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ABSTRACT
Ranking algorithms of e-commerce sites take the buyer’s search

query and information of the corresponding sellers’ items as input,

and output a ranking of sellers’ items that maximizes sites’ objec-

tives. However, the conversion rate of each item (i.e., the probability

of a completed transaction) not only depends on the ranking given

by the site (which controls click-through rates), but also depends

on the item price set by its seller(which controls the buyer’s willing-

ness to buy). As a result, a ranking algorithm is in fact a mechanism

that deals with sellers who strategically set item prices.

An interesting fact about this setting, at least the status quo for
the largest e-commerce sites such as Taobao, Amazon, and eBay, is

that sellers are usually not given the option to report their private

costs but can only communicate with the site by setting item prices.

In terms of mechanism design, this is a setting where the designer

is restricted to design a specific type of indirect mechanisms.

We follow the framework of implementing optimal direct mech-

anisms by indirect mechanisms to tackle this optimal indirect rank-

ing mechanism design problem. We firstly define a related optimal

direct ranking mechanism design setting and use Myerson’s char-

acterization to optimize in that setting. We then characterize the

class of direct mechanisms which could be implemented by indirect

mechanisms, and construct a mapping that maps the mechanisms

designed in the previous direct setting to indirect mechanisms in

the original setting where sellers are allowed only to set item prices.

We show that, using this technique, one can obtain mechanisms in

the indirect setting that maximize expected total trading volume.

We then present the mechanism employed by one of the largest

e-commerce websites currently, get a Bayesian Nash Equilibrium

of it and obtain the gap of the volume of the site’s mechanism and

the optimal mechanism. Given real dataset from the site, we also

simulate our optimal mechanism and the site’s mechanism, and

it shows that our mechanism outperforms the site’s mechanism

significantly.

KEYWORDS
Mechanism Design; Ranking; E-commerce

ACM Reference Format:
Qingpeng Cai, Pingzhong Tang, and Yulong Zeng. 2018. Ranking Mecha-

nism Design for Price-setting Agents in E-commerce. In Proc. of the 17th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
When a buyer types a search query on an e-commerce site, the site

is called a ranking algorithm that sorts all the sellers’ items that

match the search query and displays the ranked list to the buyer.

This ranking is crucial for the sellers, because higher rankings will

lead to higher click-through rates, a key factor in sellers’ profit. A

standard ranking algorithm prefers sellers with higher reputations,

the number of completed historical transactions and lower item

prices. From a seller’s point of view, on the one hand, she would

like to set a lower price, that yields a good ranking and attracts

more transactions that lead to better future rankings; on the other

hand, she would like to raise the price for better profit. The current

design of ranking algorithms on e-commerce sites makes these

details very obscure and difficult for sellers to optimize her own

utility. As a result, it is widely observed from data on these sites

that the prices fluctuate frequently and new sellers have to set very

low prices in order to attract more buyer impressions
1
.

In this paper, we investigate the design of ranking algorithms

from a mechanism design perspective. We model the problem as

a variant of one-shot sponsored search auction problem and aim

to incentivize the sellers to set prices appropriately in order to

maximize the site’s objectives, such as the total trading volume. For

a related problem on how to prevent the sellers from manipulating

reputation scores and the number of transactions, see a recent

mechanism design approach proposed by [4].

As mentioned in the abstract, an interesting fact about the e-

commerce setting, different from any auction setting, is that sellers

are usually not given the option to report their private types, which

are normally their costs for producing the items, but can only

communicate with the site by setting item prices. This renders our

problem an instance of indirect mechanism design.

Our work falls under the umbrella of implementing optimal direct
mechanisms by indirect mechanisms. In the auction design literature,
a line of work considers the problemwhere bidders are only allowed

to report several discrete bid levels [2, 3, 18, 21], even though they

have a continuous type space. [12] present a class of winners-pay-

bid mechanisms where there exist simple and nontruthful equilibria

in Internet advertising. As a result, the design problem also becomes

indirect. Note that the set of prices sellers could post is not restricted

in our setting, and the utility of each seller does not only rely on

the allocation and the transfer, but also depends on the conversion

rate that is decided by the action she chooses, which means that

their characterizations of the class of direct mechanisms which can

1
Back to 2015, there was a very famous price competition for a type of tea at Taobao

and eventually the price of a box of tea, which was normally worth more than 20

dollars, lowered to 1 dollar.
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be implemented by indirect mechanisms can not be applied in our

setting.

In this paper, we aim to design indirect mechanisms that im-

plement the site’s objectives at their (nontruthful) Bayes Nash

equilibria(BNE) [13, 20], called total trading volume, which most

e-commerce websites care most. Our first contribution is that we

construct a related direct mechanism design setting and use My-

erson’s characterization [19, 22] to optimize in that setting. We

then construct a mapping that maps the mechanisms designed in

the previous direct setting to indirect mechanisms in the original

setting where sellers are allowed only to set item prices and charac-

terize the class of direct mechanisms which could be implemented

by indirect mechanisms. Our second contribution is that we ob-

tain optimal mechanisms in this indirect setting in terms of the

expected total trading volume and BNE of these mechanisms are

simple functions. Our third contribution is that we obtain a simple

BNE of the mechanism employed by one of the largest e-commerce

websites in the world and the gap of volume between it and the

optimal mechanism. The other contribution is that we simulate the

optimal mechanism and compare it with the site’s mechanism based

on a dataset from the site, which shows our mechanism performs

significantly better than the site’s mechanism.

1.1 Related work
It is necessary to compare our setting with the well-studied spon-

sored search setting [7, 10, 17], in which the outcome of the mech-

anism is also rankings of slots and transfers of agents. However,

besides the difference about the spaces of reporting, most of spon-

sored search literature focuses on objectives of revenue and social

welfare, our setting is the first work that considers maximizing the

expected total trading volume to the best of our knowledge. We

introduce a direct mechanism problem which is related to our prob-

lem and show the convertibility of it to the traditional sponsored

search auction.

We are not the first to study mechanism design in e-commerce

and reputation sites. A line of work [8, 14–16] study how to incen-

tivize the buyers to leave truthful feedbacks. [4], mentioned before,

consider the problem that sellers manipulating their reputation

scores by creating fake transactions and designing truthful mecha-

nisms that maximize social welfare. [5] consider a multiple rounds

version of our problem and tackle it by a approach of reinforcement

mechanism design [6, 23]. [24] consider reputation systems with

strategic buyers and sellers. [1] consider the setting that buyers and

sellers trade through intermediaries.

2 THE SETTING
In a typical e-commerce setting, a ranking mechanism ranks m
sellers over n slots, and each one sells a different item that matches

the same buyer query. Each seller i has a private cost ci for his
item. The prior distribution of ci is independently drawn from

Fi [0,hi ]. Let fi (ci ) denote the probability density function of seller

i , f (c ) =
∏m

i=1 fi (ci ) denote the joint probability density of c and
f−i (c−i ) denote the joint probability density of c−i . The buyer’s

valuation towards seller i’item is a uniform distribution on [0,hi ].
2
Each seller i sets a take-it-or-leave-it price pi for the buyer.
A ranking mechanism f takes as input the posted prices p of all

sellers, and outputs a ranking of these sellers in the result page for

the buyer. Let xi j denote the probability that seller i is ranked in

j-th slot. The probability that the buyer clicks on seller i’s item is

denoted by αi j
3
.

Given a ranking x , the expected probability that the buyer clicks

seller i’s item is qi =
∑n
j=1 αi jxi j . A ranking x is feasible if it

satisfies the following constraints

∀i∀j, 0 ≤ xi j ≤ 1.

∀j,
m∑
i=1

xi j ≤ 1.

∀i,
n∑
j=1

xi j ≤ 1.

Upon receiving the price vector p set by all sellers, a mechanism

must return a ranking x (p) and a transfer t (p). Let xi j (p) denote

the probability that seller i is assigned to slot j and ti (p)
4
denote

the transfer seller i makes to the mechanism. Given a mechanism

f and sellers’ prices p, the utility of seller i with a type ci is

ui (ci ,p) =
n∑
j=1

αi jxi j (p) (hi − pi )
+ (pi − ci )/hi − ti (p).

(hi − pi )
+/hi meansmax

{
0,hi − pi

}
/hi , which denotes the con-

version rate of seller i given a price pi . That is, the utility of a seller

equals the difference between the expected profit(the product of

the probability that the buyer clicks seller i’ item, the conversion

rate, and revenue of a seller selling one item) and the money paid

to the designer.

The description so far prevents us from designing a direct mech-

anism since the sellers are not allowed to report their private costs.

As a result, we hope to design indirect mechanisms whose interim

individual rational bayesian nash equilibria(IIR-BNE) yield desir-

able the expected total trading volume for the designer.

Definition 2.1. Given a mechanism f , an interim individual ra-

tional bayesian nash equilibrium (IIR-BNE) is a profile of strategies

s that maps each seller’s type to a price. Let si (ci ) denote the strat-
egy function of seller i , s−i (c−i ) denote the posted prices of sellers

except from seller i when sellers follow strategies s−i . Let

Ui (ci ,pi ) =

∫
ui (ci , (pi , s−i (c−i ))) f−i (c−i )dc−i

be the interim utility of a seller i with type ci who sets a price pi ,
when others follow the strategies s−i . s is called an IIR-BNE if and

only if each seller gets the maximum interim utility if she follows

2
We make the uniform valuation assumption for ease of presentation. The approach

and analysis extend straightforwardly to any valuation.

3
We assume the click-through rates is independent of posted prices of sellers, which

is a standard assumption in sponsored search auction setting. The main results of this

paper hold without this assumption trivially.

4
A positive transfer means that the seller pays a commission fee to the site, otherwise

the site reimburses the seller.
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strategy si with others following the equilibrium and each seller

gets non negative interim utility in this IIR-BNE:

∀i∀ci∀pi ,Ui (ci , si (ci )) ≥ Ui (ci ,pi ).

∀i∀ci ,Ui (ci , si (ci )) ≥ 0.

Our objective is to find a feasible mechanism with at least an

IIR-BNE that maximizes the expected total trading volume. As a

mechanism may have multiple IIR-BNE, we define a mechanism’s

volume as the maximum expected total trading volume among all

IIR-BNE of this mechanism.

Definition 2.2. Given a mechanism f with at least an IIR-BNE,

let S denote the set of all IIR-BNE where the posted price for any

seller is no less than its cost, then its volume is

maxs ∈S

∫ m∑
i=1

n∑
j=1

αi jxi j (s (c ))

(hi − si (ci ))
+si (ci ) f (c )/hidc .

The reason why we only consider those IIR-BNE where the

posted price for any seller is no less than its cost is that, without

this restriction, one can design a trivial mechanism as follows: rank

these sellers in descending order of the expected trading volume,

and pay these sellers sufficiently to ensure IIR. There is an unique

BNE, si (ci ) = hi/2, and the mechanism is optimal. Obviously this

mechanism is not practical, the site needs to reimburse to sellers.

To make the analysis easier to follow, we firstly design opti-

mal direct mechanisms in a related setting, then use these direct

mechanisms to construct optimal indirect mechanisms.

3 A RELATED DIRECT MECHANISM DESIGN
SETTING

In this section we present a related direct mechanism design setting,

and design optimal mechanisms. The major difference between this

setting and previous setting is that sellers report their costs directly

to the mechanism, and the mechanism decides prices for sellers

rather than letting sellers posting prices.

A direct mechanism д takes the reported costs of items c as input,
outputs an allocation x (c ), a vector of prices p (c ) and a vector of

transfers t (c ). Given a mechanism д and reported prices c
′

, the

utility of seller i with a type ci reporting type c
′

i is

ui (ci , c
′

) =
n∑
j=1

αi jxi j (c
′

) (hi − pi (c
′

))
+

(pi (c
′

) − ci )/hi − ti (c
′

).

There are some properties that a direct mechanism satisfies.

Definition 3.1. Feasibility. A mechanism is feasible if it satisfies

the following constraints

∀i∀j∀c
′

, 0 ≤ xi j (c
′

) ≤ 1.

∀j∀c
′

,

m∑
i=1

xi j (c
′

) ≤ 1.

∀i∀c
′

,

n∑
j=1

xi j (c
′

) ≤ 1.

∀i∀c
′

,pi (c
′

) ≥ c
′

i .

Definition 3.2. BIC(Bayesian incentive compatible).

For any seller, telling the truth will get the maximum interim

utility with others reporting costs truthfully, i.e.

Ui (ci , c
′

i ) =

∫
ui (ci , (c

′

i , c−i )) f−i (c−i )dc−i ,

∀i∀ci∀c
′

i ,Ui (ci , ci ) ≥ Ui (ci , c
′

i ).

Definition 3.3. IIR(Interim individual rational).

For any seller, telling the truth will get non-negative interim

utility when others report costs truthfully, i.e.

∀i∀ci ,Ui (ci , ci ) ≥ 0.

Our objective in this setting is to find an optimal mechanism

with feasibility, BIC and IIR property that maximizes the volume.

Definition 3.4. Given a BIC and IIR mechanism д, д’s volume is∫ m∑
i=1

n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+pi (c ) f (c )/hidc .

We get necessary and sufficient conditions of BIC and IIR by

applying Myseron’s approach in [19].

Theorem 3.5. Let

Bi (ai ) =

∫ n∑
j=1

αi jxi j (ai , c−i )

(hi − pi (ai , c−i ))
+ f−i (c−i )/hidc−i ,

i.e. the expected probability of the buyer purchasing seller i’s item
when he reports ai and others report costs truthfully. A mechanism is
BIC and IIR if and only if for all i , Bi (ci ) is non-increasing on ci and

∀i∀ci ,
dUi (ci , ci )

dci
= −Bi (ci ). (1)

∀i,Ui (hi ,hi ) ≥ 0. (2)

Proof. If a mechanism is BIC and IIR, the property (2) is directly

from IIR. For all i and ci , let c
′

i = ci + δc (δc > 0). By BIC, we have

that

Ui (ci , ci ) ≥ Ui (ci , c
′

i ),

Ui (c
′

i , c
′

i ) ≥ Ui (c
′

i , ci ).

Let

Ai (ci ) =

∫ n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+

pi (c ) f−i (c−i )/hidc−i ,

Ti (ci ) =

∫
ti (ci , c−i ) f−i (c−i )dc−i .
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From above formulas,

Ai (ci ) −Ti (ci ) − Bi (ci )ci ≥ Ai (c
′

i ) −Ti (c
′

i ) − Bi (c
′

i )ci ,

Ai (c
′

i ) −Ti (c
′

i ) − Bi (c
′

i )c
′

i ≥ Ai (ci ) −Ti (ci ) − Bi (ci )c
′

i .

Then we can get

−Bi (ci ) ≤
Ui (c

′

i , c
′

i ) −Ui (ci , ci )

δc
≤ −Bi (c

′

i ).

We get Bi (ci ) is non-increasing on ci , by taking the limit of this

formula on δc in two sides, we can get the equation (1) and the

equation (2).

On the other hand, If a mechanism д satisfies these properties,

by the equation (1) and the equation (2), the interim utility of a

seller telling the truth when others tell the truth is non-negative,

thus д is IIR. BIC is equivalent to

∀i∀ci∀c
′

i ,Ui (ci , ci ) ≥ Ui (c
′

i , c
′

i ) + B (c
′

i ) (c
′

i − ci ).

As the mechanism satisfies the equation (1) and Bi (ci ) is non-

increasing on ci , the above inequality holds and д is BIC. □

3.1 Optimal direct mechanism that maximizes
volume

In this section, we present the optimal direct ranking mechanism

(ODRM). By recalling the definition, any direct mechanism’s volume

is ∫ m∑
i=1

n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+pi (c ) f (c )/hidc .

We optimize volume by maximizing the total trading volume point-

wise and construct a transfer rule that makes the mechanism BIC

and IIR. By the definition of feasibility, for any seller i and any

input type profile c , pi (c ) ≥ ci . In ODRM, each seller i’s price is
set as hi/2 if ci ≤ hi/2 otherwise the price is set as ci to maximize

(hi − pi (c ))
+pi (c ). The allocation x (c ) of any input type profile c

is calculated by this linear programming:

maxx (c )

m∑
i=1

n∑
j=1

αi jxi j (c )
(hi − pi (c ))

+pi (c )

hi

∀i∀j, 0 ≤ xi j (c ) ≤ 1.

∀j,
m∑
i=1

xi j (c ) ≤ 1.

∀i,
n∑
j=1

xi j (c ) ≤ 1.

(3)

Note that all hi ,pi (ci ) in linear programming (3) are constant,

if we replace (hi − pi (c ))
+pi (c )/hi to a new variable vi , then (3) is

indeed a problem in the sponsored search auction, whose goal is

allocative efficiency[20]. As shown in [20], this linear programming

is equivalent to themaximum-weight perfect matching in a bipartite

graph, which is solvable in O ((m + n)3) [9].
To ensure BIC and IIR, we letUi (hi ,hi ) = 0 becauseUi (hi ,hi ) ≥

0 and the mechanism pays the minimum expected money if it equals

to 0, i.e.

∀i∀ci ,Ui (ci , ci ) −

∫ hi

ci
Bi (ai )dai = 0. (4)

Then by the definition of Ui (ci , ci ),∫
ti (ci , c−i ) f−i (c−i )dc−i =

∫ n∑
j=1

αi jxi j (ci , c−i )

(hi − pi (c ))
+ (pi (ci , c−i ) − ci )

f−i (c−i )/hidc−i

−

∫ hi

ci
Bi (ai )dai .

By the definition of function Bi ,∫ hi

ci
Bi (ai )dai =

∫ hi

ci

∫ n∑
j=1

αi jxi j (ai , c−i )

(hi − pi (ai , c−i ))
+ f−i (c−i )/hidc−idai .

If we let

∀i∀c, ti (ci , c−i ) =
n∑
j=1

αi jxi j (ci , c−i ) (hi − pi (c ))
+

(pi (ci , c−i ) − ci )/hi −

∫ hi

ci

n∑
j=1

αi j

xi j (ai , c−i ) (hi − pi (ai , c−i ))
+ fi (ai )/hidai ,

(5)

(4) holds.

Now we prove that ODRM is BIC and IIR. Firstly we prove that

each seller’s clicked probability decreases as reported cost increases

by the following lemma.

Lemma 3.6. For any output ranking of ODRM with any input
profile c

′

, let qi (c
′

) =
∑n
j=1 αi jxi j (c

′

), then

∀i∀c
′

−i∀c
′

i∀ci (c
′

i ≥ ci ),qi (ci , c
′

−i ) ≥ qi (c
′

i , c
′

−i ).

Proof. By contradiction, we assume there exist some ci , c
′

−i and

c
′

i ≥ ci , such that qi (ci , c
′

−i ) < qi (c
′

i , c
′

−i ). Let S1 denote the set of

feasible rankings x
′

that satisfies

∀j,x
′

i j = xi j (ci , c
′

−i )

and S2 denote the set of feasible rankings x
′

that satisfies

∀j,x
′

i j = xi j (c
′

i , c
′

−i ).

Let wi (ci ) = (hi − pi (c ))
+pi (c )/hi , by the definition of the alloca-

tion,

qi (ci , c
′

−i )wi (ci ) +maxx ′ ∈S1

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ) ≥

qi (c
′

i , c
′

−i )wi (ci ) +maxx ′ ∈S2

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ),

and

qi (ci , c
′

−i ) < qi (c
′

i , c
′

−i )

wi (ci , c
′

−i ) ≥ wi (c
′

i , c
′

−i ),

we get
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qi (ci , c
′

−i )wi (c
′

i ) +maxx ′ ∈S1

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ) >

qi (c
′

i , c
′

−i )wi (c
′

i ) +maxx ′ ∈S2

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ).

That is, x (c
′

i , c
′

−i ) is not the ranking with the maximum volume

for input profile (c
′

i , c
′

−i ), which contradicts the assumption. □

From these facts of each seller i’s the expected clicked probability
andpi (ci ) are non-increasing as ci increases andpi (ci ) is larger than
hi/2, we obtain that function Bi (ci ) is monotone non-increasing as

ci increases. As the transfer rule is defined by (5), ODRM satisfies

(1) and (2). By Theorem 1, we come to the conclusion that this

mechanism is BIC, IIR and feasible.

4 INDIRECT MECHANISMS
In this section we establish the connections between indirect mech-

anisms with at least an IIR-BNE in the original setting and IIR,

BIC and direct mechanisms in the related setting. Then we use

this connection to construct the optimal indirect ranking mecha-

nism(OIRM) that implements ODRM. We begin transformations in

one direction with the following lemma with the idea of revelation

principle.

Lemma 4.1. For any indirect mechanism f with at least an IIR-
BNE, let x denote the allocation function, t denote the transfer function
of f . For any IIR-BNE s of f , we define a direct mechanism д with
allocation funtion x

′

, pricing fuction p and transfer function t
′

that
satisfies

∀i∀j∀c,x
′

i j (c ) = xi j (s (c ))

∀i∀c,p
′

i (c ) = si (ci )

∀i∀c, t
′

i (c ) = ti (s (c )),

then д is IIR, BIC and for any input type profile, the allocation, the
prices, and the transfers of f in the BNE are the same with those of д.

Proof. It suffices to prove that mechanism д is IIR and BIC. For

any seller i , LetUi (д, ci , c
′

i ) denote the interim utility of seller i with

type ci reporting c
′

i when others tell the truth in mechanism д, and
Ui ( f , ci ,pi ) denote the interim utility of seller i with type ci posting
the price pi when others follow the strategies s−i in mechanism f .
By the construction of д,

∀i∀ci ,Ui (д, ci , c
′

i ) = Ui ( f , ci , si (c
′

i )).

By the definition of s ,

∀i∀ci ,Ui ( f , ci , si (ci )) ≥ Ui ( f , ci , si (c
′

i )).

Then ∀i∀ci ,Ui (д, ci , ci ) ≥ Ui (д, ci , c
′

i ). Thus mechanism д is BIC.

Because s is an IIR-BNE,

∀i∀ci ,Ui ( f , ci , si (ci )) ≥ 0.

We have ∀i∀ci ,Ui (д, ci , ci ) ≥ 0, making д is IIR. □

The above lemma states that the optimal indirect mechanism’s

volume is less than that of the optimal direct mechanism.

Conversely, we characterize the class of IIR, BIC and direct mech-

anisms which can be implemented by indirect mechanisms.

Definition 4.2. Given a direct mechanism д, we define function
Gi and Di for each seller i ,

Gi (ci ) =

∫ n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+ (pi (c ) − ci )

f−i (c−i )dc−i/

∫ n∑
j=1

αi jxi j (c ) f−i (c−i )dc−i .

(6)

Di (ci ) =
hi + ci +

√
(hi − ci )

2 − 4Gi (ci )

2

. (7)

A mechanism is invertible if

∀c, c
′

(∀i,Di (ci ) = Di (c
′

i )),x (c
′

) = x (c )

∀c, c
′

(∀i,Di (ci ) = Di (c
′

i )), t (c
′

) = t (c ).

That is, an invertible mechanism should satisfy the property:

for any c , the outcome of this mechanism on two inputs c and c
′

such that Di (ci ) = Di (c
′

i ) for each seller i are the same. Note that

this class contains many mechanisms, as a direct mechanism with

monotone price function pi (c ) which only depends on ci
5
for each

seller i is within this class.

For any IIR and BIC mechanism, we prove that a mechanism

is invertible if and only if there exists an indirect mechanism that

implements it.

Lemma 4.3. For any IIR ,BIC and direct mechanism д with the
allocation function x , the pricing function p and the transfer function
t , there exists an indirect mechanism f with the allocation function
x
′

, and the transfer function t
′

where there exists an IIR-BNE s that
satisfies

∀i∀j∀c,x
′

i j (s (c )) = xi j (c )

∀i∀ci , si (ci ) = Di (ci ).

∀i∀c, t
′

i (s (c )) = ti (c ).

and for any type profile, the allocation, the transfer, and interim utility
of sellers of f and д are the same if and only if д is invertible.

Proof. On the one hand, If д is invertible, it suffices to construct

an indirect mechanism f that satisfies the above conditions. For

each seller i , let Ii ([0,hi ]) be the image of function Di (ci ) on [0,hi ].
Then for each seller i , we define an inverse function of Di , Ci on
the set Ii ([0,hi ]), i.e. ∀a ∈ Ii ([0,hi ]),Di (Ci (a)) = a.6 We define

function

C (p) = (C1 (p1), ...,Cm (pm ))

for any input vector p such that the price of any seller i is in the

domain of Ci .
The allocation and the transfer are designed as follows:

∀i∀j∀p,x
′

i j (p) =

{
xi j (C (p)),pi ∈ Ii ([0,hi ])

0,pi < Ii ([0,hi ])
(8)

5Di (ci ) = pi (c ) and is monotone in this case.

6
For any value a ∈ Ii ([0, hi ]) with multiple b ∈ [0, hi ] such that Di (b ) = a, we
choose the smallest one as the value of Ci (a).
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∀i∀p, t
′

i (p) =

{
ti (C (p)),pi ∈ Ii ([0,hi ])

0,pi < Ii ([0,hi ])
(9)

If there is another seller j that posts a price that is not in the domain

of Cj , we ignore and remove the seller. Now we prove that s is a

BNE of the mechanism f . LetUi (д, ci , c
′

i ) denote the interim utility

of seller i with type ci reporting c
′

i in mechanism д, andUi ( f , ci ,pi )
denote the interim utility of seller i with type ci posting the price
pi in mechanism f . It suffices to prove that

∀i∀ci∀pi ,Ui ( f , ci , si (ci )) ≥ Ui ( f , ci ,pi ). (10)

By the construction of f ,

Ui ( f , ci , si (ci )) =

∫
(
n∑
j=1

αi jx
′

i j (D (c )) (hi − Di (ci ))
+ (Di

(ci ) − ci )/hi − t
′

i (D (c )) f−i (c−i )dc−i .

(11)

By the definition of interim utility,

Ui (д, ci , ci ) =

∫
(
n∑
j=1

xi j (c )αi j (hi − pi (ci ))
+

(pi (ci ) − ci )/hi − ti (c )) f−i (c−i )dc−i .

(12)

As mechanism g is invertible,

x
′

i j (D (c )) = xi j (c )

t
′

i (D (c )) = ti (c ).
(13)

Then by (6)(7)(11)(12)(13), we get

Ui ( f , ci , si (ci )) = Ui (д, ci , ci ).

Because mechanism д is IIR,Ui (д, ci , ci ) ≥ 0. If seller i posts a price
pi that is not in the domain of Ci , the interim utility he will get,

Ui ( f , ci ,pi ), is 0. Otherwise

Ui ( f , ci ,pi ) = Ui ( f , ci , si (Ci (pi ))) = Ui (д, ci ,Ci (pi )). (14)

As д is BIC, Ui (д, ci , ci ) ≥ Ui (д, ci ,Ci (pi )). Thus (10) holds, and in

the BNE each seller gets non-negative interim utility.

On the other hand, if there exists an indirect mechanism f that

implements mechanism д, by the definition of f , we have

∀c,x
′

(D (c )) = x (c )

∀c, t
′

(D (c )) = t (c ).

If there exists c
′

such that D (c
′

) = D (c ), it is natural to get that

x (c ) = x (c
′

) and t (c ) = t (c
′

).
□

4.1 Optimal indirect mechanism that
maximizes volume

In ODRM, the value of Di (ci ) for any seller i is hi/2 if the reported
price is less than hi/2, otherwise the value is ci . ODRM is not

invertible because a seller reporting cost ci and c
′

i such thatDi (ci ) =

Di (c
′

i ) ≤ hi/2 may get a different fraction of the buyer impression

and pay different money. We are not able to use the technique in

the proof of Lemma 4.3 directly. Here we present a class of BIC,

IIR, invertible and direct mechanisms which are parameterized by

a constant η(0 < η ≤ 1). If we let η approach to 0, its volume

approaches to the optimum.

Mechanism η-optimal. For each value of η(0 < η ≤ 1), the price
function of each seller i is

pi (ci , c
′

−i ) =

{
ηci + (1 − η)hi/2, ci ≤ hi/2

ci , ci > hi/2

}
,

the transfer function is the same as (5) and the allocation is calculated
by (3).

Theorem 4.4. For any choice of η ∈ (0, 1], mechanism η-optimal
is BIC, IIR, invertible, and mechanism η-optimal’s volume approaches
to that of ODRM as η approaches to 0.

Proof. For each value of η ∈ (0, 1], by definition, qi (ci , c−i )
decreases as the reported cost ci increases and the posted price

function is increasing as the reported cost increases. Thus the prob-

ability that the item of each seller is purchased is monotone decreas-

ing with his reported cost. As the transfer rule of the mechanism

satisfies the equation (5) and the mechanism satisfies (1) and (2), by

Theorem 1, we get that the mechanism is IIR and BIC.

By definition, the functionDi (ci ) is strictly monotone increasing

with the reported cost, for any c , C (D (c )) = c , the mechanism is

invertible.

For any type profile, the allocation of mechanism η-optimal and

the prices mechanism η-optimal sets approaches to that of ODRM

as η approaches to 0. By definition, mechanism η-optimal’s volume

approaches to that of ODRM as η approaches to 0. □

We can use (8) and (9) to acquire a class of indirect mechanisms

called OIRM that maximize volume with at least an IIR-BNE param-

eterized by η, and its volume approaches to that of ODRM.

5 THE SITE’S MECHANISM
In this section, we present the mechanism applied by one of the

largest websites in the world, denoted by S, and we obtain a sim-

ple BNE of the mechanism with the assumption of i.i.d uniform

distribution U (0, 1) of costs.

Mechanism S. The mechanism ranks the sellers according to the
weighted volume pi (hi − pi )+/hi by descending order and does not
use the transfer.

By definition of S, it does not use the transfer to ensure the

incentive for sellers. Thus it’s natural to ask whether there exists

a simple BNE of the mechanism or not. We consider the case that

items of sellers are the same and the cost distributions of all sellers

are i.i.d drawn from the uniform distribution U (0, 1) and there is

one slot to be allocated. For the ease of notations, we let α11 =
.. = αm1 = 1. Let s denote the BNE of S. By LEMMA 4.1. We get a

direct mechanism д that satisfies BIC and IIR. Applying the results

of equation (1) in THEOREM 3.5, we get that for any seller i and
any cost ci ,

dsi (ci )

dci
(2si (ci ) − ci − 1)Qi (ci ) =

dQi (ci )

dci
(1 − si (ci )) (si (ci ) − ci ),

(15)

where

Qi (ci ) =

∫
xi1 (si (ci ), s−i (c−i )) f−i (c−i )dc−i .

Firstly we get some properties of the strategy function of each

seller i .
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Lemma 5.1. If s is a BNE of S, for any seller i and any type ci ∈
[0, 1],

1/2 ≤ si (ci ) ≤ (1 + ci )/2.

Proof. By the definition of the interim utility,

Ui ( f , ci ,pi ) =

∫
xi1 (pi , s−i (c−i )) (1 − pi )

+ (pi − ci ) f−i (c−i )dc−i .

As S gives the slot to the seller with posted prices nearest to 1/2,

and the function д(pi ) = (1 − pi )
+ (pi − ci ) attains larger value as

pi approaches to (1 + ci )/2.
Firstly we get that for any i and ci , si (ci ) ≥ 1/2, otherwise

the seller posting a price 1/2 will get more fraction of buyer im-

pression, i.e. xi1 (pi , s−i (c−i )), more revenue selling one item, i.e.

(1 − pi )
+ (pi − ci ) and get more interim utility because 1/2 is closer

to 1/2 and (1 + ci )/2 than si (ci ).
Secondly for any i and ci , si (ci ) ≤ (1 + ci )/2, otherwise let

pi = 1 + ci − si (ci ), the seller posting the price pi will get more

fraction of buyer impression as pi is closer to 1/2 than si (ci ) and
the same revenue selling one item because the distance between

pi and (1 + ci )/2 is the same as the distance between si (ci ) and
(1 + ci )/2, and get more interim utility. □

To get the close form of function Qi (ci ), we assume that the

strategy function of each seller is monotone non-decreasing and

symmetric. By LEMMA 5.1, the posted price of the seller with the

minimum cost is closest to 1/2, which means that for any type

profile c , S gives the slot to the seller with the minimum cost. Thus

Qi (ci ) is the expected probability that ci is theminimum cost among

all sellers, i.e. (1 − ci )
m−1

. By solving the differential equation (15),

we get that

si (ci ) =
mci + 1

m + 1
.

It is not hard to verify that these functions are symmetric and

monotone non-decreasing. Combining this equation with LEMMA

5.1, we get the BNE of S.

Theorem 5.2. Let

si (ci ) =



1/2 0 ≤ ci <
m−1
2m

mci+1
m+1

m−1
2m ≤ ci ≤ 1

,

then s is a BNE of S.

Proof. It suffices to prove that si (ci ) is the best response of

seller i with cost ci when others follow s−i . For any seller i , If
others following the strategies s−i , others’s posted prices is 1/2 with
probability

m−1
2m , and a uniform distributionU (1/2, 1) with density

m+1
m . We only need to consider the case that pi ≥ 1/2 by LEMMA

5.1, the seller’s expected clicked probability is ((1 − pi )
m+1
m )

m−1
.

The interim utility of seller i with cost ci posting a price pi is

Ui ( f , ci ,pi ) = (1 − pi ) (pi − ci ) ((1 − pi )
m + 1

m
)
m−1
. (16)

It is easy to verify that Ui ( f , ci ,pi ) attains the maximum value

when pi = si (ci ). □

This result explains that why the site uses this mechanism and

gives sellers a simple BNE strategy to follow. Also, we get the gap

between the volume of OIRM mechanism and S. We omit the proof

due to lack of space.

Lemma 5.3. For any numberm of sellers, we have

Vol (OIRM )−Vol ( f ) ≥
3m + 2

4(m + 1) (m + 2)
((
m + 1

2m
)
m
−(

1

2

)
m
). (17)

6 EXPERIMENTAL EVALUATION
Besides the theoretical analysis of S with i.i.d uniform distribution

U (0, 1) of costs and uniform valuation of buyers, we simulate OIRM

and compare its performance with S based on the trading dataset

from one of the largest e-commerce sites in the world.

• Dataset
The relational dataset contains a history of 9354 different

items controlled by different sellers matching a certain key-

word in 64 days. Each record in the dataset contains a daily

record of the number of buyers clicks that an item i received
vi (pi ), the item’s number of transactions ni (pi ), and the

price of the item pi . We delete records that correspond to

items that were not sold even once during 64 days and filter

all items with price lower than 1 RMB
7
. Then we get a new

relational dataset with 579 sellers. The click-through rates α
of these sellers over different slots is provided by the site.

• Estimate the valuation of buyer
By the assumption that the valuation of interested buyers

over each item i is a uniform distributionU [0,hi ], the con-
version rate(the ratio between the number of transactions

and the number of clicks of this item) given a price i is
(hi − pi )

+/hi . We then use linear interpolation to fit param-

eters hi of each seller i .
• Estimate the cost distributions
Weestimate sellers’ cost distributions according to the dataset

of prices by the following two steps.

1. First, we construct each seller’s price distribution to be

the uniform distribution over the dataset of the prices, called

empirical distribution [11].

2. Second, we assume that sellers’ price distributions com-

pose a Bayes Nash equilibrium (BNE) in S. So for seller i
with cost ci and price pi , the following first-order condition

is satisfied:

d (x∗ (pi ) (pi − ci ) (hi − pi )
+/hi )

dpi
= 0,

where x∗ (pi ) is the interim clicked probability, i.e.,

x∗ (pi ) =

∫
p−i

n∑
j=1

αi jxi j (pi ,p−i )dp−i .

Note that both x∗ (pi ) and its derivation can be inferred from

the price distributions and the formula above is a linear

equation of ci . So the empirical distribution of ci can be

computed by solving the equation above.

• Simulation and Results
Given buyer valuations and distributions of costs of each

seller, we randomly samplem(100 − 1000) sellers from 579

sellers, and simulate OIRM, S and uniform mechanism for

10000 times, then we calculate these mechanisms’ volume.

Uniformmechanismmeans each seller gets the same fraction

7
We calculate the sum of trading volume of these items and their effect on volume is

negligible.
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of buyer imperssions, and pays nothing. So each seller i with
ci will post price arдmaxpi (pi −ci ) (hi −pi )

+/hi to maximize

his expected profit.

Figure 1: Volume per number of sellers

Figure 1 shows the volume of these mechanisms with the

change of the sample size, it illustrates that OIRM outper-

forms S significantly and the volume of the uniform mech-

anism is inferior compared with other mechanisms. The

volume of OIRM and S increases as the size of the sample

increases while the uniform mechanism does not.

We also simulate OIRM with different parameters η and

100 sellers and calculate the volume and the expected total

transfer of all sellers.

Figure 2: Volume and transfer per η

Figure 2 shows that the volume of OIRM decreases as η
increases, but OIRM always performs better than S for any

η. Also, the expected total transfer of OIRM is positive for

any η, the designer needs not to pay any money.

We randomly sample 50 sellers and calculate the expected

posted prices of each seller i in S, OIRM and each seller’s

optimal price to maximize the expected trading volume given

all buyer impressions, i.e.

arдmaxpipi (hi − pi )
+/hi .

Note that both S and OIRM rank sellers by it, thus the per-

formance of these mechanisms will be better if posted prices

of sellers are closer to optimal prices. We sort these sellers

by the expected trading volume given all buyer impressions.

Figure 3 shows that the posted prices of OIRM and S are

larger than optimal prices for each seller, and the posted

prices of OIRM are closer to optimal prices compared with

the posted prices of S.

Figure 3: Prices of sellers

7 FUTUREWORK
In this paper, we assume that each seller sells an item and the

probability that the buyer clicks on sellers’ items is independent

of posted prices. Future work could consider designing optimal

indirect mechanisms in the setting where each seller has multiple

items or the clicked probability depends on prices. We consider

implementing OIRM in e-commerce a promising direction.

We get the BNE of the site’s mechanismwith the assumption that

the distribution of costs is i.i.d uniform and we only need to allocate

one slot. It’s also important to solve the BNE of the mechanism in

a more general setting.
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