Session 44: Agent Cooperation 2

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

A Near-Optimal Node-to-Agent Mapping Heuristic for
GDL-Based DCOP Algorithms in Multi-Agent Systems

Md. Mosaddek Khan
School of Electronics and Computer Science
University of Southampton, Southampton, UK
mmk1gl4@ecs.soton.ac.uk

William Yeoh

Department of Computer Science and Engineering
Washington University in St. Louis, St. Louis, USA
wyeoh@wustl.edu

ABSTRACT

Distributed Constraint Optimization Problems (DCOPs) can be used
to model a number of multi-agent coordination problems. The con-
ventional DCOP model assumes that the subproblem that each
agent is responsible for (i.e. the mapping of nodes in the constraint
graph to agents) is part of the model description. While this as-
sumption is often reasonable, there are many applications where
there is some flexibility in making this assignment. In this paper,
we focus on this gap and make the following contributions: (1) We
formulate this problem as an optimization problem, where the goal
is to find an assignment that minimizes the completion time of the
DCOP algorithm (e.g. Action-GDL or Max-Sum) that operates on
this mapping. (2) We propose a novel heuristic, called MNA, that
can be executed in a centralized or decentralized manner. (3) Our
empirical evaluation illustrates a substantial reduction in comple-
tion time, ranging from 16% to 40%, without affecting the solution
quality of the algorithms, compared to the current state of the art. In
addition, we observe empirically that the completion time obtained
from our approach is near-optimal; it never exceeds more than 10%
of what can be achieved from the optimal node-to-agent mapping.

KEYWORDS
Distributed Problem Solving; DCOP; GDL; Node-to-Agent Mapping

ACM Reference Format:

Md. Mosaddek Khan, Long Tran-Thanh, William Yeoh, and Nicholas R.
Jennings. 2018. A Near-Optimal Node-to-Agent Mapping Heuristic for GDL-
Based DCOP Algorithms in Multi-Agent Systems. In Proc. of the 17th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018), Stockholm, Sweden, Fuly 10-15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION

Distributed Constraint Optimization Problems (DCOPs) are prob-
lems where agents need to coordinate the assignments of values to
their variables in such a way that maximizes their aggregated utility
[7, 16, 18]. This model can be applied to solve a number of multi-
agent coordination problems including distributed meeting sched-
uling [15], sensor networks [4, 28], multi-robot coordination [26],

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10-15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Long Tran-Thanh
School of Electronics and Computer Science
University of Southampton, Southampton, UK
1tt08r@ecs.soton.ac.uk

Nicholas R. Jennings

Departments of Computing and Electrical and Electronic

1613

Engineering, Imperial College London, London, UK
n.jennings@imperial.ac.uk

coalition formation [3] and smart homes [9, 20]. The problems
are formulated as constraint networks that are often represented
graphically using one of the following representations: junction
trees [1, 21], factor graphs [5, 12] or Depth First Search (DFS) trees
[16, 18]. In all of these representations, nodes (i.e. variables and/or
factors depending on the graphical representation) are being held!
by the agents participating in the optimization process.

The conventional DCOP model assumes that the mapping of
nodes to agents is part of the model description. In other words,
the nodes that each agent holds are given as an input. This assump-
tion is reasonable in many applications where there are obvious
and intuitive mappings — for example, in a smart home schedul-
ing problem [9], agents correspond to the different smart homes,
and variables (i.e. nodes) correspond to the different smart devices
within each home. In this case, the agent controls all the variables
that map to the devices in its home. However, in other applications,
there may be more flexibility in the mapping of nodes to agents.
For example, imagine an application where a team of unmanned
aerial vehicles (UAVs) need to coordinate with each other to ef-
fectively survey an area. In this application, agents correspond to
UAVs and variables correspond to the different zones in the area
to be surveyed. The domain for each variable may correspond to
the different types of sensors to be used and/or the different times
to survey the zone. Since a UAV can survey any zone, there are
multiple possible assignments of zones to UAVs. That is, there are
multiple possible mappings of variables (i.e. nodes) to agents.

While it is possible to arbitrarily choose a mapping and run any
off-the-shelf DCOP algorithm to solve the problem, choosing a good
mapping is important as it can have a significant impact on an al-
gorithm’s completion time (as we shall discuss in the following sec-
tion). However, choosing an optimal mapping may be prohibitively
time consuming as this is an NP-hard problem problem, as shown
by Rust, Picard and Ramparany [20]. In that paper, they introduced
a simple heuristic of node-to-agent mapping that is specifically
tailored to their smart-home application, called Smart Environment
Configuration Problem (SECP). Therefore, this method is not ap-
plicable to other DCOP settings. Considering these issues, coupled
with the fact that this step is only a preprocessing step prior to the
actual DCOP algorithm, we develop a generic heuristic algorithm
to address the problem of node-to-agent mapping in DCOPs.

The agents act (i.e. generate and transmit messages) on behalf of the nodes they hold.

Session 44: Agent Cooperation 2

In more detail, this paper advances the state of the art as fol-
lows. (1) We propose a new time-efficient heuristic to determine a
near-optimal Mapping of Nodes to the participating Agents (MNA).
MNA is a preprocessing step that works prior to executing the op-
timization process of a GDL-based DCOP algorithm. Specifically,
MNA can be executed in a centralized or decentralized manner, de-
pending on the application at hand. As a preprocessing step, MNA
does not alter any internal process of the original DCOP algorithm;
therefore, it does not have any impact on its solution quality. Addi-
tionally, the decentralized version of MNA specifically caters for
scenarios where the graphical representation experiences change(s)
during runtime. (2) We empirically evaluate the performance of
MNA in terms of completion time, and show that it performs at
a level of around 90% — 100% of the optimal mapping, which is
computationally infeasible to obtain in practice. (3) Our results also
show a speed-up of 16% — 40% compared to the state of the art,
meaning a message passing algorithm can perform 1.2 — 1.7 times
faster when using node-to-agent mappings generated by MNA.

The remainder of this paper is structured as follows. In Section 2,
we formulate this particular phase of node-to-agent mapping as an
optimization problem, where the objective is to obtain an assign-
ment that reduces the completion time of a GDL-based DCOP algo-
rithm that operates on this mapping. In Section 3, we discuss the de-
tails of both the centralized and decentralized versions of MNA. Af-
terwards, Section 4 reports the empirical evaluation of our approach
as opposed to the current state-of-the-art, and Section 5 concludes.

2 BACKGROUND AND PROBLEM
FORMULATION

A DCOP is defined by a tuple (X, D, F, A, §) [16], where X is a set
of discrete variables {xg,x1,...,xm} and D = {Dg,D1,...,Dm}
is a set of discrete and finite variable domains. Each variable x;
can take its value from the domain D;. F is a set of constraints
{F1,Fs,...,F,}, where each F; € F is a function dependent on a
subset of variables x; € X defining the relationship among the
variables in x;. Thus, the function F;(x;) denotes the value for
each possible assignment of the variables in x;. The dependencies
between the variables and the functions are often graphically rep-
resented by a constraint graph such as a junction tree or a factor
graph, where the nodes (i.e. variables and/or functions) of the cor-
responding graphical representation G are being held by a set of
agents A = {A1, Ay, ... A} This mapping of nodes to agents is
represented by § : 1 — A. Here, 1y stands for the set of nodes within
the constraint graph G. As a result of the mapping represented by &,
we get a partition P(A) of k = |A| sub-graphs (i.e. G1,Ga, ...,Gg)
from G, where each G; € G is held by the agent Aj € A (Equation 1).

k
P(A) | JGj 1V #j:(Gj 0 Gy)=0
j=1

Within this model, a DCOP algorithm (e.g. Action-GDL [24],
Max-Sum [5] or Bounded Max-Sum [19]) operates directly on G by
passing messages among the nodes 7 € G to have each agent assign
values to its associated variables from their corresponding domains.
The aim is to maximize (or minimize) the aggregated global objec-
tive function which eventually produces the value of each variable,

1)

1614

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

Om®

Computation Cost

Node Time-unit
G A 25
(E) s T
[¢ 0
Agent A; Agent A, D 1
——————— E 0

Communication Cost

Type Time-unit
Inter-agent 7
Intra-agent 2

Agent A;

Agent A,

Figure 1: Two sample mappings of nodes {A,B,C,D,E} of a
constraint graph to agents A; and A;. In the figure, nodes are
denoted by circles and agents as octagons.

X* = arg maxy 3., Fi(x;). As already mentioned, in this work,
we specifically concentrate on GDL-based DCOP algorithms such
as Action-GDL, Max-Sum and Bounded Max-Sum. In such algo-
rithms, to compute a message for a particular neighbour, a node
takes into account the messages from its neighbours along with
its own utility. Thus, a number of nodes initially start generating
(i.e. computation) and then sending (i.e. communication) messages,
each of which we jointly denote as a single event. That means,
an event involves both the computation and communication of a
certain message. In this process, the completion of certain events
might trigger one or more new events to be initiated. Thus, the total
message passing procedure will complete when each node receives
messages from all of its neighbours, such that all the running events
are completed without initiating any new events. The dependen-
cies among the events during the message passing process can be
seen as an event-based dependency graph EG(A, P), where A is the
specific DCOP algorithm deployed and P is the partition obtained
from Equation 1. Formally, let E be the set of events {E1, Ea, . .., Ej}
of Eg(A, P). Here, the weight of an edge E; — E; between two
events E; and E; represents the time required to complete event
E;. Finally, the longest path cost of all existing event pairs is the
total completion time T(A, P) for a given graphical representation
of a DCOP (Equation 2). Here, the function v(E;, E;) represents the
time elapsed (i.e. path cost) between the starting of the event E;
and the end of the event E;.

T(A,P) = (2)

Vi, k) CEG(AP) wEn)

In this formulation, without loss of generality, we assume each
agent possesses its own memory and a separate processing unit.?
Here, on behalf of the sending node of an event, the holding agent

generates and then sends the message to the receiving node. The

%In a multi-processing capable setting, each processing unit with separate memory
can be considered as an agent.

Session 44: Agent Cooperation 2

Start, =1, End,= 2
Start, =1, End,=7

Start, = 1, End,= 2
Start, =1, Endp=7

Start,= 1, End;=2
Start, =1, End,=2

Start, = 3, End,= 34
Start, = 15, End), = 41

CE:D>E)

Start, = 35, End, = 48
Start, = 65, End, =78

=3, End,=21
=3, End,=16

Start, =53, End,= 79
Start, = 77, End, = 108

Start, = 28, End,= 54
Start, =40, End,=71
Figure 2: Event-based dependency graph for the constraint
graph of Figure 1.

sending node and its corresponding receiving node can either be
held by the same agent or by two different agents. The time required
to send a message in the former case can be termed the intra-agent
communication cost and the latter the inter-agent communication
cost. The former is typically less expensive in terms of communi-
cation cost than the latter [8, 22]. This is because it requires less
time for an agent to take a message from its local memory than
from a memory belonging to a different agent. Moreover, since an
agent has a single processing unit, it cannot compute more than one
message at a time. However, it can compute a message while trans-
mitting another one and vice versa. As a consequence, allowing
an agent to hold too many nodes eventually increases the waiting
time for the nodes within the agent. Considering this trade-off, the
ultimate objective is to minimize the completion time T(A, P) of a
message passing algorithm A by providing an efficient mapping of
nodes to agents (Equation 3).

P* = arg minT(A, P) (3)
P

Figure 1 illustrates two sample assignments of a constraint graph
having five nodes {A, B, C, D, E} between two agents A and Ay. On
the one hand, two sets of nodes {A, B, C} and {D, E} are being held
by the agents A; and Ay respectively in the mapping &1, depicted at
the top of Figure 1. On the other hand, A; holds nodes {B, C} and
Az holds nodes {A, D, E} in the mapping 2, shown at the bottom
of that figure. Additionally, the message computation cost of each
node and the message transmission/communication cost for the
edges in terms of time-units are given in the tables on the right side
of Figure 1. As can be seen, the computation cost of node A is 25
time-units, meaning node A requires 25 time-units to generate a
message for any one of its neighbours. In this example, the inter-
agent and the intra-agent communication cost is 7 and 2 time-units,
respectively. Thus, the sending node A requires 7 time-units to send
a message to the receiving node D when both A and D are being
held by different agents (61). Otherwise, the same message takes
2 time-units (&2).

The reason why the efficient mapping of node-to-agent is sig-
nificant can be clearly seen from Figure 2, where we generate an
event-based dependency graph of the message passing for the ex-
emplar constraint graph shown in Figure 1. Here, the starting and
finishing time of each event are represented by Start; /Start;, and
End; /End}, respectively, where t stands for the mapping §; and

1615

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

b corresponds to J,. Finally, the largest value of End; and Endj,
represents the completion time of the constraint graph based on
the mappings §; and Jz, respectively. In this particular example,
we get 8 events: {E1, Eg, ..., Eg}. For instance, event E4 stands for
the summation of the computation and the communication time
of the message sending from A to D and the event E4 can only
initiate after events E1 and E5 have finished, that is when node A
receives messages from nodes B and C. It is worth mentioning that
if the holding agent of node A (i.e. the sending node of event Ey4)
is already computing a message for another node, then E4 has to
wait until the agent finishes computing the message, even if E;
and E, have finished. Significantly, the degrees of nodes A and D
are higher than those of other nodes in the constraint graph. As
such, they require substantially more time-units to generate each
of their messages. In the mapping dz, both A and D are being held
by agent A,. This potentially leads to a situation where the nodes
of A have to wait for a long period of time, even if the events they
depend on have finished. In this worked example, events E; and
Es have to wait for an additional 24 and 61 time-units respectively,
even though they are ready to compute (d2). On the other hand,
the waiting times are 7 and 32 time-units respectively in §; due
to the fact that the higher degree nodes A and D are held by two
different agents. As a result, we observe that the completion time
of a DCOP algorithm for the mapping d; is 79 time-units, and 108
time-units for 8,. Thus, even for a small constraint graph of 5 nodes,
it is possible to save around 27% of completion time through an
efficient node-to-agent mapping.

However, finding an optimal mapping is an NP-hard problem
[20]. Consider an example where a constraint graph of 25 nodes
have to distribute among 8 agents. In this case, there are 1,081, 575
possible uniform mappings. In addition to that, we cannot ignore the
possibility of getting better results from a non-uniform assignment.
Even though the search space can be reduced by giving preference
to the contiguous nodes being held by the same agent, the number
is still significant (see empirical results). Furthermore, the optimal
mapping is completely dependent on the structure of the graph,
so it is not possible to predict such mapping in advance based on
prior information. Under such circumstances, finding an optimal
mapping is not practicable for large multi-agent settings. This leads
us to the MNA heuristic detailed in the following section.

3 THE MNA HEURISTIC

Considering the observations made in the previous section, MNA
specifically aims to find mappings where nodes with high degrees
are held by different agents. In other words, the objective is to
obtain a node-to-agent mapping for a DCOP, where nodes with
higher computational requirements for producing their messages
do not end up being held by the same agent. At the same time,
it is important to ensure that the mapping process itself is not
prohibitively expensive in terms of time consumption. To this end,
we propose two versions of MNA, centralized and decentralized,
each of which is discussed in Sections 3.1 and 3.2, respectively.

3.1 Centralized Version of MNA

The complete process of MNA’s centralized version is detailed in
Algorithm 1. As aforementioned, it aims to reach a point where no

Session 44: Agent Cooperation 2

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

Algorithm 1: MNA (G, n, A, A)

Input: G is the corresponding graphical representation of a DCOP consisting of a set 7 = {11, 12, -

..nN}of Nnodesand A = {A;, Ay, ... Ag}is

the set of k agents participating in the optimization process, where k <= N. A stands for the deployed GDL-based DCOP algorithm.

Output: Mapping S of the nodes of 7 to their associated agents A (i.e. § : p — A), so that overall completion time can be minimized. Note that, each
node can be held by a single agent; however, each agent can hold several nodes.

-

D is a set of domains {Dy, Do, . .
preferred value

uniformVal « N/k

N

()

'S

if (deg(n;) —deg(ny) == 0) A (|D;| — |Dy| == 0), where ¥n;, ni» € n,VYD;, Dy € D then

Letdeg = {deg(n1), deg(nz2), . . ., deg(nn)} be the set where each deg(#;) € deg stands for the degree/number of connected nodes of 7;

., DN}, where each D; € D is a finite set containing the values from which its associated node #; has to get its

// Contiguous uniform node-to-agent

mapping, when the nodes possess similar degree and equal domain size.

«w

return 5unifurmVal n - A

else
A« k-largestNodes(G, 1, k)

S5:A—> A

A ={A1, Ag, . .., A } are the control points of the graph G

foreach noden; € n\ A do

10

11

12 S:1ni = Aep-Acp

13 returnd : 5 — A

//

Find a set A of k largestnodes from 5 in terms of degree.

Use the domain size of the connected nodes in case of atie.

// Distribute the nodes of A= {A, Ay, ..

Acp < minDistance(G, n;, A, uniformVal), where Acp € A

., A} to A such that each agent holds a single node.

// Distribute non control point nodes.

// Call Algorithm 2: choose the suitable
control point A¢p for the node 7;.

// allocate n; to the agent A, that holds the control point ACP.

two high-degree nodes are held by the same agent. Subsequently,
a suitable agent is picked for each of the remaining nodes of a
DCOP graphical representation based on this initial assignment.
MNA operates directly on the corresponding graphical representa-
tion G of a DCOP that is going to be solved by deploying a GDL-
based algorithm A. Here, G consists of a set = {n1,72,...9n}
of N nodes and a set A = {Aj1,A1,...Ar} of k agents. At the
end, Algorithm 1 returns § : n — A, that is the mapping § of
the nodes 7 to their associated agents A. In line 1, a set deg =
{deg(n1),deg(n2), . ..,deg(nn)} represents the number of connected
neighbours of the nodes in 1. More specifically, the function deg(n;) €
deg stands for the number of neighbours of the node 1; € , and it
also provides information regarding how many incoming messages
are required to produce each of ;’s outgoing messages, taking the
deployed algorithm A into consideration. Then, line 2 presents the
set of domains D, and each D; € D is a finite set containing the
values from which its associated node ; has to take its preferred
value. It is clearly illustrated in the example of the previous section
that the degree of each node and the domain sizes of the connected
neighbouring nodes contribute significantly in determining the
overall completion time for a particular mapping. To be exact, the
computation cost of the node #; in terms of time corresponds to
the values of deg(n;) and D;. In the worked example of Figure 1,
the degrees of node A and B are 3 and 1, respectively. Therefore,
node A has to consider the messages of at least two nodes along
with its own utility to generate a message for any of its neighbours.
Moreover, the time required to generate a message is highest for
node A, as its degree is higher than that of any other nodes. On the

1616

other hand, node B only needs to send a message to its only neigh-
bouring node A. Consequently, for B to be able to generate that
message, it does not need to rely on receiving any other message.
As aresult, B can immediately generate the message based on its
local utility or often this is a pre-defined initial message. Thus the
computation cost of B is negligible. Afterwards, line 3 computes
the value of uniformVal, which is the ratio of the number of nodes
N and the number of agents k in G.

It is noteworthy that the problem of node-to-agent mapping
becomes trivial if all the nodes possess similar degrees and equal
domain size. In this case, we can uniformly distribute the nodes
among the agents by giving preference to the contiguous nodes
being held by the same agent (lines 4—5). Nevertheless, this is not the
case for most DCOP applications, rather it is common to have nodes
with dissimilar degrees and domain size [11, 13]. This phenomenon,
particularly, accounts for the differences in completion time for
various possible mappings of nodes to agents. Specifically, lines
6 — 13 of the algorithm concentrate on this issue. Now, the function
k-largestNodes(G, n, k) finds the k largest nodes from 7 in terms
of degree. In case of a tie, it uses larger domain size, then records
them to a set A = {41, A2, ..., A} (line 7). As a result, we get top k
nodes with the highest degrees in G that require more time-units
to compute each of their messages. At this point, line 8 allocates
each node A; € A to the different agents of A, and MNA defines
each of these nodes as a control point (explained shortly) of the
constraint graph G (line 9). In other words, the set {A1,42,..., A}
of k high-degree nodes are going to act as the control points, each
of which is exclusively held by one of the k agents of A. In the

Session 44: Agent Cooperation 2

Algorithm 2: minDistance(G, 1j;, A, uni formV al)

Input: 1 is a set of control points of the graph G, n; is a
non-control point node of G to be associated with one of
the control point nodes of A and uniformV al is obtained
from line 3 of Algorithm 1.

Output: A,, € A, the corresponding control point for ;.
1V« A
2 Ay < sPath(G, n;, \')

3 if p(Am, Am) < uniformVal then // when the agent A,,
corresponds to A,, holds fewer nodes than the
value of uniformVal.

4 ‘ return A,,

5 else
6 Ne—=V\Am
7 if I’ # 0 then
8 ‘ go to line 2
9 else
Am « alt_sPath(G, n;, A) // assign n; to the
closest control point that does not
currently associates the most number of
non-control point nodes among A.

10

1 return A,

example of Figure 1, the agents A; and Aj are participating in the
optimization process, hence the value of k is two. Therefore, we
need to find two control points from the set of nodes: {A, B, C, D, E}.
In this particular instance, MNA picks A and D as the control points
as they posses degrees that are higher than those of the other nodes,
and they should be held by those two different agents. Let A and
D be held by agents A; and Ajy, respectively. This is significant
because it assures that no two high-degree nodes will be held by
the same agent, which is the biggest cause of an increase in the
waiting time (as discussed in the previous section).

At this point, the for loop of lines 10 — 12 associates the rest
of the nodes that are not the control points (i.e. n \ 1), to their
corresponding agents. In so doing, we utilize the concept of For-
tune’s algorithm to generate the Voronoi diagram [10]. Notably, a
Voronoi diagram is a partitioning of a plane into regions based on
the distance to a specific subset of points of the plane. This subset
of points, denoted as control points, is specified beforehand. For
each of the control points, Fortune’s algorithm generates a corre-
sponding region consisting of all points closer to the control point
than to others. In other words, given a set of control points in a
plane, Fortune’s algorithm specifically finds the associated control
points for the rest of the points on that plane, based on the nearest
Euclidean distance at the worst case cost of only O(N log N) time.
Here, the function minDistance(G, n;, A, uniformVal), detailed in
the pseudo-code of Algorithm 2, takes as input a non-control point
node 7;, the subset A of 5 that acts as the control points and pre-
viously computed uniformVal, and then finds a suitable control
point A¢p € A for n; (line 11 of Algorithm 1).

The function is inspired by the method employed by Fortune’s
algorithm to obtain the appropriate control points for all such non-
control point nodes. However, unlike Fortune’s algorithm, which

1617

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

uses only the shortest Euclidean distance as the metric to choose the
suitable control point for a node, MNA uses different criteria. This
is because we have to deal with a graphical representation instead
of a plane. In more detail, in line 2 of Algorithm 2, sPath(G, n;, ")
finds such a control point A, € A’ for n; that possesses the shortest
path from #; within the constraint graph G, and G is considered as
an unweighted graph during this process. Here, A’ is a stand-in for
the set of control points A (line 1). At this point, if the holding agent
of A, denoted by A, currently holds fewer nodes than the value
of uniformVal, then A, becomes the desired control point for #;
(lines 3 — 4). Here, the function p(A,,, Ap,) represents the current
number of nodes held by the agent A,,. If this is not the case, A,
is excluded from A’, and the process is repeated (lines 6 — 8). Now,
if none of the control points of A’ satisfies the condition of line
3, we assign 7; to its closest control point that does not already
associate the most number of non-control point nodes among all
the control points A (lines 9 — 11). This is important because in
this way we can ensure that no agent corresponding to a control
point ends up holding too many nodes. Notably, in case of a tie in
either or both of the functions in lines 2 and 10, priority should be
given to the control point whose associated agent possesses higher
computational power. Thus, we can utilize the disparity in agents’
computational capabilities (i.e. processing power). Hence, Algo-
rithm 2 returns the control point to line 11 of Algorithm 1, which
is denoted by Ap. Afterwards, line 12 assigns node 7; to the agent
holding its associated control point Acp. As a result, we produce a
mapping where a high-degree node is held by the same agent as its
connected neighbours in most cases. Such a mapping experiences
an additional axiomatic benefit; that is, the intra-agent messages
greatly outnumber more expensive inter-agent messages. This is
because the majority of the messages generated by the high-degree
nodes are transmitted by means of the intra-agent communication.
In the example of Figure 1, the unweighted path costs of the non-
control points nodes B, C and E from control point A are one, one
and two, respectively. In contrast, the path costs are two, two and
one respectively from control point D. According to the regulation
of MNA, nodes B and C will be associated with control point A, as
they have the shortest path from A compared to D. Thus, along
with node A, both nodes B and C are eventually held by agent A;.
In the same way, node E picks control point D, and both of them
are held by agent A;. Finally, the mapping obtained by following
the process of MNA is §; which significantly outperforms dz, as
already illustrated in the explanation of Figure 2 (see the previous
section). The time complexity of the MNA algorithm involves two
parts. Firstly, O(k + (N — k) log k) for finding the k-largest nodes (i.e.
control points) from N nodes. Secondly, O(N log N) for choosing
suitable control points for the rest of the nodes in G. The overall
complexity is therefore O(N log N) as the value of k is always
smaller (or in the worst case, equal) to the number of nodes N.

3.2 Decentralized Version of MNA

Until this point, MNA considers those DCOP settings where a node-
to-agent mapping is not included as a part of the problem definition,
or considerable flexibility exists in choosing the mapping in a cen-
tralized manner. However, as discussed in Section 1, the assignment
is assumed as a part of the problem in a number of applications, and

Session 44: Agent Cooperation 2

as such, the centralized approach is not suitable for them. More-
over, it is important for MNA to cope with settings that are not
impervious to the introduction of new nodes (and the departure of
existing nodes), even after the node-to-agent mapping is done or
given. In order to yield the benefits similar to that of the centralized
version in such cases, we introduce a decentralized version of MNA
(i.e. Steps 1 — 4). To be precise, this particular version of MNA can
be used before initiating the message passing in applications where
the mapping is given a priori; at the same time, it can be used in
the event of a change within the graphical representation G during
the runtime of a GDL-based DCOP algorithm.

e Step 1: Token Generation. Each agent A; € A generates
a token that contains degree deg(n;) and domain info D;
for each node ; it currently holds. The token also contains
cap(A;), which represents the computation capability (i.e.
processing power) of agent A;.

Step 2: Multicast Token. Each agent A; (or the agents that
experience change in G at runtime) shares its token to agents
holding nodes within the path distance of length [in G. To
be able to ensure that contiguous nodes are being held by the
same agent in most cases, it is recommended that the value
of I is not too large.3 Moreover, larger values of [would mean
more messages are exchanged, thus eventually increasing
overall communication costs.

Step 3: Request Message. Based on the information of de-
gree and domain from the received tokens, each agent A;
(or only the receiving agents in the event of change) decides
whether it needs to hand over one or more nodes it is holding
to some other agent(s). The decision should be taken based
on the main feature of MNA; that is, an agent should hold
the least number of high-degree nodes. Note that, in the case
of a tie, priority should be given to an agent that possesses
higher processing power (i.e. cap(A;)). Then, each of the de-
ciding agents sends a single unicast request message to each
of the agents it wants to relinquish its one or more nodes to.

Step 4: Response Message. Finally, considering all the re-
ceived Request Messages, an agent takes a decision (based
on the main feature of MNA and cap()) about each node it
received request(s) for. Then, it sends a message in response
to each of the Request Messages, where the value 1 is used to
mark the nodes it is willing to hold, and 0 is used otherwise.

In terms of complexity, concurrently, each agent A; is observed
to generate its own token, which is a small message that contains
its nodes’ degree, domain information and cap(A;) based on exist-
ing data. Additionally, two decision operations are performed in
Steps 3 — 4 of decentralized MNA. Thus, the overall computation
complexity is O(2), and in effect, negligible with regard to time. Nev-
ertheless, in Step 2, the agent transmits the token (i.e. a small size
message) to the holding agents of nodes within the path distance [
in G. Since the value of and the token size is usually small, the over-
all communication complexity of this approach is linear in terms
of time (see Figure 4 and its discussion for empirical evidence).

3By considering the value of [within the range 3 to 5, we empirically observe a similar
performance between decentralized MNA and it’s centralized version.

1618

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

4 EMPIRICAL EVALUATION

We now empirically evaluate the performance of MNA in terms
of completion time, and compare it with the optimal mapping. As
finding an optimal mapping is not feasible for large-scale settings
(see Figure 4), we also compare MNA with two more benchmarks:
(i) a centralized approach, where all the nodes are assumed to be
held by a single agent, and (ii) a contiguous random uniform dis-
tribution (i.e. mapping). We choose the former as a benchmark to
check whether distributing to many agents is indeed necessary. On
the other hand, the latter checks the impact of doing this mapping
in a simple way, similar to the method used by SECP (see Section 1).
All the experiments were performed on a simulator in which we
generated different instances of the constraint graph that have a
varying number of nodes from 7 to around 100, and the degree of
each node is randomly chosen from the range 1 to 7. In the simula-
tion, we made use of the so-called “event-based dependency graph"
method (see Section 2 for details) to obtain the completion time for a
particular node-to-agent mapping of a constraint graph. In order to
accomplish this, we performed an independent set of experiments to
generate each node’s computation cost (i.e. time) in advance. Here,
we consider the domain size of all the nodes in the range of 11 — 30.
To obtain a node’s computation time for all its messages, we initially
generated 20 messages of varying sizes from that range, and then
averaged the time elapsed in computing the messages. We did so to
reflect the growth of search space in the generation of a message
by an individual node with an increase in the node’s degree and
domain size in a DCOP [5, 11, 18]. For example, the computation
cost (i.e. the time required to generate each message) of a node with
degree 5 is calculated by taking the average duration to compute
20 messages of following complexities: (11°,12%,...,30°), where
degree n = 5 and domain size d = (11,12,...,30). While these
experiments were performed in a simulator, it is worth mentioning
that we use the FRODO repository [23] to generate utility (i.e. cost)
tables of such complexities. Meanwhile, we used a network simula-
tor tool (GNS3) in order to obtain the intra-agent and inter-agent
communication costs in terms of time [25]. It has been observed
that the former type of communication is a few times faster than
the latter because we can take the underline network cost into ac-
count by using GNS3. Notably, we obtained the values (costs) of the
parameters (i.e. computation and communication) through indepen-
dent empirical observations (and in advance), so as to accurately
report the comparative performance from different conceivable
mapping approaches without being affected by any application-
specific factors (e.g. hazardous communication in disaster response
scenarios). Moreover, the exact value of communication cost (in
terms of time), which has a significant impact on the overall com-
pletion time of a DCOP algorithm, cannot be ascertained accurately
in a simulated environment that runs on a single machine (or even a
few machines), implying that this would not reflect the application-
specific situation such as disaster response, sensor networks, etc.
Therefore, we chose to carry out such controlled and systematic
experiments wherein the results are neither affected nor generated
by skipping several implementation and application-specific issues.
Without loss of generality, the comparative results are reported

“Note that both centralized and decentralized MNA provide comparable node-to-agent
mapping, depending on the choice of the value [in the decentralized version.

Session 44: Agent Cooperation 2

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

20000 I 150004 -
~16000 1 ~—12000 + :
|72} |72}
g g
Q Q
12000 14 E 90004 .
= =
=)
g g
= =
2 8000 - 4 2 6000+ .
£ £
s} Q o
© = Optimal mapping © 3000 ——— Optimal mapping
4000 ~ == ==Mapping obtained from MNA 7 T = === Mapping obtained from MNA 7
==« Contiguous random uniform distribution (mean) = -+ Contiguous random uniform distribution (mean)
Contiguous random uniform distribution (worst-case) Contiguous random uniform distribution (worst-case)
= All nodes in a single agent —— All nodes in a single agent
0 T T T T T 0 T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of Nodes Number of Nodes

(a) Random constraint graphs

(b) Scale-free constraint graphs.

Figure 3: Empirical results for different instances of the constraint graphs with the number of nodes and the number of agents
ratio: (2 — 12). Error bars are calculated using standard error of the mean.

for a single round of message passing® for the constraint graphs
with cycles, since the results for a single round stand in as a pro-
portional representation for multiple rounds required for the cyclic
constraint graphs in this experiment. Nevertheless, we consider
the total completion time of the message passing operation for
acyclic graphs, as they converge after a single round of message
passing. Finally, we report the results averaged over 20 test runs in
Figure 3, recording standard errors to ensure statistical significance.
Note that the simulator is being implemented and run in an Intel i7
Quadcore 3.4GHz machine with 16GB of RAM.

Figure 3a illustrates the comparative results considering the
number of nodes-agents ratio from the range (2 — 12). We found
that the results are comparable for settings with higher node-agent
ratios. The completion time considering the obtained mapping
from MNA is compared with the optimal mapping for a particular
constraint graph. To report the optimal result for the constraint
graph, we run our simulation for all possible uniform mappings.
Note that the results depicted in Figure 3 do not include the time
required to run the mapping algorithm (MNA or optimal) itself,
but rather illustrate the completion time of the message passing
based on the obtained mapping. We discuss the run-time of the
algorithms shortly. In Figure 3a, the dark yellow line indicates the
time to complete the message passing from the optimal mappings.
As finding such optimal results through this exhaustive approach is
not practicable for larger settings, we can only report this up to the
constraint graph of 35 nodes (see Figure 4). Here, the dashed black
line represents the completion time on the mapping obtained from
MNA. Significantly, MNA always performs at a level of at least 90%
of the optimal one. Moreover, in a number of instances, we observe
that MNA provides the optimal performance. The solid black line
represents the outcome from the centralized system, where a single
agent holds all the nodes. It performs worse in all the instances

SWe report results based on the standard message passing protocol, also known as the
message update rule, followed by GDL-based algorithms. See [1, 12] for more details.

1619

because of the fact that an agent cannot compute more than a
single message at a time. Even though all the communications are
intra-agent in this case, the waiting time for the nodes eventually
increases with the growth of the number of nodes. Afterwards, the
dashed-dot-dot black line of Figure 3a shows the results of the mean
of 10 — 50 randomly taken contiguous uniform mappings for each
constraint graph. As observed, MNA takes around 17 — 32% less
time compared to this benchmark for the constraint graphs having a
number of nodes ranging from 7 to 35. Furthermore, we report 16%
to around 23% performance gain of MNA in the larger constraint
graphs compared to the same benchmark. Finally, the solid grey line
reports the worst case outcome from the randomly taken contiguous
uniform distributions to indicate the possible impact of doing this
mapping in a trivial way. In the worst case, a randomly taken
uniform distribution performs 25% to around 38% (i.e. around 1.23
to 1.6 times) slower than the mapping obtained from MNA.

The same experiments were performed with scale-free graphs
[2], and Figure 3b illustrates those results. Although the results
are comparable for both types of constraint graphs, we found a
notable difference for larger settings. The performances of MNA
compared to the contiguous random uniform distributions are better
(i.e. 24% to around 33% for contiguous random uniform distributions
(mean), and 30% to around 43% for the worst case) than what we
observed in Figure 3a for the constraint graphs of around 70 nodes
or more. This is because the degree distribution of a scale-free
graph follows a power law that allows a small subset of nodes to
possess much higher degrees than the rest of the nodes in a graph.
This phenomenon is particularly suitable for MNA to obtain a good
node-to-agent mapping.

The aforementioned results clearly show a significant speed-up
of message passing algorithms, when they are applied based on
the mapping obtained from MNA. Nevertheless, we need to ensure
that running MNA itself is not prohibitively expensive (since it is
an additional preprocessing cost on top of the DCOP algorithms).

Session 44: Agent Cooperation 2

375)(105 T T T T T
MNA - centralized version v
3.00x10° |- - - - - MNA - decentralized version '," -
—ee=e Optimal with prior information | ./
—~ K4
£ 2.25x10° /]
/
= 1.50x10° 1 / -
&
7.50x10% 1 ,/
/
.,'
0.00 e o e tae = £ TR e T e e e e e e e e oo eee h
10 15 20 25 30
Number of Nodes

(a) Constraint graphs consist of 10 — 30 nodes.

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

5X107 T T T T T T T T
MNA - centralized version
4x1074 |-+ MNA - decentralized version A
. 4
- Optimal with prior information| .-
~ /)
£ 3x107- ,-' 1
N /.'
[} P
= e
£ 2x101 e 1
[.- -
1x1074 7 -
04 o 4
35 40 45 50 55 60 65 70
Number of Nodes

(b) Constraint graphs consist of 35 — 70 nodes.

Figure 4: Comparative runtime to obtain the node-to-agent mapping: MNA versus Optimal.

To this end, we need to consider the time MNA (centralized and
decentralized versions) actually takes to obtain the desired node-
to-agent mapping for different constraint graphs, and compare this
with the time to obtain the optimal mapping. To report the result
for the decentralized version, we consider a processing unit with
separate memory of a High Performance Computing (HPC) cluster
as an agent. Specifically, Figures 4a and 4b show the results for the
constraint graphs with the number of nodes ranging from 10 to 30
and 35 to 70, respectively. It is clear from the grey lines that the cen-
tralized version of MNA takes linear time to find the mapping for
each of the constraint graphs. Although we observe that the decen-
tralized version (dotted black lines) takes slightly more time than
its centralized counterpart, it does not incur such delays that would
make it prohibitively expensive to deploy. On the other hand, the
results illustrated in dashed-dot-dot blue lines show that obtaining
the optimal mapping is not practicable or is prohibitively expen-
sive for the constraint graphs of around 25 nodes or more. Note
that, to obtain the optimal mapping by considering all contiguous
uniform distributions, we had to assume that the computation and
communication cost of each messages are known in advance. This
is generally unknown prior to executing an optimization algorithm.
Taken together, finding an optimal mapping is practically infeasible,
while the overall cost of MNA is linear.

5 CONCLUSIONS

This paper explores an important gap in the literature, namely the
problem of finding good mappings of nodes to agents in DCOPs. As
the choice of the assignment can have a significant impact on the
completion time of the algorithms, finding good assignments is im-
portant. To address this, we propose MNA, a heuristic that provides
an effective node-to-agent mapping for a DCOP so that the overall
completion time of the optimization process can be minimized. To
do so, we begin by formulating this specific phase of node-to-agent
mapping as an optimization problem in such a manner that MNA
can be applied to all GDL-based algorithms operating on different

1620

graphical representations. Finally, we empirically evaluate the per-
formance of our approach in terms of completion time, showing
that it does perform at a level of around 90% — 100% of the optimal
mapping, which is computationally infeasible to obtain in practice.
Our results also denote an acceleration of 16% —40% as compared to
the state-of-the-art, implying that a message passing algorithm can
perform 1.2 — 1.7 times faster when using MNA-generated node-
to-agent mappings. At the end, we empirically illustrate that the
speed-up can be attained with the expense of a linear run-time cost,
which is significant given that an optimal mapping is indeed prohib-
itively expensive. In future work, we intend to investigate whether
this algorithm can be applied to other classes (i.e. non-GDL) of
DCOP algorithms (e.g. search-based [14, 27] and sampling-based
[6, 17]), as well as how much speed-ups can be achieved for them.

ACKNOWLEDGMENTS

We acknowledge the use of the IRIDIS High Performance Comput-
ing Facility, and associated support services at the University of
Southampton, in the completion of some of the experiments. Long
Tran-Thanh is supported by the EPSRC funded project STRICT
(EP/N02026X/1). This research is also partially supported by NSF
grant 1550662. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
sponsoring organizations or agencies.

REFERENCES

[1] S. M. Aji and R.J. McEliece. 2000. The generalized distributive law. IEEE Transac-
tions on Information Theory 46, 2 (2000), 325-343.

A. Barabasi, R. Albert, and H. Jeong. 1999. Mean-field theory for scale-free
random networks. Physica A: Statistical Mechanics and its Applications 272, 1
(1999), 173-187.

J. B. Cerquides, A. Farinelli, P. Meseguer, and S. D Ramchurn. 2013. A tutorial on
optimization for multi-agent systems. Computer Journal 57 (2013), 799-824.

A. Farinelli, A. Rogers, and N. R. Jennings. 2014. Agent-based decentralised
coordination for sensor networks using the max-sum algorithm. Autonomous
Agents and Multi-Agent Systems 28, 3 (2014), 337-380.

[2]

[3]
[4]

Session 44: Agent Cooperation 2

&

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. 2008. Decentralised co-
ordination of low-power embedded devices using the max-sum algorithm. In
Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Vol. 2. 639-646.

F. Fioretto, F. Campeotto, L. Da Rin Fioretto, W. Yeoh, and E. Pontelli. 2014.
GD-GIBBS: a GPU-based sampling algorithm for solving distributed constraint
optimization problems. In Proceedings of the 13th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 1339-1340.

F. Fioretto, E. Pontelli, and W. Yeoh. 2018. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial Intelligence Research 61
(2018), 623-698.

F. Fioretto, W. Yeoh, and E. Pontelli. 2016. Multi-Variable Agent Decomposition
for DCOPs. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.
2480-2486.

F Fioretto, W. Yeoh, and E. Pontelli. 2017. A multiagent system approach to
scheduling devices in smart homes. In Proceedings of the 16th Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 981-989.

S. Fortune. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica 2,
1-4 (1987), 153-174.

Y. Kim and V. Lesser. 2013. Improved max-sum algorithm for DCOP with n-ary
constraints. In Proceedings of the 12th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS). 191-198.

F. R. Kschischang, B. J Frey, and H.A. Loeliger. 2001. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory 47, 2 (2001),
498-519.

A. R. Leite, F. Enembreck, and J. A. Barthes. 2014. Distributed constraint opti-
mization problems: Review and perspectives. Expert Systems with Applications
41, 11 (2014), 5139-5157.

R. T. Maheswaran, J. P. Pearce, and M. Tambe. 2004. Distributed Algorithms
for DCOP: A Graphical-Game-Based Approach. In Proceedings of the ISCA 17th
International Conference on Parallel and Distributed Computing Systems (ISCA
PDCS). 432-439.

R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham.
2004. Taking DCOP to the real world: Efficient complete solutions for distributed
multi-event scheduling. In Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), Vol. 1. 310-317.

P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. 2005. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence
161, 1 (2005), 149-180.

1621

(17

(18]

[19]

[20

[21]

[22

(23]

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

B. Ottens, C. Dimitrakakis, and B. Faltings. 2017. DUCT: An Upper Confidence
Bound Approach to Distributed Constraint Optimization Problems. ACM Trans-
actions on Intelligent Systems and Technology 8, 5 (2017), 1-27.

A. Petcu and B. Faltings. 2005. A scalable method for multiagent constraint
optimization. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI). 266-271.

A. Rogers, A. Farinelli, R. Stranders, and N.R. Jennings. 2011. Bounded approxi-
mate decentralised coordination via the max-sum algorithm. Artificial Intelligence
(2011), 730-759.

P. Rust, G. Picard, and F. Ramparany. 2016. Using Message-Passing DCOP Algo-
rithms to Solve Energy-Efficient Smart Environment Configuration Problems..
In Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI). 468-474.

N. Stefanovitch, A. Farinelli, A. Rogers, and N. R. Jennings. 2011. Resource-
aware junction trees for efficient multi-agent coordination. In Proceedings of the
10th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), Vol. 1. 363-370.

E. A. Sultanik, R. N. Lass, and W. C. Regli. 2008. DCOPolis: a framework for simu-
lating and deploying distributed constraint reasoning algorithms. In Proceedings
of the 7th international Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS): Demo Papers. 1667-1668.

L. Thomas, O. Brammert, and S. Radoslaw. 2009. FRODO 2.0: An Open-Source
Framework for Distributed Constraint Optimization. In Proceedings of the IJCAI'09
Distributed Constraint Reasoning Workshop (DCR’09). 160-164. https://frodo-ai.
tech.

M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides. 2009. Generalizing DPOP:
Action-GDL, a new complete algorithm for DCOPs. In Proceedings of the 8th In-
ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
Vol. 2. 1239-1240.

C. Welsh. 2013. GNS3 network simulation guide. Packt Publishers.

H. Yedidsion and R. Zivan. 2016. Applying DCOP_MST to a Team of Mobile
Robots with Directional Sensing Abilities. In Proceedings of the 15th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). 1357-1358.

W. Yeoh, A. Felner, and S. Koenig. 2010. BnB-ADOPT: An Asynchronous Branch-
and-Bound DCOP Algorithm. Journal of Artificial Intelligence Research 38 (2010),
85-133.

R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara. 2014. Distributed
constraint optimization for teams of mobile sensing agents. Autonomous Agents
and Multi-Agent Systems 29, 3 (2014), 495-536.

https://frodo-ai.tech
https://frodo-ai.tech

	Abstract
	1 Introduction
	2 Background and Problem Formulation
	3 The MNA Heuristic
	3.1 Centralized Version of MNA
	3.2 Decentralized Version of MNA

	4 Empirical Evaluation
	5 Conclusions
	Acknowledgments
	References

