
Towards Partial Order Reductions for Strategic Ability
Wojciech Jamroga and Wojciech Penczek

∗

Institute of Computer Science, Polish Academy of Sciences

01-248 Warsaw, Poland

{jamroga,penczek}@ipipan.waw.pl

Piotr Dembiński and Antoni Mazurkiewicz

Institute of Computer Science, Polish Academy of Sciences

01-248 Warsaw, Poland

{piotrd,amaz}@ipipan.waw.pl

ABSTRACT
We propose a general semantics for strategic abilities of agents

in asynchronous systems, with and without perfect information.

Based on the semantics, we show some general complexity results

for verification of strategic abilities in asynchronous interaction.

More importantly, we develop a methodology for partial order re-
duction in verification of agents with imperfect information. We

show that the reduction preserves an important subset of strategic

properties, both with and without the fairness assumption. Inter-

estingly, the reduction does not work for strategic abilities under

perfect information.

KEYWORDS
Alternating-time temporal logic; asynchronous systems; model

checking; partial order reduction; Mazurkiewicz traces

ACM Reference Format:
Wojciech Jamroga and Wojciech Penczek and Piotr Dembiński and Antoni

Mazurkiewicz. 2018. Towards Partial Order Reductions for Strategic Ability.

In Proc. of the 17th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018,
IFAAMAS, 10 pages.

1 INTRODUCTION
Alternating-time temporal logic ATL∗ and its fragment ATL [5, 6]

extend temporal logic with the notion of strategic ability. They allow
to express statements about what agents (or groups of agents) can

achieve. For example, ⟨⟨i⟩⟩Fwini says that agent i can eventually win
no matter what the other agents do, while ⟨⟨i, j⟩⟩Gsafe expresses
that agents i and j together can force the system to always remain

in a safe state. Such properties can be useful for specification, verifi-

cation, and reasoning about interaction in agent systems. Moreover,

algorithms and tools for verification of strategic abilities have been

in constant development for almost 20 years [2, 3, 9, 10, 16, 18, 19,

21, 36, 41, 50, 51, 63]. However, there are two caveats.

First, many tools and algorithmic solutions focus on agents with

perfect information. This is clearly unrealistic in all but the sim-

plest multi-agent scenarios. Still, the tendency is somewhat easy to

understand, since model checking of ATL variants with imperfect

information is ∆P
2 - to PSPACE-complete for agents playing memo-

ryless strategies [13, 38, 66] and EXPTIME-complete to undecidable

for agents with perfect recall of the past [11, 28, 34]. Moreover, the

∗
Also affiliated with Siedlce University, Faculty of Science, Institute of Computer

Science, 3-Maja 54, 08-110 Siedlce, Poland.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

imperfect information semantics of ATL does not admit alternation-

free fixpoint characterizations [14, 26, 27], whichmakes incremental

synthesis of strategies difficult to achieve [16, 17, 36, 39, 63].

Secondly, the semantics of strategic logics are almost exclusively

based on synchronous concurrent game models. That is, one implic-

itly assumes the existence of a global clock that triggers subsequent

global events in the system. At each tick of the clock, all the agents

choose their actions, and the system proceeds accordingly with the

corresponding global transition. However, many real-life systems

are inherently asynchronous. No less importantly, many systems

that are synchronous at the implementation level can be more

conveniently modeled as asynchronous on a more abstract level.

In this paper, we make the first step towards strategic analysis

of such systems. Our contribution is threefold. First, we define a

semantics of strategic abilities for agents in asynchronous systems,

with and without perfect information. Secondly, we present some

general complexity results for verification of strategic abilities in

such systems. Thirdly, and most importantly, we adapt partial order
reduction (POR) to model checking of strategic abilities for agents

with imperfect information. We also demonstrate that POR allows

to significantly reduce the size of the model, and thus to make the

verification more feasible. In fact, we show that the most efficient

variant of POR, defined for linear time logic LTL, can applied be

almost directly. The (nontrivial) proof that the LTL reductions work

also for the more expressive strategic operators is the main contri-

bution of this paper. Interestingly, the scheme does not work for

verification of agents with perfect information.

The outline of the paper is as follows. In Section 2, we introduce

the structures to represent and reason about asynchronous multi-

agent systems. In Section 3, we define the semantics of ATL for

asynchronous systems. In Section 4, we show the general complex-

ity results. Sections 5 and 6 put forward the theoretical foundations

and the algorithms for partial order reduction. We conclude in

Section 8.

Related work. Relevant related work is relatively scarce. Asyn-

chronous semantics and partial order reduction for distributed

systems were extensively studied in [31–33, 43, 45, 57–60, 62]. The

most recent approaches include dynamic POR [1, 20, 30] and com-

bine POR with symbolic methods [42, 44]. The only efficient ap-

proach to partial order reduction in a MAS context [48, 49] concerns

standard temporal-epistemic logics.

Alur, Henzinger and Kupferman mentioned asynchronous sys-

tems in their seminal paper on ATL [6], but they modeled them as a

special case of synchronous systems. Asynchronous omega-regular

games were also considered in [64]. Reactive modules [2–4] feature

several modes of asynchronous execution, but – to the best of our

knowledge – this aspect has never been given a more systematic

analysis. The work that comes closest to our new proposal is [25]

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

156

W

T

A

G

R

W

T

A

Train1 Train2Controller

a1
a1a2

a2
a3

b1
b1b2

b2
b3

Figure 1: Asynchronous MAS for the TGC benchmark

where a variant of ATL was proposed for agent-oriented agent

programs written in 2APL with asynchronous execution semantics.

2 MODELS OF MULTI-AGENT SYSTEMS
One can model multi-agent systems as networks of automata that

execute asynchronously by interleaving local transitions, and syn-

chronize their moves whenever a shared action is executed [29, 48].

Definition 2.1 (Asynchronous MAS). An asynchronous multi-agent
system (AMAS) consists of n agentsA = {1, . . . ,n}, each associated
with a tuple Ai = (Li , ιi ,Acti , Pi ,Ti) including a set of local states
Li = {l1i , l

2

i , . . . , l
ni
i }, an initial state ιi ∈ Li , and a set of actions

Acti = {a1i ,a
2

i , . . . ,a
mi
i }. Notice that the sets Acti do not need to

be disjoint. Act =
⋃
i ∈A Acti is the set of all actions, and Loc =⋃

i ∈A Li is the set of all local states in the system. For each a ∈ Act ,
the set Aдent(a) = {i ∈ A | a ∈ Acti } contains the agents which
have a in their sets of actions.

A local protocol Pi : Li → 2
Acti

selects the actions available at

each local state. Moreover, Ti : Li × Acti ⇀ Li is a (partial) local
transition function such that Ti (li ,a) , undef iff a ∈ Pi (li).

Example 2.2 (TGC). Figure 1 presents the Train-Gate-Controller
(TGC) benchmark [3, 35]. The system consists of three agents: a

controller c and two trains t1, t2. The trains run on separate circular

tracks that jointly pass through a narrow tunnel. Each train can be

waiting for the permission to enter (stateW), riding inside the tun-

nel (T), or riding somewhere away of the tunnel (A). The controller
switches between green light (state G) and red light (R). Initially,
both trains are waiting and the controller displays Green.

2.1 Interleaved Interpreted Systems
To understand the interaction between asynchronous agents, we

use global states and global transitions, defined formally below.

Definition 2.3 (Interleaved Interpreted System). Let PV be a set

of propositional variables. An interleaved interpreted system (IIS),
or a model, is an asynchronous MAS extended with the following

elements: a set St ⊆ L1 × · · · × Ln of global states, an initial state

ι ∈ St , a global transition functionT : St×Act ⇀ St , and a valuation

of propositionsV : St → 2
PV

. For state д = (l1, . . . , ln), we denote
the local component of agent i by дi = li . Also, we will sometimes

write д1
a

−→ д2 instead of T (д1,a) = д2.

We say that action a ∈ Act is enabled at д ∈ St if д
a

−→ д′ for
some д′ ∈ St . The global transition function is assumed to be total,

i.e., at each д ∈ St there exists at least one enabled action.

�������

������� �������

������� �������

�
� �

�

�
� �

�

�
� �

�

�������

������� �������

������� �������

������� �������

�������

�
� �

�

�
� �

�

�
� �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2: IIS for TGC: (a) full model, (b) reduced model. Vis-
ible transitions are depicted by blue bold arrows

An infinite sequence of global states and actionsπ = д0a0д1a1д2 . . .

is called a path if дi
ai
−→ дi+1 for every i ≥ 0. Act(π) = a0a1a2 . . .

is the sequence of actions in π , and π [i] = дi is the i-th global state

of π . ΠM (д) denotes the set of all paths inM starting at д.
IIS can be used to provide an execution semantics to AMAS.

Definition 2.4 (Canonical IIS). Let S be an asynchronous MAS

with n agents. Its canonical model I ISV (S) extends S with the valua-

tion V , global states St = L1 × . . . × Ln , initial state ι = (ι1, . . . , ιn),
and transition function T defined as follows: T (д1,a) = д2 iff

Ti (д
i
1
,a) = дi

2
for all i ∈ Aдent(a), and дi

1
= дi

2
for all i ∈ A \

Aдent(a).

The state/transition structure of the canonical interleaved in-

terpreted system for TCG is depicted in Figure 2a. Additionally,

let us assume PV = {in1, in2} with ini ∈ V (д) iff дi = T . That is,
proposition ini denotes that train ti is currently in the tunnel. It is

easy to see that the global state space grows exponentially with the

number of agents. In some cases, it suffices to consider a subset of

states and transitions, i.e., a submodel of I IS(S).

Definition 2.5 (Submodel). LetM,M ′
be two models extending

the same AMAS, such that St ′ ⊆ St , ι ∈ St ′,T is an extension ofT ′
,

and V ′ = V |St ′ . Then, we writeM
′ ⊆ M and callM ′

a submodel of
M or a reduced model ofM .

An example submodel of the IIS for TCG is shown in Figure 2b.

It is easy to see that, for each д ∈ St ′, we have ΠM ′(д) ⊆ ΠM (д).
In order to generate reduced models, we need a notion of invisi-

bility and independency of actions. Intuitively, an action is invisible

iff it does not change the valuations of the propositions. Note that

this concept of invisibility is technical, and is not connected to the

view of any agent in the sense of [52]. Additionally, we can desig-

nate a subset of agents A whose actions are visible by definition.

Furthermore, two actions are weakly independent iff they are not

actions of the same agent, and strongly independent iff they are

weakly independent and at least one of them is invisible.

Definition 2.6 (Invisible actions). Consider a modelM , a subset

of agents A ⊆ A, and a subset of propositions PV ⊆ PV . An

action a ∈ Act is invisible wrt. A and PV if Aдent(a) ∩ A = ∅ and

for each two global states д,д′ ∈ St we have that д
a

−→ д′ implies

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

157

V (д) ∩ PV = V (д′) ∩ PV . The set of all invisible actions for A, PV
is denoted by InvisA,PV , and its closure – of visible actions – by

VisA,PV = Act \ InvisA,PV .

Definition 2.7 (Independent actions). Weak independenceWI ⊆
Act × Act is defined as:WI = {(a,b) ∈ Act × Act | Aдent(a) ∩
Aдent(b) = ∅}. Strong independence (or independence) IA,PV ⊆

Act ×Act is defined as: IA,PV =WI \ (VisA,PV ×VisA,PV).

We assume in the rest of the paper that a suitable subset PV is

given, and omit the subscript PV whenever clear from the context.

3 REASONING ABOUT AGENTS’ ABILITIES
Many important properties in a MAS can be specified in terms of

the strategic ability of some agents to achieve a given goal. Such

properties can be specified by formulas of the strategic logic ATL.
The semantics of ATL is typically defined for models of synchro-

nous systems. In this section, we show how it can be adapted to

asynchronous MAS.

3.1 Alternating-Time Temporal Logic: Syntax
Alternating-time temporal logic [5, 6] generalizes the branching-

time temporal logic CTL [22] by replacing the path quantifiers E,A
with strategic modalities ⟨⟨A⟩⟩. Informally, ⟨⟨A⟩⟩γ expresses that the

group of agents A has a collective strategy to enforce the tempo-

ral property γ . The formulas make use of temporal operators: “X”

(“next”), “G” (“always from now on”), “F” (“now or sometime in the

future”), U (“strong until”), and R (“release”). The logic comes in

several syntactic variants, the most popular of which are ATL∗ and
“vanilla ATL” (the latter often called simply “ATL”).

Definition 3.1 (Syntax of ATL∗). Let PV be a set of propositional

variables and A the set of all agents. The language of ATL∗ is

defined by the following grammar (where p ∈ PV and A ⊆ A):

φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩γ ,
γ ::= φ | ¬γ | γ ∧ γ | Xγ | γ Uγ .

The other Boolean operators are defined as usual. “Release” can

be defined as γ1 Rγ2 ≡ ¬((¬γ1)U (¬γ2)). The “sometime” and “al-

ways” operators can be defined as Fγ ≡ trueUγ and Gγ ≡ false Rγ .
Moreover, “for all paths” can be defined as Aγ ≡ ⟨⟨∅⟩⟩γ .

Definition 3.2 (Syntax of ATL). In “vanilla ATL,” every occur-

rence of a strategic modality is immediately followed by a temporal

operator. In that case, “release” is not definable from “until” any-

more [47], and it must be added explicitly to the syntax:

φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩Xφ | ⟨⟨A⟩⟩φ Uφ | ⟨⟨A⟩⟩φ Rφ.

In the rest of the paper, we are mainly interested in formulas that

do not use the next step operator X, and do not contain nested strate-

gic modalities. We denote the corresponding subsets of ATL∗ and
ATL by sATL∗ (“simple ATL∗”) and sATL (“simple ATL”). More-

over, 1ATL∗ is the fragment of sATL∗ that admits only formulas

consisting of a single strategic modality followed by an LTL formula

(i.e., ⟨⟨A⟩⟩γ , where γ ∈ LTL), and analogously for 1ATL.

Example 3.3. The following formulas of sATL∗ specify inter-

esting properties of the TCG system: ⟨⟨c⟩⟩F in1 (the controller can
let train t1 in), ⟨⟨c⟩⟩G¬in1 (the controller can keep t1 out forever),
⟨⟨c⟩⟩F(in1∧F¬in1) (the controller can let t1 through),¬⟨⟨t1, t2⟩⟩F(in1∨

in2) (neither train can get in without the help of the controller, even

if it collaborates with the other train).

We claim that most of practically interesting specifications of

strategic ability can be expressed in sATL∗, possibly extended with

epistemic operators. Nested strategic modalities allow to express

an agent’s ability to endow another agent with ability (or deprive

the other agent of ability), which is seldom of practical interest.

3.2 Strategies and Outcomes
LetM be a model. A strategy of agent i ∈ A inM is a conditional

plan that specifies what i is going to do in any potential situation.

Here, we follow Schobbens [66], and adopt his taxonomy of four

“canonical” strategy types: IR, iR, Ir, and ir. In the notation, R (resp.

r) stands for perfect (resp. imperfect) recall, and I (resp. i) refers
to perfect (resp. imperfect) information. Note that verification of

ATL for agents with perfect recall is in general undecidable [28].

Because of that, we focus on memoryless strategies. Formally:

• A memoryless perfect information strategy for agent i is a
function σi : St → Acti st. σi (д) ∈ Pi (д

i) for each д ∈ St .
• Amemoryless imperfect information strategy for i is a function
σi : Li → Acti st. σi (l) ∈ Pi (l) for each l ∈ Li .

Thus, a perfect information strategy can assign different actions

to any two global states, while under imperfect information the

agent’s choices depend only on the local state of the agent.
1
A

joint strategy σA for a coalition A ⊆ A is a tuple of strategies, one

per agent i ∈ A. We denote the set of A’s collective memoryless

perfect (resp. imperfect) information strategies by ΣIrA (resp. ΣirA).
Additionally, let σA = (σ1, . . . ,σk) be a joint strategy for A =
{i1, . . . , ik }. For each д ∈ St , we define σA(д) = (σ1(д), . . . ,σk (д)).

Definition 3.4 (Outcome paths). Let Y ∈ {Ir , ir}. The outcome of
strategy σA ∈ ΣYA in state д ∈ St is the set outM (д,σA) ⊆ ΠM (д)
such that π = д0a0д1a1д2 · · · ∈ outM (д,σA) iff д0 = д and ∀i ∈ N

∀j ∈ A if j ∈ Aдent(ai), then ai ∈ σj (π [i]) for Y = Ir, and ai ∈

σj (π [i]
j) for Y = ir.

Intuitively, the outcome of a joint strategy σA in a global state д
is the set of all the infinite paths that can occur when in each state

of the paths either some agents (an agent) in A execute(s) an action

according to σA or some agents (an agent) inA execute(s) an action

following their protocols. Clearly, each action a has to be executed

by all agents which havea in their sets of actions. In reasoning about
asynchronous systems, one often wants to look only at fair paths,
i.e., ones that do not consistently ignore an agent whose action is

always enabled. Formally, a path π satisfies the concurrency-fairness
condition (CF) if there is no action enabled in all states of π from

π [i] on, and at the same time weakly independent from all the

actions actually executed in π [i],π [i + 1],π [i + 2], We denote

the set of all such paths starting at д by ΠCFM (д).

Definition 3.5 (CF-outcome). The concurrency-fair outcome of

σA ∈ ΣYA is defined as outCFM (д,σA) = outM (д,σA) ∩ ΠCFM (д).

Note that, in an arbitrary IIS, not every action admitted by agent

i’s protocol at some local state li must be enabled at all the global

1
Alternatively, we can require the agent’s choices to be the same for the global states

that share the same local states.

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

158

states д with дi = li . Moreover, it may be the case that the outcome

of a strategy is empty, because all the paths consistent with the

strategy get “stuck” at some global state. In Sections 5 and 6, we

show how to construct reduced models so that this does not create

problems. For the moment, we state the following two lemmas.

Lemma 3.6. LetM ′ be a submodel ofM . For each ir-joint strategy
σA we have outM ′(ι,σA) = outM (ι,σA)∩ΠM ′(ι). and outCFM ′ (ι,σA) =

outCFM (ι,σA) ∩ ΠCFM ′ (ι).

Proof. Notice that each ir-strategy inM is also a well defined

ir-strategy inM ′
as it is defined on the local states of AMAS which

is extended byM andM ′
. The lemma follows directly from Defini-

tions 3.4 and 3.5, together with the fact that ΠM ′(ι) ⊆ ΠM (ι). �

Lemma 3.7. LetM be a model, π ,π ′ ∈ ΠM (ι), and for some i ∈ A :

Act(π) |Acti= Act(π ′) |Acti . Then, for each ir-strategy σi , we have
π ∈ outM (ι,σi) iff π ′ ∈ outM (ι,σi).

Proof sketch. Let Act(π) |Acti= b0b1 For each bj let π [bj]
denote the global state fromwhichbj is executed in π . By induction

we can show that for each j ≥ 0 we have π [bj]
i = π ′[bj]

i
. For j = 0

it is easy to notice that π [b0]
i = π [b0]

i = ιi .
Assume that the thesis holds for j = k . The induction step follows

from the fact the local evolution Ti is a function, so if π [bk]
i =

π ′[bk]
i = l for some l ∈ Li , then π [bk+1]

i = π ′[bk+1]
i = Ti (l ,bk).

This means that for each ir-strategy σi , we have π ∈ outM (ι,σi) iff
π ′ ∈ outM (ι,σi), which concludes the proof. �

The lemma can be easily generalized to joint strategies σA ∈ ΣirA.
Note that the same property does not hold for perfect information

strategies. This is because the current local state li can only change

through the execution of an action by agent i , but the current global
state can possibly change because of another agent’s transition.

Similarly, the analogue of Lemma 3.7 does not hold in synchronous

models of MAS, since the local transitions of i in a synchronous

model can be influenced by the actions selected by the other agents.

3.3 Asynchronous Semantics of ATL and ATL∗

Our semantics ofATL∗ for asynchronous interaction, parameterised

with the strategy type Y ∈ {Ir, ir}, is defined as follows:

M,д |=Y p iff p ∈ V (д), for p ∈ PV;

M,д |=Y ¬φ iffM,д ̸ |=Y φ;
M,д |=Y φ1 ∧ φ2 iffM,д |=Y φ1 andM,д |=Y φ2;

M,д |=Y ⟨⟨A⟩⟩γ iff there is a strategyσA ∈ ΣYA such that outM (д,σA) ,
∅ and, for each path π ∈ outM (д,σA), we haveM,π |=Y γ ;

M,π |=Y φ iffM,π [0] |=Y φ;
M,π |=Y ¬γ iffM,π ̸ |=Y γ ;
M,π |=Y γ1 ∧ γ2 iffM,π |=Y γ1 andM,π |=Y γ2;
M,π |=Y Xγ iffM,π [1,∞] |=Y γ ;
M,π |=Y γ1 Uγ2 iff M,π [i,∞] |=Y γ2 for some i ≥ 0 and

M,π [j,∞] |=Y γ1 for all 0 ≤ j < i .

The semantics of “vanillaATL” can be given entirely with respect
to states in the usual way.

Example 3.8. We leave it to the reader to check that all the for-

mulas in Example 3.3 hold in the TGC model from Figure 2a for

both the Ir and the ir semantics.

Remark 1. We observe that the relation |=
ir
captures the “objective”

notion of ability under imperfect information [15, 37]. That is, ⟨⟨A⟩⟩γ
holds iff A have a collective strategy to enforce γ from the current
global state of the system. We expect to obtain analogous results for
the semantics based on “subjective” ability [15, 40, 66], but a detailed
study is outside the scope of this paper.

Remark 2. Notice also that the semantics constrains the abilities
behind ⟨⟨A⟩⟩ to “no-deadlock” paths and strategies. That is, we only
consider infinite execution paths, and only strategies whose outcomes
are nonempty sets of such paths. This is in line with the standard
approach to distributed systems. An interesting alternative would be
to model executions with deadlock by paths ending with an infinite
sequence of “silent” actions, looping in the deadlock state. We plan to
study the resulting semantics of ATL∗ in the future.

We obtain the concurrency-fair semantics |=
IrF

and |=
irF

by replac-

ing outM (д,σA) with outCFM (д,σA) in the clauses for ⟨⟨A⟩⟩.
For the set of formulas L and the semantic relation |=Y , we de-

note the logical system (L, |=Y) by LY . Thus, ATLIr is the “vanilla
ATL” with memoryless perfect information semantics, sATL∗

irF
is

the “simple ATL∗” with memoryless imperfect information strate-

gies and concurrency-fairness assumption, and so on.

4 MODEL CHECKING sATL AND sATL∗

FOR ASYNCHRONOUS AGENT SYSTEMS
In this work, we focus on simple specifications of strategic abil-

ity, i.e., ones that can be formally characterized without nesting

strategic modalities. We believe that an overwhelming majority

of properties, relevant in actual application domains, follow that

pattern. One usually wants to require (or ask if) a given player has

a strategy to eventually win the game (⟨⟨i⟩⟩Fwini), two trains can
persistently avoid the crash (⟨⟨t1, t2⟩⟩G¬(in1 ∧ in2)), etc. Moreover,

in all realistic scenarios, players have only partial knowledge of

the current global state of the world. Thus, we focus here on the

semantics based on imperfect information strategies.

In this section, we establish the complexity of model checking

for relevant fragments of sATL∗
ir
and sATL∗

irF
. We observe that the

complexity can be given with respect to themodel of the system (i.e.,

an interleaved interpreted system, cf. Section 2.1), or the compact

representation of the system (in our case, an asynchronous MAS,

cf. Section 2). We give both kinds of results. Note that I ISV (S) has
usually exponentially many global states and transitions in the

number of agents in S . Thus, the model checking results relative

to the size of I ISV (S) “hide” the part of the complexity already

included in the blowup. On the other hand, POR reduces models

and not representations, so the complexity wrt the size of the model

tells us how much gain we can expect when the model is reduced.

4.1 Model Checking 1ATLir and 1ATLirF

We begin by looking at the verification complexity for simplest

specifications, consisting of a single strategic modality ⟨⟨A⟩⟩ imme-

diately followed by a single temporal modality.

Proposition 4.1. Model checking 1ATLir and 1ATLirF is NP-
complete in the size of the model and the length of the formula. It
remains NP-complete even for formulas of bounded length.

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

159

Proof sketch. Analogous to the result in [66] for ⟨⟨Γ⟩⟩-ATLir.
For the upper bound, observe that model checking of ⟨⟨A⟩⟩γ in

M,д can be done by (1) guessing an ir-joint strategy σA, (2) pruning
M according to σA, and (3) model checking the CTL formulas:

¬AG⊥ (“the set of paths is nonempty”) and Aγ (“for all paths, γ ”)
in state д of the resulting model. Since σA is of at most linear size

with respect to |M |, and model checking of Aγ can be done in

deterministic polynomial time w.r.t. |M |, both with and without

fairness assumptions [7], we obtain the bound.

For the lower bound, we use the reduction of [66] of SAT to

model checking of the formula ⟨⟨1⟩⟩Fyes in a single-agent model

(note that single-agent systems can be seen as special cases of both

synchronous and asynchronous systems, and the semantics with

and without fairness assumptions coincide on such models). Notice

that the lower bound does not rely on the length of the formula. �

Proposition 4.2. Model checking 1ATLir and 1ATLirF is PSPACE-
complete in the size of the representation (even for formulas of bounded
length).

Proof sketch. For the upper bound, observe that model check-

ing of ⟨⟨A⟩⟩γ in an AMAS S can be done by: (1) guessing an ir

strategy σA as a deterministic restriction of the protocols Pi , i ∈ A;

(2) pruningM ; (3) model checking, in the resulting representation

S ′, the LTL formulas: (3a) G⊥ and (3b) γ (for 1ATLir) or γ ∧ fair
(for 1ATLir) where fair is an LTL characterization of fairness. The

algorithm returns true iff the output of (3a) was false and that of (3b)
was true. Since the size of σA is linear wrt |S |, and model checking

LTL is in PSPACE wrt |S | [65], we obtain the bound.

For the lower bound, we adapt the construction from [46]. Given

a Turing machine T with space complexity s(n), we construct the
concurrent program P(T) as in [46, Theorem 6.1]. According to

that theorem, there exists a computation of T on the empty tape

which eventually reaches an accepting state iff P(T) |=CTL EF accept.
Now, we observe that P(T) is in fact an asynchronous MAS in the

sense of Definition 2.1. Thus, P(T) |=CTL EF accept iff I IS(P(T)) ̸|=
ir

⟨⟨∅⟩⟩G¬accept. This way we obtain the co-PSPACE-hardness for
1ATLir (recall that co-PSPACE = PSPACE).

For 1ATLirF, we observe that all the paths in I IS(P(T)) are fair,
so the same construction can be used.

Again, the reduction does not rely on the length of the formula.

�

4.2 Model Checking sATLir and sATLirF

The verification complexity for Boolean combinations of formulas

from 1ATL is almost the same.

Proposition 4.3. Model checking sATLir and sATLirF is NP-hard
and in ΘP

2 in the size of the model and the length of the formula (even
for formulas of bounded length).2

Proof sketch. The lower bounds follow from Proposition 4.1.

The following algorithm for checking φ in M,q demonstrates

the upper bound. First, the non-deterministic algorithm in Propo-

sition 4.1 is used as an oracle that determines the truth value for

each subformula ⟨⟨A⟩⟩γ of φ. Clearly, the oracle is called at most |φ |

2
Where ΘP

2 = P| |NP
is the class of problems solvable by a deterministic polynomial-

time Turing machine making polynomially many nonadaptive calls to an NP oracle.

times, and the input in the next call does not depend on the output

of the preceding calls. Finally, based on the output of the calls, the

value of φ is calculated in the standard way. �

Proposition 4.4. Model checking sATLir and sATLirF is PSPACE-
complete in the size of the representation and the length of the formula
(even for formulas of bounded length).

Proof sketch. The lower bounds follow from Proposition 4.2.

For the upper bounds, we use the algorithm from Proposition 4.3,

but with the algorithm from Proposition 4.2 as the oracle. Since

PPSPACE = PSPACE, we obtain the result. �

4.3 Model Checking sATL∗
ir
and sATL∗

irF

Finally, we examine the complexity of verification for specifications

with arbitrary LTL subformulas.

Proposition 4.5. The following statements hold:
(1) Model checking sATL∗

ir
, 1ATL∗

ir
, sATL∗

irF
, 1ATL∗

irF
is PSPACE-

complete in the size of the model and the formula.
(2) For formulas of bounded length, the problem is NP-complete

for 1ATL∗
ir
and 1ATL∗

irF
, and between NP and ΘP

2 -complete for
sATL∗

ir
and sATL∗

irF
.

Proof sketch. For (1), the lower bound follows from PSPACE-
completeness of LTL model checking [65]. The upper bound for

1ATL∗
ir
and 1ATL∗

irF
can be obtained by guessing the strategy, prun-

ing the model, and verifying the LTL formulas from Propositions 4.2

(note that NPPSPACE = PSPACE). For sATL∗
ir
and sATL∗

irF
, we re-

peat this for each subformula, and compute the Boolean combina-

tion.

For (2), the lower bound follows from Proposition 4.1. The inclu-

sion in NP for 1ATL∗
ir
and 1ATL∗

irF
can be obtained by an algorithm

similar to that in Proposition 4.1, only an LTL rather than CTL
model checker is called. Since LTL model checking is NLOGSPACE-
complete for formulas of bounded size [65], and NLOGSPACE ⊆ P,
the upper bound follows.

The upper bound for sATL∗
ir
and sATL∗

irF
is obtained by an algo-

rithm similar to that in Proposition 4.3, only an LTL rather than

CTL model checker is called inside the oracle. �

Proposition 4.6. Model checking sATL∗
ir
, 1ATL∗

ir
, sATL∗

irF
, and

1ATL∗
irF

is PSPACE-complete in the size of the representation and the
formula (even for the formulas of bounded length).

Proof sketch. The lower bounds follow from Proposition 4.2.

The upper bounds are obtained analogously to Proposition 4.4. �

4.4 Discussion
The above complexity results show that model checking fragments

of sATL∗
ir
and sATL∗

irF
wrt compact representations (i.e., asynchro-

nous MAS) is hard, and the size of the representation is the main

factor for this hardness. Moreover, they suggest that there is no

general method better than unfolding the representation to an

explicit model (i.e., an interleaved interpreted system), and then

verifying the IIS. This is because, with PSPACE-complete problems,

one should expect exponential running time in practice. Thus, it is

essential for the unfolding to produce as small models as possible.
In what follows, we recall the idea of partial order reduction, very

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

160

important in verification of temporal properties, and show how it

can be used to model-check formulas of sATL∗
ir
and sATL∗

irF
.

5 PARTIAL ORDER REDUCTIONS
Partial order reductions have been defined for various configurations
of temporal and temporal-epistemic logics without the “next step”

operator X [31, 48, 49, 57, 62]. The idea is to generate reduced mod-

els that either preserve some kind of model equivalence, or preserve

representatives of Mazurkiewicz traces. The former method was

used, for instance, to construct POR for LTL−X and LTLK−X based

on stuttering trace equivalence [48, 49], and to obtain reductions for

CTL∗
−X and CTLK−X based on stuttering bisimulation [31, 48, 49].

The latter method was applied e.g. to prove correctness of reduction

for LTL−X formulas under the concurrency-fair semantics [57].

It is essential to notice that the practical value of a reduction

scheme depends on how discriminative the underlying notion of

equivalence is. Since CTL−X equivalences are more discriminative

than those for LTL−X, partial order reductions preserving LTL−X
produce smaller models than these for CTL−X. ATL∗

−X has even

more distinguishing power than CTL−X. Thus, one can expect

that equivalences preserving full ATL∗
−X (ATL∗ without the next

step operator X) would be very discriminative, and result in very

inefficient reductions. Aware of this and motivated by practical ap-

plications, we look for subsets of ATL∗
−X for which the most efficient

known partial order reduction methods (i.e., those for LTL−X) can be
applied.

In what follows, we show that the reductions for LTL−X can

be adapted to sATL∗
ir
, both with and without the CF assumption.

We begin by introducing the relevant notions of equivalence (Sec-

tions 5.1 and 5.2). Then, we propose conditions on reduced models

that preserve the equivalences (Sections 5.3 and 5.4). Finally, we

present algorithms for POR and show their correctness (Section 6).

Interestingly, it turns out that our approach does not apply to

sATL∗
Ir
, cf. Section 6.3. This suggests that ATL with imperfect in-

formation, besides conceptual advantage, can possibly offer some

technical benefits over ATL with perfect information.

5.1 Stuttering Equivalences
LetM be a model,M ′ ⊆ M , and PV ⊆ PV a subset of propositions.

Stuttering equivalence says that two paths can be divided into

corresponding finite segments, each satisfying exactly the same

propositions. Stuttering path equivalence
3
requires two models to

always have stuttering-equivalent paths.

Definition 5.1 (Stuttering equivalence [23]). Two paths π ∈ ΠM (ι)
and π ′ ∈ ΠM ′(ι) are stuttering equivalent, denoted π ≡s π

′
, if there

exists a partition B0 = (π [0], . . . ,π [i1 − 1]), B1 = (π [i1], . . . ,π [i2 −
1]), . . . of the states of π , and an analogous partition B′

0
,B′

1
, . . . of

the states of π ′
, such that for each j ≥ 0 : Bj and B

′
j are nonempty

and finite, and V (д) ∩ PV = V ′(д′) ∩ PV for every д ∈ Bj and
д′ ∈ B′

j .

3
The property is usually called stuttering trace equivalence. We opt for a slightly

different name to avoid confusion with Mazurkiewicz traces, also used in this paper.

Definition 5.2 (Stuttering path equivalence [23]). Models M and

M ′
are stuttering path equivalent, denotedM ≡s M

′
if for each path

π ∈ ΠM (ι), there is a path π ′ ∈ ΠM ′(ι) such that π ≡s π
′
.
4

Theorem 5.3 ([23]). If M ≡s M ′, then we have M, ι |= φ iff
M ′, ι′ |= φ, for any LTL−X formula φ over PV .

5.2 Independence-Based Equivalences
Partial order reductions for concurrency-fair LTL−X are based on

Mazurkiewicz traces [53–55]. Consider two finite sequences of ac-

tions w,w ′ ∈ Act∗. We say that w ∼I w ′
iff w = w1abw2 and

w ′ = w1baw2, for somew1,w2 ∈ Act∗ and (a,b) ∈ I∅ . Let ≡I be the
reflexive and transitive closure of ∼I . By (finite) traces we mean

the equivalence classes of ≡I , denoted by [w]≡I .

Let v,v ′ ∈ Actω , and let Pref (v) denote the set of the finite

prefixes of v . Now, v ≤I v ′
iff ∀u ∈ Pref (v)∃û ∈ Pref (v)∃u ′ ∈

Pref (v ′)(u ∈ Pref (û)∧û ≡I u
′). That is, each finite prefix ofv can be

extended to a permutation (under commuting adjacent independent

actions) of some prefix of v ′
. Moreover, let v ≡ωI v ′

iff v ≤I v
′
and

v ′ ≤I v . Infinite traces are defined as equivalence classes of ≡ωI ,

denoted by [v]≡ωI .

Theorem 5.4 ([61]). LetM be a model. If π ,π ′ ∈ ΠM (ι) such that
Act(π) ≡ωI Act(π ′), then π ≡s π

′.

Thus, paths over representatives of the same infinite trace can-

not be distinguished by any LTL−X formula over PV . Note that

Mazurkiewicz traces preserve CF, i.e., if π ∈ ΠCFM (ι), then for each

π ′
such that Act(π) ≡ωI Act(π ′) we have π ′ ∈ ΠCFM (ι).

5.3 Preserving Traces for sATL∗
irF

Rather than generating the full modelM = I IS(S), one can generate

a reduced modelM ′
satisfying the following property:

AE-CF : (∀π ∈ ΠCFM (ι))(∃π ′ ∈ ΠCFM ′ (ι))Act(π) ≡
ω
I Act(π ′).

Then, M ′
preserves the LTL−X formulas under CF over PV [61].

We will now prove that this also works for sATL∗
irF
.

We first show that each set outM (д,σA) is trace-complete in the

sense that with each path π such that Act(π) = w , it contains a

path over anyw ′ ∈ [w]≡ωI
.

Lemma 5.5. Let π ∈ outM (ι,σA) and Act(π) = w . Then, ∀w ′ ∈

[w]≡ωI
∃π ′ ∈ outM (ι,σA) such that Act(π ′) = w ′.

Proof. Let M ′
be obtained from M by fixing Pi (li) = {σi (li)}

for each i ∈ A, li ∈ Li , and pruning the transitions accordingly.

The set of paths ΠM ′(ι) of M ′
must be trace-complete [61]. But

ΠM ′(ι) = outM (ι,σA), which ends the proof. �

The above lemma implies the following.

Lemma 5.6. LetM be a model andM ′ its submodel satisfing the
property AE-CF. Then, for each ir-strategy σA, ∀π ∈ outCFM (ι,σA)

∃π ′ ∈ outCFM ′ (ι,σA) such that Act(π) ≡ωI Act(π ′).

Proof. Assume thatπ ∈ outCFM (ι,σA). Then there isπ
′ ∈ ΠCFM ′ (ι)

such that Act(π) ≡ωI Act(π ′) (by AE-CF). SinceM ′
is a submodel

4
Typically, the definition contains also the symmetric condition which in our case

always holds for M and its submodel M ′
, as ΠM′ (ι) ⊆ ΠM (ι).

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

161

ofM , we have that π ′ ∈ ΠCFM (ι). This implies that π ′ ∈ outCFM (ι,σA)

by Lemma 5.5. Since π ′ ∈ ΠCFM ′ (ι) by Definition 3.4, we obtain that

π ′ ∈ outCFM ′ (ι,σA), which together with the fact that Act(π) ≡ωI
Act(π ′) completes the proof. �

Theorem 5.7. LetM be a model andM ′ its submodel satisfying
AE-CF. For each sATL∗

irF
formula φ over PV we have:

M, ι |=
irF

φ iff M ′, ι′ |=
irF

φ.

Proof. Proof by induction on the structure of φ. We show the

case φ = ⟨⟨A⟩⟩γ . The cases for ¬,∧ are straightforward.

(⇒)(⇒)(⇒) Follows from the fact that for each σA we have outCFM ′ (ι,σA) =

outCFM (ι,σA) ∩ ΠCFM ′ (ι), so outCFM ′ (ι,σA) ⊆ outCFM (ι,σA).

(⇐)(⇐)(⇐) Assume thatM ′, ι |=
irF

⟨⟨A⟩⟩γ . From the semantics, there is an

ir-joint strategy σA such that for each π ∈ outCFM ′ (ι,σA) we have
M ′,π |=

irF
γ . In order to prove the thesis, we show that for each

π ∈ outCFM (ι,σA)\outCFM ′ (ι,σA)we haveM,π |=
irF

γ . It follows from

Lemma 5.6 and Theorem 5.4 that for each π ∈ outCFM (ι,σA) there is

π ′ ∈ outCFM ′ (ι,σA) such that π ≡s π
′
. So,M ′,π ′ |=

irF
γ implies that

M,π |=
irF

γ . Thus, we can conclude thatM, ι |=
irF

⟨⟨A⟩⟩γ . �

5.4 Stuttering Equivalence without CF
The method based on Mazurkiewicz traces works well for sATL∗

irF
,

and we will present an algorithm generating reduced models that

satisfy condition AE-CF in Section 6. The same cannot be easily

applied to the semantics without fairness. In particular, it is unclear

how to generate reduced models that satisfy the analogue of AE-
CF in all paths. However, a similar result can be obtained through

stuttering equivalence, based on the following structural property:

AEA: ∀σA ∈ ΣirA∀π ∈ outM (ι,σA) ∃π ′ ∈ outM ′(ι,σA): π ≡s π
′

Theorem 5.8. Let A ⊆ A, and let M ′ be a submodel of M satis-
fying AEA. For each sATL∗

ir
formula φ over PV , that refers only to

coalitions Â ⊆ A: M, ι |=
ir
φ iff M ′, ι′ |=

ir
φ.

Proof. Proof by induction on the structure of φ. We show the

case φ = ⟨⟨Â⟩⟩γ . The cases for ¬,∧ are straightforward.

Notice that outM ′(ι,σÂ) ⊆ outM (ι,σÂ), which together with

AEA implies that the sets outM (ι,σÂ) and outM ′(ι,σÂ) are stutter-
ing path equivalent. So, the thesis follows from Theorem 5.3. �

Thus, we have proved that the structural conditions AE-CF and

AEA are sufficient to obtain correct reductions with and without

fairness (Theorems 5.7 and 5.8). We will discuss algorithms that

generate such reduced models in Section 6.

6 ALGORITHMS FOR POR
As mentioned above, the idea of model checking with POR is to

reduce the size of models while preserving satisfaction for a class of

formulas. Traditionally, the reduction algorithm is based either on

depth-first-search (DFS, see [31]), or on double-depth-first-search

(DDFS [24]). In this paper, we use the former.

6.1 DFS Algorithm
In the following, the stack represents a path π = д0a0д1a1 · · ·дn
that is currently being visited. For the top element of the stack дn
the following three operations are computed in a loop:

(1) Identify the set en(дn) ⊆ Act of enabled actions.

(2) Heuristically select a subset E(дn) ⊆ en(дn) of possible ac-
tions (see Section 6.2).

(3) For any action a ∈ E(дn), compute the successor stateд′ such

that дn
a
→ д′, and add д′ to the stack thereby generating the

path π ′ = д0a0д1a1 · · ·дnaд
′
. Recursively proceed to explore

the submodel originating at д′.
(4) Remove дn from the stack.

The algorithm begins with the stack comprising of the initial state

of M = I IS(S), and terminates when the stack is empty. Notice

that the model generated by the algorithm must be a submodel of

theM . Moreover, it is generated directly from the AMAS S , without
ever generating the full model M . Finally, the size of the reduced

model crucially depends on the ratio E(д)/en(д). The choice of E(д)
is discussed in the next subsection.

6.2 Heuristics for sATL∗
irF

and Subsets of sATLir

Let A ⊆ A. The conditions C1 − C3 below, inspired by [23], define

a heuristics for a selection of E(д) ⊆ en(д) in the algorithm of

Sect. 6.1.

C1 Along each path π in M that starts at д, each action that

is dependent on an action in E(д) cannot be executed in π
without an action in E(д) is executed first in π . Formally,

∀π ∈ ΠM (д) such that π = д0a0д1a1 . . . with д0 = д, and
∀b ∈ Act such that (b, c) < IA for some c ∈ E(д), if ai = b for

some i ≥ 0, then aj ∈ E(д) for some j < i .
C2 If E(д) , en(д), then E(д) ⊆ InvisA.
C3 For every cycle in M ′

there is at least one node д in the

cycle for which E(д) = en(д), i.e., for which all the successors
of д are expanded.

Theorem 6.1. LetM = I IS(S), andM ′ ⊆ M be the reduced model
generated by DFS with the choice of E(д′) for д′ ∈ St ′ given by
conditions C1, C3 and the independence relation IA, where A = ∅.
Then,M ′ satisfies AE-CF.

Proof. See [61, Theorem 3.3]. �

Theorem 6.2. Let A ⊆ A, M = I IS(S), and M ′ ⊆ M be the
reduced model generated by DFS with the choice of E(д′) for д′ ∈ St ′

given by conditions C1, C2, C3 and the independence relation IA.
Then,M ′ satisfies AEA.

Proof. Although the setting is slightly different, it can be shown

similarly to [23, Theorem 12] that the conditions C1, C2, C3 guar-

antee that the models M and M ′
are stuttering path equivalent.

More precisely, for each path π = д0a0д1a1 · · · with д0 = ι in M
there is a stuttering equivalent path π ′ = д′

0
a′
0
д′
1
a′
1
· · · with д′

0
= ι

inM ′
such that Act(π)|V isA = Act(π ′)|V isA , i.e., π and π ′

have the

same maximal sequence of visible actions for A.
To show that M ′

satisfies AEA, consider an ir-joint strategy

σA and π ∈ outM (ι,σA). Since M ≡s M ′
, we have that there is

π ′ ∈ ΠM ′(ι) such that π ≡s π ′
and Act(π)|V isA = Act(π ′)|V isA .

Since Acti ⊆ VisA for each i ∈ A, the same sequence of actions

of each Acti is executed in π and π ′
. Thus, by the generalization

of Lemma 3.7 to ir-joint strategies we get π ′ ∈ outM (ι,σA). So, by
Lemma 3.6 we have π ′ ∈ outM (ι,σA). �

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

162

Thus, we have obtained a general method of POR for fragments

of ATL∗ with imperfect information. The method is in fact a refor-

mulation of the reduction for LTL−X. This has at least two welcome

implications. First, the actual reductions are likely to be substantial

– much more than one would expect with the expressivity of sATL∗.
Secondly, one can reuse or adapt existing algorithms and tools

performing reductions for LTL−X. Algorithms generating reduced

models, in which the choice of E(д) is given by C1, C2, C3 or C1,
C3 can be found for instance in [23, 31, 49, 57, 58, 62].

6.3 Bad News for Agents with Perfect
Information

Here, we briefly show that the adaptation of LTL−X reduction does

not work for sATL∗ withmemoryless perfect information.We begin

with a counterexample to Lemma 5.5 which was essential to our

formal construction (Example 6.3). Then, we show that the whole

method does not preserve formulas of sATL∗
Ir
(Example 6.4).

Example 6.3. Consider the MAS composed of two agents {1, 2}

such that: L1 = {l1
1
, l2
1
}, L2 = {l1

2
, l2
2
}, Act1 = {ϵ,a}, Act2 =

{ϵ,b}, P1(l
1

1
) = {a, ϵ}, P1(l

2

1
) = {ϵ}, P2(l

1

2
) = {b}, P2(l

2

2
) = {ϵ},

and T1(l
1

1
,a) = l2

1
, T2(l

1

2
,b) = l2

2
.

Define an Ir-strategy σ{1,2} as follows: σ1(l
1

1
, l1
2
) = a, σ1(l

1

1
, l2
2
)

= σ1(l
2

1
, l2
2
) = ϵ ; σ2(l

1

1
, l1
2
) = σ2(l

2

1
, l1
2
) = b, σ2(l

2

1
, l2
2
) = ϵ . It

is easy to see that out((l1
1
, l1
2
),σ{1,2}) is not trace complete. Note

that (a,b) ∈ I , but while out((l1
1
, l1
2
),σ{1,2}) contains the path over

ab(ϵ)ω , it does not contain any path over ba(ϵ)ω .

Example 6.4. Consider formula ⟨⟨c⟩⟩(F in1 ∧ F in2), interpreted
with the Ir semantics. Clearly, the formula holds in the TGC model

in Figure 2a, but not in the reduced model in Figure 2b.

7 HOW BIG IS THE GAIN?
The efficiency of our method follows from the efficiency of partial

order reductions for LTL−X, which has been documented in many

papers [49, 56, 60]. We refer to those papers for experimental results,

and present here only a quick estimation of the savings that are

obtained for the Trains and Controller scenario from Section 2. Let

TGCn be the asynchronous MAS consisting of the controller c and
n trains (t1, . . . , tn). Take PV = {in1, . . . , inn}, and let ini ∈ V (д) iff
дi = T . That is, ini holds iff train ti is in the tunnel.

Note that each action of the controller changes one of the ini
variables. Hence, all the actions of c are visible. It is easy to check

that both variants of the POR algorithm from Section 6 generate the

reduced modelM ′
n in Figure 2b. For instance, in the global state (G,

A, W), two transitions are enabled: b1 and a3. The set {a3} satisfies
conditionsC1, C2, C3, whereasb1 is a visible transition. Thus, state
(R, A, T) is not visited. Similarly, in (G, W, A), transitions a1 and b3
are enabled. The set {b3} satisfies conditions C1, C2, C3, whereas
a1 is a visible transition. Therefore, state (R, T, A) is not visited.

By Theorems 6.1 and 5.7, the reduced modelM ′
n satisfies exactly

the same sATL∗
irF

formulas over PV as I IS(TGCn). Moreover, by

Theorems 6.2 and 5.8,M ′
n and I IS(TGCn) satisfy the same formulas

of sATL∗
irF

using only the strategic operators ⟨⟨c⟩⟩, ⟨⟨∅⟩⟩. So, for
example, one can-model check formula ⟨⟨c⟩⟩G¬in1 in M ′

n instead

of TGCn , and get the same output.

How big is the gain? Quoting the estimates from [48, 49], the

size of the full state space is |StI I S (TGCn) | ≥ 2
n+1

, while the size

of the reduced model is |StM ′
n
| = 2n + 1. Thus, the reduced state

space is exponentially smaller than the size of the full model. Of

course, such optimistic results are by no means guaranteed. For

many AMAS, the reduction may remove a smaller fraction of states.

Still, it is important to note that the complexity of ATLir model

checking is NP-hard in the size of the model (and not the size of the

representation!), and all the attempts at actual algorithms so far run

in exponential time. So, even a linear reduction of the state space is

likely to produce an exponential improvement of the performance.

8 CONCLUSIONS AND FUTUREWORK
Many important properties of multi-agent systems are underpinned

by the ability of some agents (or groups) to achieve a given goal.

In this paper, we propose a general semantics of strategic ability

for asynchronous MAS, and study the model checking problem for

relevant subsets of alternating-time temporal logic. We concentrate

on imperfect information strategies, and consider two semantic

variants: one looking at all the infinite executions of strategies, and

the other taking into account only the fair execution paths.

The theoretical complexity results follow the same pattern as

those for synchronous MAS, though proving them required careful

treatment. Consequently, model checking of strategic abilities un-

der imperfect information for asynchronous systems is as hard as

in the synchronous case. This makes model reductions essential for

practical verification. The most important result of this paper con-

sists in showing that the partial order reduction for LTL−X can be

almost directly applied to ATLir without nested strategic modalities.

The importance of the result stems from the fact that LTL−X has

relatively weak distinguishing power, and therefore admits strong

reductions, clustering paths into relatively few equivalence classes.

Interestingly, it turns out that the scheme does not work for

ATL∗ with perfect information strategies. Until now, virtually all

the results have suggested that verification of strategic abilities is

significantly easier for agents with perfect information. Thus, we

identify an aspect of verification that might be in favor of imperfect

information strategies in some contexts.

The ideas presented in this paper open many exciting paths

for future research. We will have a closer look at some alternative

semantics for ATLir in asynchronous MAS, including the “deadlock-

friendly” semantics and the one based on “subjective” ability. We

also plan to extend our method to a larger subset of ATL∗ specifica-
tions, a subset of Strategy Logic [12], and to sATL∗ with epistemic

operators using possibly techniques reported in [18]. Experimental

evaluation of the reductions, on known benchmarks and randomly

generated models, is also on the list. Adapting the POR scheme to

combinations of strategic and epistemic modalities is another inter-

esting path for future work. Finally, we would like to investigate

if our partial order reduction scheme can be combined with the

bisimulation-based reduction for ATLir, proposed recently in [8].

Acknowledgements.We thank the anonymous reviewers for their

insightful comments. W. Jamroga and W. Penczek acknowledge

the support of the National Centre for Research and Develop-

ment Poland (NCBiR) under the PolLux grant VoteVerif (POL-LUX-

IV/1/2016).

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

163

REFERENCES
[1] P. A. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. 2014. Optimal dynamic

partial order reduction. In The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014. 373–384.

[2] R. Alur, L. de Alfaro, R. Grossu, T.A. Henzinger, M. Kang, C.M. Kirsch, R. Majum-

dar, F.Y.C. Mang, and B.-Y. Wang. 2001. jMocha: A Model-Checking Tool that

Exploits Design Structure. In Proceedings of ICSE. IEEE Computer Society Press,

835–836.

[3] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. 1998.

MOCHA: Modularity in Model Checking. In Proceedings of CAV (Lecture Notes in
Computer Science), Vol. 1427. Springer, 521–525.

[4] R. Alur and T. A. Henzinger. 1999. Reactive Modules. Formal Methods in System
Design 15, 1 (1999), 7–48.

[5] R. Alur, T. A. Henzinger, and O. Kupferman. 1997. Alternating-Time Temporal

Logic. In Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society Press, 100–109.

[6] R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal

Logic. J. ACM 49 (2002), 672–713. https://doi.org/10.1145/585265.585270

[7] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT Press.

[8] F. Belardinelli, R. Condurache, C. Dima, W. Jamroga, and A.V. Jones. 2017. Bisim-

ulations for Verification of Strategic Abilities with Application to ThreeBallot

Voting Protocol. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems AAMAS 2017. IFAAMAS. To appear.

[9] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. 2017. Verification of Broad-

casting Multi-Agent Systems against an Epistemic Strategy Logic. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017. 91–97.

[10] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. 2017. Verification of Multi-

agent Systems with Imperfect Information and Public Actions. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017. 1268–1276.

[11] R. Berthon, B. Maubert, and A. Murano. 2017. Decidability Results for ATL* with

Imperfect Information and Perfect Recall. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil,
May 8-12, 2017. 1250–1258.

[12] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M. Y. Vardi. 2017. Strategy

logic with imperfect information. In 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. 1–12.

[13] N. Bulling, J. Dix, and W. Jamroga. 2010. Model Checking Logics of Strategic

Ability: Complexity. In Specification and Verification of Multi-Agent Systems,
M. Dastani, K. Hindriks, and J.-J. Meyer (Eds.). Springer, 125–159.

[14] N. Bulling and W. Jamroga. 2011. Alternating Epistemic Mu-Calculus. In Proceed-
ings of IJCAI-11. 109–114.

[15] N. Bulling and W. Jamroga. 2014. Comparing Variants of Strategic Ability: How

Uncertainty and Memory Influence General Properties of Games. Journal of
Autonomous Agents and Multi-Agent Systems 28, 3 (2014), 474–518.

[16] S. Busard, C. Pecheur, H. Qu, and F. Raimondi. 2014. Improving the Model

Checking of Strategies under Partial Observability and Fairness Constraints. In

Formal Methods and Software Engineering. Lecture Notes in Computer Science,

Vol. 8829. Springer, 27–42. https://doi.org/10.1007/978-3-319-11737-9_3

[17] S. Busard, C. Pecheur, H. Qu, and F. Raimondi. 2015. Reasoning about memoryless

strategies under partial observability and unconditional fairness constraints.

Information and Computation 242 (2015), 128–156. https://doi.org/10.1016/j.ic.

2015.03.014

[18] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. 2014. MCMAS-SLK: A

Model Checker for the Verification of Strategy Logic Specifications. In Proc. of
CAV’14 (Lecture Notes in Computer Science), Vol. 8559. Springer, 525–532.

[19] P. Cermák, A. Lomuscio, and A. Murano. 2015. Verifying and Synthesising Multi-

Agent Systems against One-Goal Strategy Logic Specifications. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. 2038–2044.

[20] K. Chatterjee, A. Pavlogiannis, N. Sinha, and K. Vaidya. 2016. Data-centric

Dynamic Partial Order Reduction. CoRR abs/1610.01188 (2016).

[21] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. 2013. PRISM-

games: A Model Checker for Stochastic Multi-Player Games. In Proceedings of
TACAS (Lecture Notes in Computer Science), Vol. 7795. Springer, 185–191.

[22] E.M. Clarke and E.A. Emerson. 1981. Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic. In Proceedings of Logics of
Programs Workshop (Lecture Notes in Computer Science), Vol. 131. 52–71.

[23] E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking. The MIT

Press, Cambridge, Massachusetts.

[24] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. 1992. Memory-Efficient

Algorithms for the Verification of Temporal Properties. Formal Methods in System
Design 1, 2/3 (1992), 275–288.

[25] M. Dastani and W. Jamroga. 2010. Reasoning about Strategies of Multi-Agent

Programs. In Proceedings of AAMAS2010. 625–632.

[26] C. Dima, B. Maubert, and S. Pinchinat. 2014. The Expressive Power of Epistemic

µ-Calculus. CoRR abs/1407.5166 (2014).

[27] C. Dima, B. Maubert, and S. Pinchinat. 2015. Relating Paths in Transition Sys-

tems: The Fall of the Modal Mu-Calculus. In Proceedings of MFCS (Lecture Notes
in Computer Science), Vol. 9234. Springer, 179–191. https://doi.org/10.1007/

978-3-662-48057-1_14

[28] C. Dima and F.L. Tiplea. 2011. Model-checking ATL under Imperfect Information

and Perfect Recall Semantics is Undecidable. CoRR abs/1102.4225 (2011).

[29] R. Fagin, J. Y. Halpern, Y. Moses, andM. Y. Vardi. 1995. Reasoning about Knowledge.
MIT Press.

[30] C. Flanagan and P. Godefroid. 2005. Dynamic partial-order reduction for model

checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005. 110–121.

[31] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. 1999. A Partial Order Approach to

Branching Time Logic Model Checking. Information and Computation 150 (1999),

132–152.

[32] P. Godefroid. 1991. Using Partial Orders to Improve Automatic Verification

Methods. In Proceedings of the 2nd International Conference on Computer Aided
Verification (CAV’90) (ACM/AMS DIMACS Series), E. M. Clarke and R. P. Kurshan

(Eds.), Vol. 3. 321–340.

[33] P. Godefroid and P. Wolper. 1994. A Partial Approach to Model Checking. Infor-
mation and Computation 110, 2 (1994), 305–326.

[34] D.P. Guelev, C. Dima, and C. Enea. 2011. An alternating-time temporal logic with

knowledge, perfect recall and past: axiomatisation and model-checking. Journal
of Applied Non-Classical Logics 21, 1 (2011), 93–131.

[35] W. van der Hoek and M. Wooldridge. 2002. Tractable multiagent planning

for epistemic goals. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’02), M. Gini, T. Ishida,

C. Castelfranchi, and W. L. Johnson (Eds.). ACM Press, 1167–1174.

[36] X. Huang and R. van der Meyden. 2014. Symbolic Model Checking Epistemic

Strategy Logic. In Proceedings of AAAI. 1426–1432.
[37] W. Jamroga. 2003. Some Remarks on Alternating Temporal Epistemic Logic. In

Proceedings of Formal Approaches to Multi-Agent Systems (FAMAS 2003), B. Dunin-
Keplicz and R. Verbrugge (Eds.). 133–140.

[38] W. Jamroga and J. Dix. 2006. Model Checking ATLir is Indeed ∆P
2
-complete. In

Proceedings of EUMAS’06 (CEUR Workshop Proceedings), Vol. 223. CEUR-WS.org.

[39] W. Jamroga, M. Knapik, and D. Kurpiewski. 2017. Fixpoint Approximation

of Strategic Abilities under Imperfect Information. In Proceedings of the 16th
International Conference on Autonomous Agents and Multiagent Systems AAMAS
2017. IFAAMAS.

[40] W. Jamroga and W. van der Hoek. 2004. Agents that Know how to Play. Funda-
menta Informaticae 63, 2–3 (2004), 185–219.

[41] M. Kacprzak and W. Penczek. 2004. Unbounded Model Checking for Alternating-

Time Temporal Logic. In Proceedings of AAMAS-04. IEEE Computer Society,

646–653. https://doi.org/10.1109/AAMAS.2004.10089

[42] V. Kahlon, C. Wang, and A. Gupta. 2009. Monotonic Partial Order Reduction:

An Optimal Symbolic Partial Order Reduction Technique. In Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 -
July 2, 2009. Proceedings. 398–413.

[43] I. Kokkarinen, D. Peled, and A. Valmari. 1997. Relaxed Visibility Enhances Partial

Order Reductions. In Proceedings of the 9th International Conference on Computer
Aided Verification (CAV’97) (LNCS), Vol. 1254. Springer-Verlag, 328–340.

[44] I. Konnov, H. Veith, and J. Widder. 2015. SMT and POR Beat Counter Abstrac-

tion: Parameterized Model Checking of Threshold-Based Distributed Algorithms.

In Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. 85–102.

[45] L. M. Kristensen and A. Valmari. 2000. Improved Question-Guided Stubborn Set

Methods for State Properties. In Proceedings of the 21st International Conference
on Applications and Theory of Petri Nets (ICATPN’00) (LNCS), Vol. 1825. Springer-
Verlag, 282–302.

[46] O. Kupferman, M.Y. Vardi, and P. Wolper. 2000. An automata-theoretic approach

to branching-time model checking. Journal of the ACM 47, 2 (2000), 312–360.

[47] F. Laroussinie, N. Markey, and G. Oreiby. 2008. On the Expressiveness and

Complexity of ATL. Logical Methods in Computer Science 4 (2008), 7.
[48] A. Lomuscio, W. Penczek, and H. Qu. 2010. Partial order reductions for model

checking temporal epistemic logics over interleaved multi-agent systems. In 9th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2010), Toronto, Canada, May 10-14, 2010, Volume 1-3. 659–666.

[49] A. Lomuscio, W. Penczek, and H. Qu. 2010. Partial Order Reductions for Model

Checking Temporal-epistemic Logics over Interleaved Multi-agent Systems. Fun-
dam. Inform. 101, 1-2 (2010), 71–90.

[50] A. Lomuscio, H. Qu, and F. Raimondi. 2015. MCMAS: An Open-Source Model

Checker for the Verification of Multi-Agent Systems. International Journal
on Software Tools for Technology Transfer (2015). https://doi.org/10.1007/

s10009-015-0378-x Availabe online.

[51] A. Lomuscio and F. Raimondi. 2006. MCMAS : A Model Checker for Multi-Agent

Systems. In Proceedings of TACAS (Lecture Notes in Computer Science), Vol. 4314.

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

164

https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/978-3-319-11737-9_3
https://doi.org/10.1016/j.ic.2015.03.014
https://doi.org/10.1016/j.ic.2015.03.014
https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1109/AAMAS.2004.10089
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x

Springer, 450–454.

[52] V. Malvone, A. Murano, and L. Sorrentino. 2017. Hiding Actions in Multi-Player

Games. In Proceedings of the 16th Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017. 1205–1213.

[53] A. Mazurkiewicz. 1977. Concurrent program schemes and their interpretations.

DAIMI Report Series 6, 78 (1977).
[54] A. Mazurkiewicz. 1986. Trace Theory. In Advances in Petri Nets 1986. LNCS,

Vol. 255. Springer-Verlag, 279–324.

[55] A. Mazurkiewicz. 1988. Basic Notions of Trace Theory. In Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS, Vol. 354.
Springer-Verlag, 285–363.

[56] José Vander Meulen and Charles Pecheur. 2011. Combining Partial-Order Reduc-

tion and Symbolic Model Checking to Verify LTL Properties. In NASA Formal
Methods - Third International Symposium, NFM 2011, Pasadena, CA, USA, April
18-20, 2011. Proceedings. 406–421.

[57] D. Peled. 1993. All From One, One For All: On Model Checking Using Repre-

sentatives. In Proceedings of the 5th International Conference on Computer Aided
Verification (LNCS 697). Springer-Verlag, 409–423.

[58] D. Peled. 1994. Combining Partial Order Reductions with On-the-fly Model-

Checking. In Proceedings of the 6th International Conference on Computer Aided
Verification (LNCS 818). Springer-Verlag, 377–390.

[59] D. Peled. 1996. Partial Order Reductions: Model Checking Using Representatives.

In Proceedings of the 21st International Symposium on Mathematical Foundations
of Computer Science (MFCS’96) (LNCS), Vol. 1113. Springer-Verlag, 93–112.

[60] D. Peled. 1998. Ten Years of Partial-Order Reductions. In Proceedings of the
10th International Conference on Computer Aided Verification (CAV’98) (LNCS),
Vol. 1427. Springer-Verlag, 17–28.

[61] Doron A. Peled. 1996. Combining Partial Order Reductions with On-the-Fly

Model-Checking. Formal Methods in System Design 8, 1 (1996), 39–64.

[62] W. Penczek, M. Szreter, R. Gerth, and R. Kuiper. 2000. Improving Partial Order

Reductions for Universal Branching Time Properties. Fundamenta Informaticae
43 (2000), 245–267.

[63] J. Pilecki, M.A. Bednarczyk, and W. Jamroga. 2014. Synthesis and Verification of

Uniform Strategies for Multi-Agent Systems. In Proceedings of CLIMA XV (Lecture
Notes in Computer Science), Vol. 8624. Springer, 166–182.

[64] B. Puchala. 2010. Asynchronous Omega-Regular Games with Partial Information.

In Proceedings of MFCS. 592–603. https://doi.org/10.1007/978-3-642-15155-2_52

[65] Ph. Schnoebelen. 2003. The Complexity of TemporalModel Checking. InAdvances
in Modal Logics, Proceedings of AiML 2002. World Scientific.

[66] P. Y. Schobbens. 2004. Alternating-Time Logic with Imperfect Recall. Electronic
Notes in Theoretical Computer Science 85, 2 (2004), 82–93.

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

165

https://doi.org/10.1007/978-3-642-15155-2_52

	Abstract
	1 Introduction
	2 Models of Multi-Agent Systems
	2.1 Interleaved Interpreted Systems

	3 Reasoning about Agents' Abilities
	3.1 Alternating-Time Temporal Logic: Syntax
	3.2 Strategies and Outcomes
	3.3 Asynchronous Semantics of and

	4 Model Checking and for Asynchronous Agent Systems
	4.1 Model Checking [ir] and [irF]
	4.2 Model Checking [ir] and [irF]
	4.3 Model Checking [ir] and [irF]
	4.4 Discussion

	5 Partial Order Reductions
	5.1 Stuttering Equivalences
	5.2 Independence-Based Equivalences
	5.3 Preserving Traces for [irF]
	5.4 Stuttering Equivalence without CF

	6 Algorithms for POR
	6.1 DFS Algorithm
	6.2 Heuristics for [irF] and Subsets of [ir]
	6.3 Bad News for Agents with Perfect Information

	7 How Big Is the Gain?
	8 Conclusions and Future Work
	References

