alerts and notification messages to interact

with users [10], or asks users to rank alternative options or user-

provided option improvements to learn a (possibly approximately)

user preference function [4, 7, 37, 42].

In addition, there are some lines of work that address preference-

dependent scheduling problems where some preferences are miss-

ing as incomplete soft constraint problems. For example, open

CSPs [13] and interactive CSPs [23] work with domains that can be

partially specified. Their approaches are to solve larger and larger

problems until a solution is found, while minimizing the number

of variable values asked to the user. Differently, Gelain et al. [16]

assumes variable values are known from the beginning, while some

preferences may be missing, and their general solver schema is to

interleave branch and bound search with elicitation steps.

However, all the works above neither consider heterogenous

bother costs nor interdependency between the preferences. Thus,

they cannot efficiently tackle our problem. There are two recent

frameworks that do consider bother costs: Tabakhi et al. [35] uses

heuristics to identify k critical devices whose preferences should be

elicited, where k is a user-defined parameter. Thus, it assumes that

all queries have identical bother costs, which is not realistic. Truong

et al. [39] do consider heterogenous bother costs, but do not assume

any underlying interdependency structure of the preferences and,

thus, cannot exploit it. Finally, it is worth to mention a very recent

related work of Lewenberg et al. [25], which uses Bayesian matrix

factorization to infer interdependent data in a surveying domain.

However, this work does not consider user bother cost during the

inference process and, thus, is not suitable to our problem.

Additionally, in the automated negotiation literature, there exist

some work in which queries to ask users can be associated with

arbitrary bother costs [1, 2]. However, bother costs are typically

included in the objective function. Thus, proposed solutions typi-

cally select a query that ensures the highest expected negotiation

payoff (i.e., a combination of utility and bother cost). As such, it is

regarded as a one-shot optimization problem. In contrast, iPLEASE

selects the question to ask based on the current state of partially

filled preference matrix and the remaining predefined-bother cost

budget. Thus, we are more interested in an optimal sequence of

queries whose total bother cost does not exceed a budget.

7 CONCLUSIONS
In preference-dependent scheduling (PDS) problems, user prefer-

ences need to be elicited or approximated prior to solving the sched-

uling problem. As PDS systems cannot have an unlimited amount

of interactions with users, preference elicitation algorithms seek

to identify the best subset of questions to ask users such that the

most useful information is gained. Existing methods assume that

all questions have equal bother costs, which is unrealistic in prac-

tice. Further, they do not exploit the fact of often having strong

inter-dependencies between preferences for tasks that need to be

scheduled.

In this paper, we introduce the iPLEASE system, which remedies

both of these deficiencies by (1) incorporating a bother cost to each

question, which is dependent on the amount of information it elicits,

and (2) using matrix completion algorithms, which exploits the

inter-dependencies between tasks, to approximate the preference

matrix. Experimental results show that it outperforms non-trivial

benchmarks on both randomly-generated problems as well as on a

real-world DSM dataset. Future work includes the integration of

this framework with scheduling algorithms to better evaluate the

impact of the schedules found when different preference elicitation

algorithms are used.

8 ACKNOWLEDGEMENTS
This research is partially supported by NSF grants 1345232 and

1619273. In addition, Long Tran-Thanhwas supported by the EPSRC

funded project STRICT (EP/N02026X/1).

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1466

REFERENCES
[1] Tim Baarslag, Alper T. Alan, Richard C. Gomer, Ilaria Liccardi, Helia Marreiros,

Enrico H. Gerding, and M. C. Schraefel. 2016. Negotiation as an Interaction

Mechanism for Deciding App Permissions. In Proc. of CHI, Extended Abstracts.
2012–2019.

[2] Tim Baarslag and Michael Kaisers. 2017. The Value of Information in Automated

Negotiation: A Decision Model for Eliciting User Preferences. In Proc. of AAMAS.
391–400.

[3] Jacek Blazewicz,Wolfgang Domschke, and Erwin Pesch. 1996. The job shop sched-

uling problem: Conventional and new solution techniques. European Journal of
Operational Research 93, 1 (1996), 1 – 33.

[4] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. 2006.

Constraint-based optimization and utility elicitation using the minimax decision

criterion. Artif. Intell. 170, 8-9 (2006), 686–713.
[5] Craig Boutilier, Richard S. Zemel, and Benjamin M. Marlin. 2003. Active Collabo-

rative Filtering. In Proc. of UAI. 98–106.
[6] Emmanuel J. Candès and Benjamin Recht. 2009. Exact Matrix Completion via

Convex Optimization. Foundations of Computational Mathematics 9, 6 (2009),

717–772.

[7] Urszula Chajewska, Daphne Koller, and Ronald Parr. 2000. Making Rational

Decisions Using Adaptive Utility Elicitation. In Proc. of AAAI. 363–369.
[8] Shayok Chakraborty, Jiayu Zhou, Vineeth Nallure Balasubramanian, Sethuraman

Panchanathan, Ian Davidson, and Jieping Ye. 2013. Active Matrix Completion. In

Proc. of ICDM. 81–90.

[9] Robin Cohen, Michael Y. K. Cheng, and Michael W. Fleming. 2005. Why bother

about bother: Is it worth it to ask the user. In Proc. of AAAI Fall Symposium.

[10] Enrico Costanza, Joel E. Fischer, James A. Colley, Tom Rodden, Sarvapali D.

Ramchurn, and Nicholas R. Jennings. 2014. Doing the laundry with agents: a

field trial of a future smart energy system in the home. In Proc. of CHI. 813–822.
[11] Inc. CVX Research. 2012. CVX: Matlab Software for Disciplined Convex Pro-

gramming, version 2.0. http://cvxr.com/cvx. (Aug. 2012).

[12] S. Dahi and S. Tabbane. 2013. Sigmoid utility function formulation for handoff

reducing Access model in cognitive radio. In Proc. of ISCIT. 166–170.
[13] Boi Faltings and Santiago Macho-Gonzalez. 2005. Open constraint programming.

Artif. Intell. 161, 1-2 (2005), 181–208.
[14] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. 2017. A Multiagent

System Approach to Scheduling Devices in Smart Homes. In Proc. of AAMAS.
981–989.

[15] Michael William Fleming. 2004. Reasoning About Interaction in Mixed-initiative
Artificial Intelligence Systems. Ph.D. Dissertation. Waterloo, Ont., Canada, Canada.

Advisor(s) Cohen, Robin. AAINQ91996.

[16] Mirco Gelain, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby

Walsh. 2010. Elicitation strategies for soft constraint problems with missing

preferences: Properties, algorithms and experimental studies. Artif. Intell. 174,
3-4 (2010), 270–294.

[17] Judy Goldsmith and Ulrich Junker. 2008. Preference Handling for Artificial

Intelligence. AI Magazine 29, 4 (2008), 9–12.
[18] M. Grant and S. Boyd. 2008. Graph implementations for nonsmooth convex

programs. In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and
H. Kimura (Eds.). Springer-Verlag Limited, 95–110. http://stanford.edu/~boyd/

graph_dcp.html.

[19] Rong Jin and Luo Si. 2004. A Bayesian Approach toward Active Learning for

Collaborative Filtering. In Proc. of UAI. 278–285.
[20] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. 2009. Matrix

completion from a few entries. In Proc. of ISIT. 324–328.
[21] Miriam C. Klein-FlÃĳgge, Steven W. Kennerley, Ana C. Saraiva, Will D. Penny,

and Sven Bestmann. 2015. Behavioral Modeling of Human Choices Reveals

Dissociable Effects of Physical Effort and Temporal Delay on Reward Devaluation.

PLOS Computational Biology 11, 3 (03 2015), 1–31.

[22] J. Zico Kolter and Matthew J. Johnson. 2011. REDD: A Public Data Set for Energy

Disaggregation Research. In Proc. of SustKDD.
[23] Evelina Lamma, Paola Mello, Michela Milano, Rita Cucchiara, Marco Gavanelli,

and Massimo Piccardi. 1999. Constraint Propagation and Value Acquisition: Why

we should do it Interactively. In Proc. of IJCAI. 468–477.
[24] Chao Lan, Yujie Deng, and Jun Huan. 2016. A disagreement-based active matrix

completion approach with provable guarantee. In Proc. of IJCNN. 4082–4088.
[25] Yoad Lewenberg, Yoram Bachrach, Ulrich Paquet, and Jeffrey S Rosenschein. 2017.

Knowing What to Ask: A Bayesian Active Learning Approach to the Surveying

Problem. In Proc. of AAAI. 1396–1402.
[26] Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and

Pradeep Varakantham. 2004. Taking DCOP to the Real World: Efficient Complete

Solutions for Distributed Multi-Event Scheduling. In Proc. of AAMAS. 310–317.
[27] Oliver Parson, Siddhartha Ghosh, Mark J. Weal, and Alex Rogers. 2012. Non-

Intrusive Load Monitoring Using Prior Models of General Appliance Types. In

Proc. of AAAI.
[28] David Pisinger. 1997. A Minimal Algorithm for the 0-1 Knapsack Problem.

Operations Research 45, 5 (1997), 758–767.

[29] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nicholas R.

Jennings. 2011. Agent-based homeostatic control for green energy in the smart

grid. ACM TIST 2, 4 (2011), 35:1–35:28.

[30] Yonglin Ren, Mian Qin, and Weilin Ren. 2007. A Web Intelligent System based

on Measuring the Effects of Bother. In Proc. of WIC. 715–718.
[31] Irina Rish and Gerald Tesauro. 2008. Active Collaborative Prediction with Maxi-

mum Margin Matrix Factorization. In Proc. of ISAIM.

[32] Pierre Rust, Gauthier Picard, and Fano Ramparany. 2016. Using Message-Passing

DCOP Algorithms to Solve Energy-Efficient Smart Environment Configuration

Problems. In Proc. of IJCAI. 468–474.
[33] Rahul Singh. 2003. RCal: An Autonomous Agent for Intelligent Distributed Meeting

Scheduling. Master’s thesis. Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA.

[34] Dougal J. Sutherland, Barnabás Póczos, and Jeff G. Schneider. 2013. Active

learning and search on low-rank matrices. In Proc. of KDD. 212–220.
[35] Atena M. Tabakhi, Tiep Le, Ferdinando Fioretto, and William Yeoh. 2017. Prefer-

ence Elicitation for DCOPs. In Proc. of CP. 278–296.
[36] Milind Tambe. 2008. Electric Elves: What Went Wrong and Why. AI Magazine

29, 2 (2008), 23–27.

[37] Stefano Teso, Paolo Dragone, and Andrea Passerini. 2017. Coactive Critiquing:

Elicitation of Preferences and Features. In Proc. of AAAI. 2639–2645.
[38] Walid Trabelsi, Kenneth N. Brown, and Barry O’Sullivan. 2015. Preference

Elicitation and Reasoning While Smart Shifting of Home Appliances. Energy
Procedia 83 (2015), 389–398.

[39] Ngoc Cuong Truong, Tim Baarslag, Sarvapali D. Ramchurn, and Long Tran-

Thanh. 2016. Interactive Scheduling of Appliance Usage in the Home. In Proc. of
IJCAI. 869–877.

[40] Ngoc Cuong Truong, James McInerney, Long Tran-Thanh, Enrico Costanza, and

Sarvapali D. Ramchurn. 2013. Forecasting Multi-Appliance Usage for Smart

Home Energy Management. In Proc. of IJCAI. 2908–2914.
[41] Lieven Vandenberghe and Stephen P. Boyd. 1996. Semidefinite Programming.

SIAM Rev. 38, 1 (1996), 49–95.
[42] Paolo Viappiani and Craig Boutilier. 2010. Optimal Bayesian Recommendation

Sets and Myopically Optimal Choice Query Sets. In Proc. of NIPS. 2352–2360.
[43] Perukrishnen Vytelingum, Thomas Voice, Sarvapali D. Ramchurn, Alex Rogers,

and Nicholas R. Jennings. 2011. Theoretical and Practical Foundations of Large-

Scale Agent-Based Micro-Storage in the Smart Grid. J. Artif. Intell. Res. 42 (2011),
765–813.

Session 40: Human and Agent Interaction AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1467

http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

	Abstract
	1 Introduction
	2 Background
	3 Problem Definition
	4 iPLEASE System
	5 Experimental Results
	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References

