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ABSTRACT
We consider a setting where a revenue maximizing monopolist

sells a single item to a buyer. A mediator first collects the buyer’s

value and can reveal extra information about the buyer’s value by

sending signals. Mathematically, a signal scheme can be thought

of as a decomposition of the prior value distribution into a linear

combination of posterior value distributions, and based on each

of them, the monopolist separately posts a price. According to the

theory of Bayesian persuasion, a well-designed signal scheme can

lead to utility improvements for both the monopolist and the buyer.

We put forward a novel technique to analyze the effects of signal

schemes of the mediator. Using this technique, we are able to con-

struct explicitly a closed-form solution, and thus characterize the

set of seller-buyer utility pairs achievable by any signal scheme, for

any prior type distribution. Our result generalizes a well-known

result by Bergemann et. al., who derive a characterization for the

same problem but only restricted to the discrete distribution case.

Similar to the result derived by Bergermann et. al., we show that

the set of seller and buyer utility pairs achievable form a triangle:

any point within the triangle can be achieved by an explicitly con-

structed signal scheme and any point outside the triangle cannot

be achievable by any such scheme. Our result is obtained by estab-

lishing the endpoints of the triangle: one corresponds to the point

where the buyer obtains the highest utility among all schemes,

another corresponds to the point where the buyer obtains zero

utility and the seller has the lowest possible revenue, and the third

corresponds to the point where the buyer has zero utility while the

seller extracts full social surplus. We then prove that the triangle

described fully characterizes all possible signal schemes.
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1 INTRODUCTION
We study a settingwhere a seller sells an item to a buyer tomaximize

revenue. The buyer’s value for the item is drawn from a commonly
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known distribution. It is known that the optimal strategy for the

seller is to set a posted price for the item [16].

Now suppose there is a trustworthy mediator between the seller

and the buyer. The mediator collects the buyer’s value and can

reveal extra information to the seller about the buyer’s value by

sending signals. The seller can then post a price conditional on the

revealed signal. Such mediators exist in many real-world markets.

For example, in the online advertising industry, there are bidding

agencies that bid on behalf of the advertisers in ad-auction plat-

forms. Typically, these agencies create multiple accounts and use

different accounts to send different signals.

Equivalently, one can view the Bayesian buyer as a population of

buyers with publicly known valuations. Such signaling strategies

are often interpreted, from the seller’s point of view, as market

segmentation strategies that partition the population of buyers

into several markets based on their external characteristics (say

geographic information such as gender and age) and the seller then

posts market-specific prices as a means of price discrimination.

Consider a example where the buyer’s value is uniformly dis-

tributed on [0, 1]. It is clear that the seller would set a posted price

at 0.5, which yields an expected revenue of 0.25 for the seller and

an (ex ante) expected utility of 0.25 for the buyer. Now define the

signal set to be {hiдh, low}, and the buyer is said to have low value

if his value is in [0, 0.5] and hiдh otherwise. The mediator sends

a signal to the seller after collecting the buyer’s value: he sends

signal low if the buyer has a low value and hiдh otherwise. The

seller has equal probability of observing each signal, and is now

able to set the price conditional on the signal: to maximize revenue,

he will set price at 0.25 when she sees low and 0.5 when hiдh.
As a result, such extra information benefits both parties, since

intuitively the extra information revealed to the seller can increase

the probability of sale. In the above example, the seller increases the

revenue by 1/16 (25% increase) and the buyer increases the utility

by 1/32 (12.5% increase). Therefore it is of great importance for the

mediator to understand what can be achieved by sending signals

and how to design such signals, and the goal of this paper is to

investigate the effects of different signaling schemes when facing a

revenue maximizing monopolist [16].

1.1 A brief review of related works
The example described so far is at the intersection of two streams

of important research. The first investigates the power and limit

of price discrimination [3, 18], where the buyer is interpreted as

a population, within which each individual has a deterministic

type. The seller can segment the population into different markets

(subsets of the population) and price differently (aka. the third
degree of price discrimination). The impact of different segmentation

strategies has been investigated and the set of (seller, buyer) utility

profiles have been characterized under various scenarios. We refer

readers to [3] for a comprehensive survey on price discrimination.
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The second strand of research concerns the power of signaling in

the so-called persuasion model, studied in a series of economics pa-

pers [2, 15, 17, 19], where they study the general problem of a sender

strategically revealing information based on external signals and

give a method to find the optimal signaling scheme for the sender in

a number of realistic scenarios. The basic model has been extended

to a number of scenarios in the past five years: [9] considers the

situation where sender’s payoff also depends on the signal cost.

[11] studies the simultaneous-move game where multiple senders

simultaneously send signals. [10] proposes new approaches to the

Bayesian persuasion problem. [7] studies the hardness of designing

optimal information structures in zero-sum game, while [22] ob-

tains hardness results of designing signal structures in Stackelberg

Games. [5] consider the problem of designing the optimal informa-

tion structure when the designer has control over the information

environment. [8] gives a (1 − 1/e)-approximation of the optimal

private signaling scheme and proves the NP-hardness to constantly

approximate the optimal public scheme. Our problem, described in

their terminology, is to characterize the buyer signaling schemes

in the monopolist pricing problem.

The concept of signaling has also been studied in the auction

scenario by Daskalakis et al. [6] and Bro Miltersen and Sheffet

[4]. Both works consider the case where the seller has additional

information than the buyer and how the seller can strategically

reveal this additional information (together with designing the

auction format itself in [6]) to maximize revenue. In contrast, in

our model, both parties share the same information and the buyer

is the one that designs the signal.

1.2 Our contributions
To best describe our contributions, let us start by reviewing a related

work of Bergemann et al. [3], which aims to understand the impact

of signaling (or in their terminology, market segmentation), in the

same setting as ours. They characterize, for any discrete distribution,

the set of (seller, buyer) utility profiles achievable by some buyer

signal scheme. It is not hard to see that, for any signal scheme, the

utility profile must necessarily satisfy the following three bounds: 1)

the buyer’s utility must be nonnegative, following from individual

rationality; 2) the seller’s utility must be no less than the case where

he does not receive any signal at all; and 3) the sum of both parties’

utilities must be no higher than the value of the item. The main

effort and result of the paper is to show that these three bounds

are actually sufficient, in that they fully characterize all possible

profiles achievable by any signaling scheme.

To establish the main result, one of the main difficulties is to

establish the utility profile yielded by the buyer optimal signaling,

i.e, the point where the item is sold efficiently while the seller is

held to the lowest revenue, the same as in the case of no signaling

at all. The authors use an iterative decomposition method to show

that such utility profile (and in fact all the utility profiles where

the seller has the lowest revenue) can be achieved by a convex

combination of equal-revenue distributions (segmentations). They

also use a limit argument to show that, such iterative method can be

extended to the continuous case and there exists a decomposition

that achieves the buyer optimal point in the continuous case as

well. However, to the best of our knowledge, there is no explicit

closed-form decomposition for the continuous case.

Such closed-form solutions cannot be derived by directly apply-

ing the characterization of [3], since their iterative construction

steps depend on previous ones. In this paper, we not only obtain

the closed-form of buyer optimal signaling for any continuous type

distribution, but also introduce original techniques that can pro-

vide more insight of the problem and may be helpful for further

studies on this topic. We mainly focus on the decomposition of two

extreme points. Both of the points correspond to the lowest seller

revenue, but one has the highest buyer utility and the other has the

lowest (which is 0). We introduce a tool called “revenue function”

and transform the original problem to the decomposition of such

revenue functions. We are able to solve the problem under some

technical conditions with such a tool. To solve the more challenging

case without those conditions, we incorporate the “ironing” trick

to this setting and define different “ironing” methods. Furthermore,

we introduce a powerful “scaling” technique that produces the de-

sired decomposition by modifying another known decomposition.

By aggregating all these tools and techniques, we are able to solve

the general case with arbitrary value distributions.

For the point with the highest buyer utility, the value distribution

for each signal is a piecewise function consisting of two parts: one

is an equal-revenue function and the other is a “scaled function” of

the prior distribution.
1
For the point with the lowest buyer utility,

the value distribution for each signal consists of three parts: the

first part is simply the same as the prior distribution, the second

part is an equal-revenue distribution and the third part is a point

mass. Our construction uses the equal-revenue distribution as an

extreme distribution. Similar constructions can also be seen in the

recent literature[12, 13, 21].

Given the closed-form decompositions of the two extreme points,

it is straight forward to construct the closed-form decomposition

for any point inside the triangle area by [3], by taking the convex

combination of the decompositions of the extreme points.

2 SETTING
Suppose the seller has a single item to sell to a buyer. The buyer’s

value for the item is drawn from a distribution F , which is called

the prior distribution, with the density function f . Define the closed
support (called support hereafter for simplicity) of the density func-

tion f to be the closure of the subset of R where f is non-zero:

supp(f ) = cl({v | f (v) > 0}). We use

¯

v and v̄ to denote the small-

est and largest value in supp(f ) respectively:
¯

v = minx supp(f ),
v̄ = maxx supp(f ).

A signal scheme Ω = (S,π ) consists of a set of signals S , and a

function that maps the buyer’s value to a distribution over signals

π : supp(f ) 7→ ∆(S), where ∆(S) denotes the set of all probability
distributions over S . After collecting the buyer’s value, the mediator

chooses a signal from the S according to the distribution π (v) [15].
Upon receiving a signal t , the seller updates the prior belief

F (v) and gets a posterior belief F (v |t). Using the Bayes rule, one

can easily verify that, designing a signal scheme is equivalent to

designing posterior value distributions [3, 6], such that:∫
S
F (v |t) dµ = F (v), ∀v, (1)

where the left side is a Lebesgue integral with respect to the prob-

ability measure µ with respect to signal t . Thus we can use an

alternative notation of signal schemes in terms of F (v |t) and µ(t).

1
It is notable that [3] gives another kind of segmentation for discrete case called

“direct segmentations”, such that each segment consists of some amount of a “direct

value” and a “scaled function” of the prior distribution truncated from the “direct

value”. So our closed-form decomposition can be regarded a combination of the two

segmentations provided in [3].
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We use f (v |t) to denote the density function of F (v |t). Similarly,

we also define

¯

vt and v̄t to be the smallest and the largest value in

the support of f (v |t) respectively. We sometimes abuse notation

and denote the support of f (v |t) by supp(t). 2

2.1 Signal Representation
Given any signal t , if the seller posts a price r , the expected seller’s

revenue is r (1 − F (r |t)). We assume that the seller always set the

monopoly reserve price rt based on the posterior distribution, i.e.

rt = arg maxr r (1 − F (r |t)) to maximize his expected revenue.

We use a mapping η : S 7→ R that maps a signal to its monopoly

reserve price of F (v |t) to represent a signal t :

Definition 2.1 (Signal Representation). For each signal t ∈ S , let
the monopoly reserve price to be rt = arg maxr r (1−F (r |t)). Define
the function η to be η(t) = rt .

If two posterior distributions have the same reserve price r , we
can always combine the two distributions to one distribution and

use that r to represent the signal. One can easily verify that the

monopoly reserve price for the combined distribution is still r
and all the outcomes remain the same. For the case that there are

multiple reserve prices that maximize the seller’s revenue, we can

arbitrary choose one and use that price to represent the signal.

With the above representation, we can define P(t) to be the

cumulative distribution function on the signal space: P(t) = µ(T ≤

t), where T is a random variable drawn from S according to µ.
Throughout this paper, we focus on the case where both the prior

and posterior density functions are differentiable. Since we consider

continuous distributions, we also assume that the cumulative dis-

tribution function P(t) is differentiable, with density function p(t).
However, our main results and constructions also apply to much

more general cases, even when the prior and posterior distribution

contains point masses
3
.

To sum up, we use Ω = (S, F (v |t),p(t)) to represent a decompo-

sition (signal scheme), where

• S ∈ R is the signal space;

• F (v |t) is the posterior distribution given signal t ∈ S ;
• p(t) is the probability (density) of signal t ∈ S ;

subject to Equation (1) and t ∈ arg maxr r (1 − F (r |t)).

3 REVENUE FUNCTION
In this section, we develop a tool that will be used throughout the

paper. And our main techniques to construct signaling schemes

relies crucially on this tool.

Definition 3.1 (Revenue Function). For any cumulative distribu-

tion F (v), define the corresponding revenue function
4
to be:

R(v) = v(1 − F (v)),

which is the seller revenue when setting the reserve price v .

2
Note that it is not necessarily true that supp(t ) = [

¯

vt , v̄t ] since the support may

not be a single interval. If a certain signal with probability measure 0 is added to or

removed from a signal scheme, both the buyer utility and the seller revenue do not

change. Thus for ease of presentation, we ignore such cases and use some notations in

a probabilistic sense (for example, “∀t ∈ S” means “for almost all signals t in S”).
3
In this case, the density functions are called general functions or simply distributions,
and the derivatives used in later analysis become distributional derivatives. We will

not discuss this in detail, but refer interested readers to [20, Chapter 6].

4
The revenue function is well-defined even if v < supp(f ). Therefore, the domain of

R(v) is R. However, we only need to consider R(v) in R+ in this paper, since the value

v is always non-negative. When v is not in the support, we have either F (v) = 0 or

F (v) = 1. And R(v) = v if F (v) = 0 and R(v) = 0 if F (v) = 1.

Remark 1. Note that R(v) is not the same as the revenue curve
well known in the literature [1, 14], since revenue curve is normally
represented in quantile q = 1 − F (v).

Note that a revenue function must satisfy certain conditions.

Clearly, 1 −
R(v)
v needs to be a cumulative distribution function.

We call such functions feasible revenue functions.

Definition 3.2 (Feasible Revenue Function). A function R(v) is a
feasible revenue function, if:

• limv→0

R(v)
v = 1;

• limv→∞
R(v)
v = 0;

•
R(v)
v is a decreasing function.

The revenue functions with respect to the prior and posterior

distributions are called the prior and posterior revenue functions,

respectively. The following lemma shows that decomposing the

prior value distribution is equivalent to decomposing the prior

revenue function.

Lemma 3.3. Let F (v) and F (v |t) be the prior and posterior value
distribution. Let p(t) be the density function for signal t . Define R(v)
and R(v |t) to be the prior revenue function and the posterior revenue
function, respectively. Then

F (v) =

∫
t ∈S

F (v |t)p(t) dt , ∀v , 0, (2)

if and only if

R(v) =

∫
t ∈S

R(v |t)p(t) dt , ∀v , 0. (3)

Proof.

F (v) =

∫
t ∈S

F (v |t)p(t) dt

⇐⇒ 1 − F (v) =

∫
t ∈S

p(t) dt −

∫
t ∈S

F (v |t)p(t) dt

=

∫
t ∈S

(1 − F (v |t))p(t) dt

⇐⇒ v(1 − F (v)) =

∫
t ∈S

v(1 − F (v |t))p(t) dt

⇐⇒ R(v) =

∫
t ∈S

R(v |t)p(t) dt .

□

Therefore, for v , 0, we can construct R(v) instead of F (v). As
for v = 0, we always have R(0) = 0 and F (0) cannot be obtained
from R(0). However, if we already have F (v) for v , 0, we can

derive F (0) by F (0) = limv→0 F (v). Again, the posterior revenue
functions must be feasible. And we call such signaling schemes

feasible decompositions or feasible signaling schemes.

4 CLOSED FORM SOLUTIONS
Before we consider any signaling scheme, let’s first examine the

possible revenue and utility pairs of the signaling problem. Let

REV(S) and UTL(S) be the seller revenue and the buyer utility of

signaling scheme S . Define REV
∗
to be the revenue of the prior

distribution when Myerson auction is applied. The following result

is already given by [3]. However, we provide an alternative proof,

which gives us with more insights and is helpful for later analysis.
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Theorem 4.1 (Bergemann et al. [3]). Let E[v] be the expected
value of the buyer. A pair of seller revenue and buyer utility is attain-
able by a signaling scheme if and only if it is inside the triangle in
Figure 1, where point A corresponds to seller revenue E[v] and buyer

Figure 1: Range of seller revenue and buyer utility.

utility 0, point B seller revenue REV
∗ and buyer utility E[v] − REV

∗

and point C seller revenue REV
∗ and buyer utility 0.

Here, we only prove the “only if” direction, as the “if” direction

will be immediate after we present our construction.

Proof. For any signaling scheme S , the seller revenue and buyer
utility must satisfy the following conditions:

(1) UTL(S) ≥ 0;

(2) REV(S) + UTL(S) ≤ E[v];
(3) REV(S) ≥ REV

∗
.

The intersection area of the above 3 conditions are exactly the

triangle in Figure 1. The first condition is equivalent to individual

rationality and the second condition comes directly from the defini-

tion of seller revenue and buyer utility. Now it suffices to show that

the third condition must hold. Let r∗ be the monopoly reserve of

the prior distribution. Consider the mechanism M that ignores all

signals in T and always uses r∗ as the reserve price. Let REV(M)

be its revenue. Clearly, REV
∗ = REV(M). For each t ∈ S , setting t

as the reserve price can extract at least the same revenue as setting

r∗, since t is the optimal reserve for this signal. Integrating over t
yields REV(S) ≥ REV(M). It follows that REV(S) ≥ REV

∗
. □

Theorem 4.1 states that the pair of seller revenue and buyer

utility is always inside the triangle. In fact, all points inside the

triangle can be obtained by some signaling scheme, and this result

is also confirmed by [3]. However they only give a characterization

of such signaling schemes, while we aim to construct explicitly the

closed form of the signals.

4.1 Signaling scheme for Point A
According to Theorem 4.1, point A has seller revenue E[v], which
is already the maximum possible revenue. This indicates that the

item is always sold, and the price t =
¯

vt ,∀t ∈ S . Furthermore, the

buyer utility for point A is always 0, which implies that the price

t = v̄t ,∀t ∈ S . It follows that the support of each signal contains

only a single value t , with probability 1.

4.2 Signaling Scheme for Point B
According to Theorem 4.1, point B satisfies: REV(S)+UTL(S) = E[v]
and REV(S) = REV

∗
. For now, let’s first focus on the case where

the prior revenue function R(v) is concave in the interval [
¯

v, r∗],
where r∗ is the monopoly reserve of the prior distribution. As our

main result for this section, we give the following theorem:

Theorem 4.2. Let F (v) be the prior value distribution, and R(v) =
v(1 − F (v)) be the corresponding revenue function. Let r∗ be the
monopoly reserve for F (v) (r∗ ∈ arg maxr R(v)). If R(v) is concave
in the interval [

¯

v, r∗], then the signaling scheme Ω = (S, F (v |t),p(t))
implements point B, where S = [

¯

v, r∗], p(t) = −R′′(t), and

F (v |t) =


0 v ≤ t

1 − t
v t < v ≤ r∗

1 −
R(v)
R(r ∗)

t
v r∗ < v ≤ v̄

One can easily verify that the above signaling scheme satisfies

the two conditions that defines point B. We will not prove the above

theorem directly. Instead, we provide a three-step construction that

can give us more insight about the structure of the problem.

According to Lemma 3.3, we can design R(v |t) instead of F (v |t).
In the first step we show that S = [

¯

v, r∗] is sufficient to represent

all signals (Lemma 4.4), i.e., no signal with t ∈ R \ S is needed. In

the second step, for each signal t , we construct the part in [
¯

vt , r
∗].

Then according to the R(v) and the first part of R(v |t), we compute

the density function p(t) (Lemma 4.5). In the third step, with the

“scaling technique” (Lemma 4.6), we design the part in (r∗, v̄t ], and
finally get the complete construction of point B (Theorem 4.2).

Lemma 4.3. Signaling scheme Ω = (S, F (v |t),p(t)) implements
point B, if and only if the following three conditions are satisfied:

• t =
¯

vt ;
• {t , r∗} ⊂ arg maxv R(v |t),∀t ∈ S ;
• p(t) ≥ 0,

∫
t ∈S p(t) dt = 1 and F (v) =

∫
t ∈S F (v |t)p(t) dt , ∀v .

Proof. We first prove the necessity of the conditions. Recall

that point B must satisfy two conditions:

REV(S) + UTL(S) = E[v] and REV(S) = REV
∗ .

The first equation requires the seller to always sell the item. There-

fore we have t =
¯

vt ,∀t ∈ S . And according to the proof of Theo-

rem 4.1, the second equation requires that, for each signal t , setting
reserve r∗ extracts the same amount of revenue as setting t as the
reserve price, i.e., R(t |t) = R(r∗ |t). And since we use the monop-

oly reserve price to represent the signal, we have that t maximizes

R(v |t). It follows that {t , r∗} ⊂ arg maxv R(v |t). The third condition
is natural since P(t) is a distribution function.

Now we prove the sufficiency of the conditions. Suppose that

the three conditions are satisfied. Then according to the second

condition, we can choose t as the reserve price for signal t for the
seller, since t maximizes the revenue function R(v |t). Thus we can
indeed use t to represent the signal t . Furthermore, the second

condition implies R(t |t) = R(r∗ |t). Therefore we have REV(S) =
REV

∗
. The first condition indicates that the seller always sells the

item. Then we have REV(S) + UTL(S) = E[v]. The third condition

shows that S is indeed a signaling scheme. □

Lemma 4.4. The signal space S = [
¯

v, r∗] is sufficient to represent
all signals for point B.

Proof. We show that there is no signal with t <
¯

v or t > r∗. It
is clear that supp(t) ⊆ [

¯

v, v̄],∀t . Thus the monopoly reserve t for
each signal cannot be smaller than

¯

v .
On the one hand, according to Lemma 4.3, we have R(t |t) =

R(r∗ |t) and t =
¯

vt . On the other hand, R(
¯

vt |t) =
¯

vt (1 − F (
¯

vt |t)) =

¯

vt . Combining the above arguments, we get R(r∗ |t) = R(t |t) =
R(

¯

vt |t) =
¯

vt . This equation implies that there is no signal with
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t > r∗, since otherwise, we will have R(t |t) =
¯

vt = t > r∗ ≥

r∗(1 − F (r∗ |t)) = R(r∗ |t), contradicting to the above equation. □

As the second step, we construct R(v |t) in the interval [
¯

vt , r
∗],

and compute the density function p(t). Note that when v ≤
¯

vt ,
R(v |t) is already defined, since we have F (v |t) = 0 and R(v |t) = v .
In particular, R(

¯

vt |t) =
¯

vt . According to Lemma 4.3, we know

that R(r∗ |t) = R(t |t) = R(
¯

vt |t) =
¯

vt = t , and that both t and r∗

maximize R(v |t). A natural and simple choice is to let the function

R(v |t) be a constant t in the interval [t , r∗] (see Figure 2).

Figure 2: Revenue function for signal t
Nowwe compute the density functionp(t). We need to guarantee

that p(t) ≥ 0. The following lemma states that this condition can

be satisfied if R(v) is concave in the interval [0, r∗].

Lemma 4.5. Given that R(v) is concave in [
¯

v, r∗], we have p(t) =
−R′′(t),∀t ∈ S = [

¯

v, t∗] if R(v |t) has the following form in the
interval [

¯

vt , r
∗]:

R(v |t) =

{
v v ≤ t

t t < v ≤ r∗

Proof. By Lemma 3.3, p(t) satisfies R(v) =
∫
t ∈S R(v |t)p(t) dt .

Replacing R(v |t) yields:

R(v) =

∫ v

¯

v
tp(t) dt +

∫ r ∗

v
vp(t) dt .

Taking derivative on both sides with respect to v , we get:

R′(v) = vp(v) +

∫ r ∗

v
p(t) dt −vp(v) =

∫ r ∗

v
p(t) dt .

Taking derivative again, we have R′′(v) = −p(v). Therefore, p(t) =
−R′′(v), and p(t) ≥ 0 since R(v) is concave in [

¯

v, r∗]. □

Remark 2. The function p(t) = −R′′(t) given by Lemma 4.5 is
indeed a density function. Note that R(v) = v when v ≤

¯

v , and
R′(

¯

v) = 1. Since r∗ maximizes R(v), we have R′(r∗) = 0. Therefore,∫ r ∗

¯

v
p(t) dt =

∫ r ∗

¯

v
−R′′(t) dt = R′(

¯

v) − R′(r∗) = 1.

In order to construct the rest part of R(v |t), we now introduce a

powerful tool called the “scaling technique”, which will be inten-

sively used in later analysis. Formally,

Lemma 4.6 (Scaling Techniqe). Consider feasible revenue func-
tions R1(v) and R2(v). R1(v) has a feasible signaling scheme Ω1 =

(S1, F1(v |t),p1(t))with corresponding posterior revenue functionR1(v |t).
Suppose R2(v) ≤ R1(v) and there exists an open interval X (may be
unbounded), such that:

• R2(v) < R1(v),∀v ∈ X and R2(v) = R1(v),∀v < X ;
• X ⊂ supp(t),∀t ∈ S1;
• R1(v |t) = д(t),∀v ∈ X ,∀t ∈ S1, i.e., given t , R1(v |t) is con-
stant in the interval X .

Then Ω2 = (S2, F2(v |t),p2(t)) is feasible5 for R2(v), where S2 = S1,
p2(t) = p1(t) and

R2(v |t) =

{
R1(v |t) v < X
R2(v)
R1(v)

R1(v |t) v ∈ X

Proof. We show that R2(v |t) is a decomposition. When v < X ,∫
t ∈S2

R2(v |t)p2(t) dt =

∫
t ∈S1

R1(v |t)p1(t) dt = R1(v) = R2(v).

When v ∈ X ,∫
t ∈S2

R2(v |t)p2(t) dt =

∫
t ∈S1

R2(v)

R1(v)
R1(v |t)p1(t) dt = R2(v).

Next we show that the decomposition is feasible. Clearly, 0 < X
sinceX is an open interval. Therefore, we have R2(v |t) = R1(v |t) in

the neighborhood of 0 and limv→0

R2(v |t )
v = limv→0

R1(v |t )
v = 0.

The last equation holds since R1(v |t) is feasible. For v > 0, we

have 0 ≤ limv→∞
R2(v |t )

v ≤ limv→∞
R1(v |t )

v = 0, which indicates

limv→∞
R2(v |t )

v = 0.

To show that
R2(v |t )

v is decreasing in v , observe that ∀v ∈ X

R1(v) =

∫
t ∈S1

R1(v |t)p1(t) dt =

∫
t ∈S1

д(t)p1(t) dt

is independent of v . Let c = R1(v),∀v ∈ X . Therefore, ∀v ∈ X ,

R2(v |t)

v
=

R2(v)R1(v |t)

vR1(v)
=
д(t)

c

R2(v)

v

is decreasing inX , for any signal t . Also, R2(v |t )
v is decreasing when

v < X . For any boundary point a of X , we know that a < X since

X is open. Thus R1(a) = R2(a) and
R2(v |t )

v is decreasing at point a.

Therefore,
R2(v |t )

v is a decreasing function. □

Remark 3. The above lemma also applies when there are multiple
such intervals, since R1(v |t) , R2(v |t) only in the interval X , and we
can scale R1(v |t) for all such intervals to get R2(v |t).

A major challenge in constructing a feasible revenue function is

how to satisfy the third condition in Definition 3.1. Intuitively, when

two feasible revenue functions are similar (differ only in an interval),

the corresponding decompositions should also be similar. Lemma

4.6 shows that a simple “scaling” trick maintains the feasibility

property.

With the scaling technique, we can now easily construct the rest

part of R(v |t). Consider the following revenue function R∗(v):

R∗(v) =

{
R(v) v ≤ r∗

R(r∗) v > r∗

It is clear that R∗(v) is feasible. The first part of R∗(v) is identical
to that of R(v), and we can use the same decomposition for these

two revenue functions. Since R∗(v) = R(r∗) is constant for v >
r∗, a straightforward decomposition for the rest part of R∗(v) is
R∗(v |t) = R∗(r∗ |t) = t . Now compare R∗(v) and R(v) and apply

Lemma 4.6. We can set

R(v |t) =
R(v)

R∗(v)
R∗(v |t) =

R(v)

R(r∗)
t ,∀v ∈ (r∗, v̄].

5
Although the signaling scheme in Lemma 4.6 is feasible, it may not accord with the

signal representation described in Section 2.1, unless S1 ∩ X = ∅. This is because

R1(v |t ) , R2(v |t ) only in the interval X , and any t < X that maximizes R1(v |t )
also maximizes R2(v |t ).
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Therefore, we get the complete posterior revenue functionR(v |t):

R(v |t) =


v v ≤ t

t t < v ≤ r∗

R(v)
R(r ∗) t r∗ < v ≤ v̄

R(v |t) is clearly feasible and the posterior distributions F (v |t) can
be computed accordingly.

Example. Consider the case where the buyer’s value v is uni-

formly distributed among the interval [0, 1]. We have that for

0 ≤ v ≤ 1, F (v) = v , R(v) = v(1 − v), and r∗ = 1

2
. Note that

R(v) is concave in the interval

[
0, 1

2

]
. The signaling scheme for

point B is Ω = (S, F (v |t),p(t)), where S =
[
0, 1

2

]
, p(t) = 2 and

F (v |t) =


0 v ≤ t

1 − t
v t < v ≤ 1

2

1 − 4t(1 −v) 1

2
< v ≤ 1

The posterior value distribution for signal t = 0 is a single point

mass at v = 0, with probability 1.

4.2.1 The non-concave case. The above analysis is based on

the assumption that the prior revenue function R(v) is concave in
the interval [

¯

v, r∗]. In this section, we relax the assumption and

consider the non-concave case. We start from “ironing” the original

revenue function (we call it the “concavity ironing” to distinguish it

from the “monotonicity ironing” used in the construction of point

C). We first construct the signaling scheme for the ironed revenue

function and then we modify it with the scaling technique.

Figure 3: R̂ is the ironed revenue function

Let the ironed revenue function R̂(v) be the smallest function

upper-bounding R(v), such that R̂(v) is concave in the interval

(
¯

v, r∗) (slightly different from the notation “concave closure” since

we only need R̂(v) to be concave in an interval, see Figure 3). The

intervals where R̂(v) , R(v) are called ironed intervals. Formally,

we give the following theorem:

Theorem 4.7. Let R(v) = v(1 − F (v)) be the prior revenue func-
tion, and r∗ be the monopoly reserve for the prior value distribution
(r∗ ∈ arg maxr R(v)). Let R̂(v) be the resulting function if we apply
concavity ironing to R(v) in the interval [

¯

v, r∗]. Denote by I and K
the set of all ironed intervals and its index set. For any i ∈ K , let
Ii = (ai ,bi ). Then the signaling scheme Ω = (S, F (v |t),p(t)) imple-
ments point B, where S = [

¯

v, r∗] \U , p(t) = −R′′(t) and

F (v |t) =


0 0 ≤ v ≤ t

1 − t
v t < v ≤ r∗ and v < U

1 −
R(v)−siv
R(ai )−siai

t
v t < v ≤ r∗ and ∃i ∈ K such that v ∈ Ii

1 −
R(v)
R(r ∗)

t
v v > r∗

whereU = ∪i ∈K Ii and si = R̂′(v),∀v ∈ Ii .

Proof. Clearly, we have R̂(ai ) = R(ai ), R̂(bi ) = R(bi ),∀i ∈ K
and Ii ∩ Ij = ∅,∀i, j ∈ K , i , j.

Let Ω = (Ŝ, F̂ (v |t), p̂(t)) be the signaling scheme for R̂(v) and
R̂(v |t) be the corresponding posterior revenue function. Clearly,

after the “ironing” step, r∗ still maximizes the function R̂(v) and
Ŝ = [

¯

v, r∗]. Also, R̂(v) is linear in each of the ironed intervals and

let si =
R̂(bi )−R̂(ai )

bi−ai
=

R(bi )−R(ai )
bi−ai

be its slope. Assume there is only

one ironed interval Ii = (ai ,bi ). Our goal is to scale the function

R̂(v |t) to find a construction for R(v). According to the analysis

for the concave case, p̂(t) = −R̂′′(t) = 0,∀t ∈ Ii . Thus we can

remove the signals t ∈ Ii and split the signal space into two parts

Ŝa = [
¯

v,ai ] and Ŝb = [bi , r
∗]. We also decompose R̂(v) into two

new functions R̂a (v) and R̂b (v), For any v ∈ Ii , we have

R̂a (v) =

∫ ai

¯

v R̂(v |t)p̂(t) dt∫ ai

¯

v p̂(t) dt
=

∫ ai

¯

v tp̂(t) dt

1 − R′(ai )
=

∫ ai

¯

v tp̂(t) dt

1 − si

=
R̂(ai ) − siai

1 − si
=

R(ai ) − siai
1 − si

,

R̂b (v) =

∫ r ∗
bi

R̂(v |t)p̂(t) dt∫ r ∗
bi

p̂(t) dt
=

∫ r ∗
bi

vp̂(t) dt∫ r ∗
bi

p̂(t) dt
= v

R̂(v) = (1 − si )R̂a (v) + si R̂b (v).

Assume, after scaling, the two parts become Ra (v) and Rb (v),
and the corresponding signals are Ra (v |t) and Rb (v |t), respectively.
Since any v ∈ Ii is not in supp(t),∀t ∈ Ŝb , we cannot scale the sig-
nals in Ŝb . So Ŝb is left untouched, i.e., Rb (v |t) = R̂b (v |t). Therefore,
Rb (v) = R̂b (v), and

Ra (v) =
R(v) − siRb (v)

1 − si
=

R(v) − siv

1 − si
.

One can easily verify that Ra (v) is a feasible revenue function.

Notice that the functions Ra (v) and R̂a (v) satisfy the conditions

of Lemma 4.6, and therefore we have a feasible decomposition

for Ra (v): Ra (v |t) =
Ra (v)
R̂a (ai )

R̂a (v |t), where denominator is R̂a (ai )

since the signal space for R̂a (v) is Ŝa = [
¯

v,ai ]. Simplify the above

equation and we get Ra (v |t) =
R(v)−siv
R(ai )−siai

t . Therefore the com-

plete signal space is given by Ra (v |t) and Rb (v |t). The posterior
distribution F (v |t) can be computed accordingly.

Note that such decomposition only scales R̂(v |t) in the interval

Ii . If there are multiple such intervals, we can scale each interval

independently and still get a feasible decomposition. □

The revenue function R̂(v) can be decomposed using the analysis

of the previous section. However, it is impossible to directly apply

Lemma 4.6 since for some signal t , there exists v such that v <
supp(t) (v <

¯

vt ). For there signals, R̂(v |t) = v is already fixed and

cannot be scaled. The solution is to remove these signals and scale

the posterior distributions of other signals.

4.3 Signaling Scheme for Point C
The signaling scheme S for point C satisfies UTL(S) = 0 and

REV(S) = REV
∗
. We first consider the case where R(v) is decreasing

in the interval [r∗, v̄], but defer themore challenging non-monotone

case to Section 4.3.1.

The signaling scheme for the decreasing case is given by the

following theorem:
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Theorem 4.8. Let F (v) be the prior value distribution, and R(v) =
v(1−F (v)) be its corresponding revenue function. Let r∗ be the monop-
oly reserve for F (v) (r∗ ∈ arg maxr v(1− F (v))). If R(v) is decreasing
in the interval [r∗, v̄], then the signaling scheme Ω = (S, F (v |t),p(t))

implements point C, where S = [r∗, v̄], p(t) = −
R′(t )
R(r ∗) and

F (v |t) =


F (v) 0 ≤ v < r∗

1 −
R(r ∗)
v r∗ ≤ v < t

1 v ≥ t

We do not prove this theorem but provide a three-step construc-

tion instead. In the first step, we show that the signal space S =
[r∗, v̄] is sufficient to represent all signals (Lemma 4.10). In the sec-

ond step, we construct the posterior revenue function R(v |t) in the

interval [r∗, v̄] and compute the density function p(t) (Lemma 4.11).

Then, as a final step, we construct the part in [
¯

v, r∗] and obtain the

complete posterior revenue function for each signal (Theorem 4.8).

We first give characterize the signaling scheme for point C:

Lemma 4.9. Signaling scheme Ω = (S, F (v |t),p(t)) implements
point C, if and only if:

• t = v̄t ;
• {t , r∗} ⊂ arg maxv R(v |t),∀t ∈ S ;
• p(t) ≥ 0,

∫
t ∈S p(t) dt = 1 and F (v) =

∫
t ∈S F (v |t)p(t) dt , ∀v .

Proof. The second condition corresponds to the equation REV(S) =
REV

∗
and the third condition is natural for any probability distribu-

tions. These two conditions follow similar analysis in the proof of

Lemma 4.3. As for the first condition, UTL(S) = 0 implies that when

the item is sold, it is sold at a price equal to the buyer’s valuation

of the item, which is equivalent to setting a price t = v̄t . □

According to Lemma 4.9, each posterior distribution must con-

tain a point mass at v = v̄t , otherwise the seller revenue must be 0.

In this case we define R(v) = lim

x→v−
x(1− F (x)), which is consistent

with Definition 3.1 when R(v) is continuous.

Lemma 4.10. The signal space S = [r∗, v̄] is sufficient to represent
all signals for point C.

Proof. Clearly, for any signal t , v̄t ≤ v̄ . Therefore the reserve
price t ≤ v̄t ≤ v̄ . Now it suffices to show that there is no signal with

t < r∗. Assume on the contrary that such a signal exists. According

to Lemma 4.9, we have t = v̄ < r∗. Thus setting a price as high as r∗

extracts no revenue, since r∗ is even larger than v̄ = max supp(t).
Again, by Lemma 4.9, setting t as the reserve price also extracts

no revenue. The only possibility is that the support of this signal

contains only a single value 0, with probability 1. In this case, we

have t = 0 and p(0) < +∞ (otherwise the prior distribution f has

a point mass at 0, contradicting to our assumption that f (v) is
differentiable). Clearly, 0 ∈ supp(f ). Then instead of dealing with a

signal containing only a point mass at point 0, we can distribute the

density f (0) to all other signals by setting f (0|t) = f (0),∀t , 0. For

any t , 0, add some density at a single point make no difference in

its reserve price and thus does not affect the seller revenue and the

buyer utility. Therefore, the new signaling scheme contains only

signals with t ∈ [r∗, v̄]. □

Remark 4. The above proof relies on the assumption that f (v)
is differentiable. In fact, this assumption can be relaxed. The only
difference is that the prior value distribution now has a point mass
at point v = 0 and that the signal distribution p(t) may have a point

mass at t = 0. Denote this signaling scheme by S = {0} ∪ [r∗, v̄]
and the posterior value distribution by F (v |t). Assume that the signal
t = 0 occurs with probability 0 < p0 < 1. Then for other signals t , 0,
we must have: ∫ v̄

r ∗
p(t) dt = 1 − p0.

We can still distribute the probability of the prior value distribution at
v = 0 to other signals. Consider the signaling scheme (S∗, F ∗(v |t),p(t))
where S∗ = [r∗, v̄], F ∗(v |t) = p0 · H (v) + (1 − p0)F (v |t) and p∗(t) =
p(t )
1−p0

, where H (v) is the Heaviside step function. Clearly, both F ∗(v |t)
and p∗(t) are valid probability distributions. And R∗(v |t) = (1 −

p0)R(v |t). Thus t still maximizes the new revenue function R∗(v |t).
Therefore the expected seller revenue and buyer utility is:

REV(S∗) =

∫
t ∈S∗

R∗(t |t)p∗(t) dt =

∫
t ∈S∗

R(t |t)p(t) dt = REV(S),

UTL(S∗) =

∫
t ∈S∗

[∫ v̄t

t
(v − t) dF ∗(v |t)

]
p∗(t) dt

=

∫
t ∈S∗

[∫ v̄t

t
(v − t) dF (v |t)

]
p(t) dt = UTL(S).

The last equation of each line holds because the signal t = 0 does not
contribute to REV(S) and UTL(S).

Now we construct R(v |t) in the interval [r∗, v̄t ]. The correspond-
ing revenue function R(v |t) must satisfy R(v̄t |t) = R(t |t) = R(r∗ |t)
and limv→t+ R(v |t) = 0.

We choose R(v |t) = R(r∗),∀r∗ ≤ v ≤ t (see Figure 4), and this

choice will greatly simplify our later analysis.

Figure 4: Revenue function for signal t

Lemma 4.11. Given that R(v) is decreasing in [r∗, v̄], we have
p(t) = −

R′(t )
R(r ∗) ,∀t ∈ S = [r∗, v̄], if R(v |t) has the following form in

the interval [r∗, v̄t ]:

R(v |t) =

{
R(r∗) r∗ ≤ v ≤ t

0 v > t

Proof. For any r∗ ≤ v ≤ v̄ , we have

R(v) =

∫ v̄

r ∗
R(v |t)p(t) dt =

∫ v̄

v
R(r∗)p(t) dt .

Taking derivative yields p(t) = −
R′(t )
R(r ∗) . Note that p(t) is indeed a

density function:∫ v̄

r ∗
p(t) dt =

∫ v̄

r ∗
−
R′(t)

R(r∗)
dt = −

R(v̄) − R(r∗)

R(r∗)
= 1.

□
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So far, we have characterizedR(v |t) forv ≤ r∗. Nowwe construct

R(v |t) for v > r∗. It turns out that the simplest solution is to copy

the prior revenue function: R(v |t) = R(v),∀v ∈ [
¯

v, r∗). Combined

with construction of the part in [r∗, v̄], this simple solution produces

a feasible revenue function:

R(v |t) =


R(v)

¯

v ≤ v ≤ r∗

R(r∗) r∗ < v ≤ t

0 v > t

F (v |t) can be computed accordingly, and we finally get Theorem 4.8.

Example.We still consider the case where the buyer’s value v
is uniformly distributed among the interval [0, 1]. Note that R(v) is
decreasing in the interval

[
1

2
, 1
]
. The signaling scheme for point C

is Ω = (S, F (v |t),p(t)), where S =
[
0, 1

2

]
, p(t) = 2 and

F (v |t) =


v

¯

v ≤ v ≤ r∗

1 − 1

4v r∗ < v ≤ t

0 v > t

The posterior value distribution for signal t = 0 has a point mass

at v = t .

4.3.1 The non-monotone case. Theorem 4.8 requires that R(v)
is decreasing in the interval [r∗, v̄]. However, this assumption can

also be relaxed through a technique similar to “ironing”. In contrast

to the “concavity ironing” used in the construction of point B, the

“monotonicity ironing” is applied in this case.

Let R̄(v) be the smallest function that upper bounds R(v), such
that R̄(v) is decreasing in the interval [r∗, v̄] (see Figure 5).

Figure 5: R̄ is the ironed revenue function

The signaling scheme for the non-monotone case is given by the

following theorem:

Theorem 4.12. Let F (v) be the prior value distribution, andR(v) =
v(1 − F (v)) be the corresponding revenue function. Suppose r∗ is the
monopoly reserve for F (v) (r∗ ∈ arg maxr v(1 − F (v))). Let R̄(v) be
the resulting function if we apply monotonicity ironing to R(v) in
the interval [r∗, v̄]. Denote the ironed interval and its index set by I
and K respectively. Then the signaling scheme Ω = (S, F (v |t),p(t))

implements point C, where S = [r∗, v̄] \U , p(t) = −
R′(t )
R(r ∗) and

F (v |t) =


F (v)

¯

v ≤ v ≤ r∗

1 −
R(r ∗)
t r∗ < v ≤ t and v < U

R(v)
ci

R(r ∗)
t r∗ < v ≤ t and ∃i ∈ K such that v ∈ Ii

1 v > t

whereU = ∪i ∈K Ii and ci = R̄(v),∀v ∈ Ii .

Proof. For each i ∈ K , let Ii = (ai ,bi ). We have R(ai ) = R̄(ai ) =
R̄(bi ) = R(bi ),∀i ∈ K and Ii ∩ Ij = ∅,∀i, j ∈ K , i , j. Note that
the “monotonicity ironing” does not change the part in [

¯

v, r∗], and
therefore r∗ still maximizes R̄(v).

Now we decompose the revenue function R̄(v), since it is de-

creasing in [r∗, v̄]. We can remove those signals t in any of the

ironed intervals, since we have R̄′(t) = 0 and p̄(t) = 0. Let Ω̄ =
(S̄, F̄ (v |t), p̄(t)) be the signaling scheme and R̄(v |t) be the corre-

sponding posterior revenue function. Let U = ∪i ∈K Ii and R̄(v) =

ci ,∀v ∈ Ii . Then we have barS = [r∗, v̄] \U , p̄(t) = −
R̄′(t )
R̄(r ∗) and

R̄(v |t) =


R̄(v)

¯

v ≤ v ≤ r∗

R̄(r∗) r∗ < v ≤ t

0 v > t

It is worthmentioning that R̄(v) is not differentiable at the bound-
aries of the ironed intervals. For those points, the R̄′(t) in p̄(t)
should be replaced by R′(t). As for other signals t , R̄(v) = R(v) in
the neighborhood of t , and we have R̄′(t) = R′(t). And since R(v) =
R̄(v),∀v ∈ [

¯

v, r∗], the signaling scheme Ω̄ becomes S̄ = [r∗, v̄] \U ,

p̄(t) = −
R′(t )
R(r ∗) and

R̄(v |t) =


R(v)

¯

v ≤ v ≤ r∗

R(r∗) r∗ < v ≤ t

0 v > t

We apply Lemma 4.6 to the original revenue function R(v) and
the ironed revenue function R̄(v) and obtain

R(v |t) =


R(v)

¯

v ≤ v ≤ r∗

R(r∗) r∗ < v ≤ t and v < U
R(v)
ci R(r∗) r∗ < v ≤ t and ∃i ∈ K such that v ∈ Ii

0 v > t

The function F (v |t) can be computed accordingly. □

4.4 Signaling Scheme for Other Points
The following theorem by Bergemann et al. [3] states that the

signaling scheme for any point inside the shaded area of Figure1

can be constructed by combining the signaling schemes of the 3

extreme points of the triangle.

Theorem 4.13 (Bergemann et al. [3]). For any prior distribution
F (v) and any pair of seller revenue and buyers utility inside the shaded
triangle in Figure 1. There exists a closed-form signaling scheme that
achieves it.

Proof. Note that any point P inside the shaded triangle can be

written as a convex combination of the three vertex A,B and C:

P = λ1A + λ2B + λ3C, λ1 + λ2 + λ3 = 1. (4)

Assume signaling schemes Ωi = (Si , Fi (v |ti ),pi (ti )) for i ∈ {1, 2, 3}
achieve the point A,B and C respectively. Define signaling scheme

Ω = (S, F (v |t),p(t))

such that

• S = S1 ∪ S2 ∪ S3

• p(t) =
∑
i :t ∈Si λipi (t), ∀t ∈ S

• F (v |t) = 1

p(t )
∑
i :t ∈Si λipi (t)Fi (v |t) ∀t ∈ S

That is, we let Ω also to be convex combination of Ωi , i = 1, 2, 3 with
coefficients according to (4), and merge the posterior distributions

with the same signal (monopoly reserve) together. The signaling

scheme Ω achieves point P . □
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