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ABSTRACT
While reigning models of diffusion have privileged the structure

of a given social network as the key to informational exchange,

real human interactions do not appear to take place on a single

graph of connections. Using data collected from a pilot study of the

spread of HIV awareness in social networks of homeless youth, we

show that health information did not diffuse in the field according

to the processes outlined by dominant models. Since physical net-

work diffusion scenarios often diverge from their more well-studied

counterparts on digital networks, we propose an alternative Acti-

vation Jump Model (AJM) that describes information diffusion on

physical networks from a multi-agent team perspective. Our model

exhibits two main differentiating features from leading cascade and

threshold models of influence spread: 1) The structural composi-

tion of a seed set team impacts each individual node’s influencing

behavior, and 2) an influencing node may spread information to

non-neighbors. We show that the AJM significantly outperforms

existing models in its fit to the observed node-level influence data

on the youth networks. We then prove theoretical results, show-

ing that the AJM exhibits many well-behaved properties shared

by dominant models. Our results suggest that the AJM presents a

flexible and more accurate model of network diffusion that may

better inform influence maximization in the field.
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1 INTRODUCTION
To say that we reside in networks may yet be an understatement.

For as long as human beings have been social beings, we have been

embedded in connectivity. Our mesh of interpersonal ties contains

both relational and informational content. Networks reveal not only

who we may know but also what we may know and when we may

come to know it. Research in influence maximization lies at this

crossroads of the who, what, and when of information diffusion. In

their seminal paper, Kempe, Kleinberg, and Tardos [23] formalized

the problem by imagining influencing agents as seed nodes in a

network initialized to propagate information first to neighbors and

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
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eventually throughout the network as influence spreads. Along

with theoretical work in the field, the wide availability of large-

scale digital data has positioned internet networks—web link traces,

email communication, social media platforms—at the center of the

discussion of the influence maximization problem. Even so, empiri-

cal work that compares predictions by the dominant Independent

Cascade (ICM) and Linear Threshold (LTM) models with realized

diffusion at the node level is limited. Prevailing methodologies for

estimating diffusion model parameters often achieve low accuracy

in replicating observed behavior even when applied to well-defined

online networks with temporal information flow data [17, 38].

Although the ICM and LTM were originally formulated to de-

scribe social influence in natural environments (environmentswhere

agents physically interact, as opposed to purely online ones) [18, 34],

there is a dearth of high-quality data that support the theories

on networks in physical settings. Moreover, many of the starting

premises of the leading information diffusion models are difficult

to generalize to physical settings, presenting challenges that exac-

erbate the data deficiencies. First, both the ICM and LTM assume

that the topology of social ties is identical with the mesh of connec-

tive channels through which information spreads. While on many

social media platforms a user’s social network delimits her space of

communication, in the natural world, an individual’s total space of

social navigation dwarfs the space of those she calls her “friends,”

and there exists a multiplicity of information avenues within the

network that do not coincide with one’s social ties [35]
1
. Further,

previous work has shown that models with strong assumptions

about a particular graph topology are more prone to error and

inaccuracy in their predictions of information spread [7, 24].

In this paper, we analyze information diffusion data from the

first empirical study of influence maximization in the physical world
[39], which tracked 173 individuals across 3 distinct networks over

a multi-year time period. We delved into this significant corpus

of natural world network data to investigate influence spread at

an individual node level rather than a network-wide volume level.

We found that information did not diffuse from seed nodes to the

greater network according to processes suggested by the Inde-

pendent Cascade or Linear Threshold models. Most strikingly, we

found that across all three networks in the study, 50% of informed
nodes lacked any path to a seed node and moreover, a node’s degree

of connectivity—both generally and specifically to seed nodes—

exhibited no correlation with likelihood of becoming informed. These
results directly contradict predictions put forth by the ICM and

LTM and call into question the suitability of these leading mod-

els of diffusion for approximating information spread on physical

networks.

1
Prior work has suggested that nodes may receive information via “external influence"

originating from outside the network [31]; here we suggest that nodes may still be

influenced from within the network via a non-neighboring node.
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These negative results against the ICM and LTM can be general-

ized to apply to other graph-based models of diffusion: The high

proportion of informed yet isolated nodes cannot be explained by

models that rely on edge-based propagation as the sole avenue for

influence spread [9]. On the other hand, more flexible approaches

such as Hawkes processes [40], which allow for influence to spread

over greater social distances, cannot explain the differing spread

outcomes across the networks. In general, non-graph features of

the diffusion scenarios cannot reconcile divergences in observed

information diffusion in the three different Yadav et al. studies. In

response to the shortcomings of existing models, we develop a

new model of targeted peer-to-peer information spread on natural
networks that does not rely on strong tie assumptions and instead

incorporates an understanding of influencing as a “team” behavior.

Our model features two distinguishing characteristics that are

aligned with real-world information diffusion in physical spaces:

1) Nodes exchange information beyond their immediate social ties,

and 2) Seed nodes act as a multi-agent team to spread informa-

tion, where their overall influencing efficacy is a function of both

individual and team attributes. In the proposed Activation Jump
Model (AJM), team-based influence spread in a network is driven by

activating the “Breakfast Club,"
2
where individuals from different

social contexts band together and form a united team for informa-

tion diffusion. These features confer a flexibility to our forecasts

of information flow and allow our model to achieve a 60% to 110%
improvement over the best ICM and LTM predictions in its predictions
of which nodes will be influenced. Although there is a long line of

multi-agent systems work on modeling social influence [15, 20, 27],

none has considered these aspects of natural-world information

diffusion.

We also point to a methodological pitfall of research in influ-

ence maximization that focuses solely on achieving a particular

level of information diffusion within a network. Namely, match-

ing magnitude of influence spread under simulations to observed

influence spread is insufficient evidence for determining the un-

derlying diffusion process. We show that optimal seeding under

one model achieves near-optimal (> 90%) influence spread under

another diffusion process on three natural-world networks. In fact,

any magnitude of influence spread can be explained by varying

ICM and LTM parameters, pointing to a fundamental ambiguity in

identifying the true diffusion process based on this metric alone.

Even when seeding strategies achieve high levels of influence

spread, leading models’ failures to predict node-level influence can

limit their applicability for real-world uses. In domains of sustain-

ability, network interventions can generate knowledge as well as

promote behavioral changes within a community. These programs

typically identify individuals and groups that may especially benefit

from the intervention. For example, school network-based suicide

prevention programs aim to increase general awareness about signs

of suicidal behavior but especially seek to reach high-risk adoles-

cents and their social circles [22]. Similarly, peer-led HIV prevention

programs akin to the fieldwork by Yadav et al. [39] hope to reach

a diverse set of individuals but especially those who participate

in risky behaviors that increase their likelihood of HIV infection

[5]. As such, most social interventions have the dual purpose of

2
http://www.imdb.com/title/tt0088847/

maximizing influence coverage while also targeting particular vul-

nerable individuals. Furthermore, such social programs are typically

deployed in under-resourced communities within which the reach

of digital networks may be more limited and information exchange

predominantly occurs on physical social networks. With its supe-

rior performance in predicting node-level influence in these arenas,

the AJM may help to better guide these interventions in the field.

In the next section, we present results from our study of influence

maximization on physical networks and show that the observed

patterns of informational exchange do not accord with predictions

by current leading models. In Section 3, we propose an alternative

model of information diffusion that more closely approximates true

influencing behavior in the field and exhibits improved prediction

performance of node-level information spread. We then prove theo-

retical results relating to the influence maximization problem under

the new model in Section 4. The paper concludes with a Discussion

section that looks toward potential applications for our model in

socially-oriented domains.

2 NETWORK INTERVENTION DATA
ANALYSIS

2.1 Pilot Study Procedure
Yadav et al.’s long-standing collaboration with homeless youth ser-

vice providers in a large urban area sought to improve peer-led

health interventions by leveraging research in influence maximiza-

tion ([2017]). To this end, they conducted a series of head-to-head

comparison studies of various seeding strategies to select cohorts

of Peer Leaders among the youth that would be trained for the task

of HIV awareness diffusion in their communities. Three studies

took place on three distinct social networks of homeless youth.

Each study recruited youth and gathered social network data us-

ing online contacts, field observations, and surveys. A different

seeding strategy was then deployed on each of the generated net-

works: In two of the pilot studies, Peer Leaders were chosen via

two algorithmic agents for influence maximization, HEALER and

DOSIM, which were designed to optimize network-based interven-

tion strategies for health providers. The third network was seeded

via degree centrality (DC), the most commonly-used heuristic in

network interventions [37], which simply selected the most popu-

lar youth, those with the greatest number of social connections, to

become Peer Leaders.

Each network’s Peer Leaders underwent an intensive training

course led by pilot study staff that served to both instruct the youth

in spreading information about HIV to their peers as well as bind

the members together in their shared roles as health ambassadors.

After Peer Leaders were sent out into the field, youth were asked

in 1-month and 3-month follow-up surveys about whether they

had received information about HIV from a Peer Leader. These

responses revealed the extent to which information had spread

from seed nodes to the greater network. The post-intervention

results revealed that the HEALER and DOSIM seeding strategies

resulted in greater informational spread compared to DC, with

∼74% and ∼72% respectively of non-Peer Leaders reporting having

received information about HIV in the 3-month survey compared

to ∼35% in the control study. Since both HEALER and DOSIM

solved the influence maximization problem by assuming a model
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Table 1: Fraction of nodes in each network that were in-
formed, sorted by connectivity status to Peer Leaders. De-
nominator gives total number of nodes of that type; numer-
ator gives number of those that are informed. Direct nodes
have an edge to a PL; indirect nodes are connected via inter-
vening neighbor(s); isolated nodes lack a path to any PL.

Network n Direct Indirect Isolated Proportion
Informed

HEALER 34 15/21 4/7 6/6 25/34

DOSIM 25 5/6 5/10 8/9 18/25

DC 26 5/12 1/4 3/10 9/26

of information spread based on a generalization of the Independent

Cascade, the success initially seemed to validate the model as an

accurate approximation of information spread in the physical world.

2.2 Node-level analysis of information
diffusion

However, the empirically observed node-level patterns of informa-

tion spread in the three networks wildly diverged from Indepen-

dent Cascade and Linear Threshold predictions. Table 1 gives an

overview of the connectivity of nodes that reported receiving in-

formation about HIV from a Peer Leader in the 3-month follow-up

survey. In each of the three networks, nodes lacking a path to any

seed Peer Leaders—denoted as “isolated" in the table—represented

a high proportion of all nodes that were informed. These “iso-

lated" nodes either occupied a distinct connected component in

the graph separate from all Peer Leaders or had no edges entirely.

Whereas under the Independent Cascade and Linear Threshold

models, these types of nodes would have a 0 probability of being

informed, notably, in both the HEALER and DOSIM interventions,

isolated youth were informed at a rate higher than even those youth
who were directly connected to one or more Peer Leaders, with

100% (6/6 in HEALER) and 89% (8/9 in DOSIM) informed compared

to ∼71% (15/21) and ∼83% (5/6). In the DC network, the effect is

less pronounced, though isolated nodes were still informed at a

rate comparable to the general non-Peer Leader population (30%

compared to ∼35%). Nonetheless within the context of the ICM

and LTM, such nodes have a 0 probability of receiving information.

Thus, these results immediately challenge the claim that existing

ties are the dominant avenues of informational exchange and also

call into question the premise that information radiates out from

seed nodes first to neighbors and then to the rest of the network.

In order to more finely assess the effect that a node’s connectivity

had on its likelihood of receiving HIV information, we calculated

Pearson correlation coefficients between two degree measures and

a node’s final information status. Our results in Table 2 show that

all such correlations are not significantly different from no correla-

tion, thus indicating that connectivity has no bearing on likelihood

of being influenced. This stands in contrast to prevailing models,

in which a node’s edges represent its “opportunities" to receive

information, and thus both Peer Leader degree—the number of ties

a node has to Peer Leaders—and total degree should be strictly

positively correlated with becoming informed.

Table 2: Pearson correlation coefficients r between nodes’ in-
fluence statuses and their Peer Leader (PL) and total degree.
PL degree counts edges to PLs; total degree counts edges
to all nodes. Positive (negative) r implies a positive (nega-
tive) relationship between reporting hearing HIV informa-
tion and degree. 95% confidence intervals are also given.

Network n PL Degree Total Degree

HEALER 34

-0.0685

(-0.397, 0.276)

-0.1867

(-0.494, 0.162)

DOSIM 25

0.1418

(-0.268, 0.508)

-0.0290

(-0.419, 0.370)

DC 26

0.1547

(-0.247, 0.511)

0.1304

(-0.271, 0.493)

The lack of positive correlation between either total degree or

number of connections with Peer Leaders and influence status is

even more dissonant with edge-based models of propagation when

considered alongside the high levels of influence spread achieved in

the studies. In the HEALER network, information was successfully

transmitted to ∼74% of all non-Peer Leaders, corresponding to a

most likely propagation probability of p ≈ 0.84. Such a high propa-

gation probability further suggests that Peer Leader-neighboring

nodes should be more likely to receive information, with simula-

tions predicting that nearly all (∼99%) would become informed,

whereas in reality, only ∼71% of these nodes received information.

Simulations on the HEALER network with this p value produce cor-

relations of 0.489 and 0.598 between degree and likelihood of being

informed (PL and total respectively), indicating amoderate to strong

positive relationship compared to the actual values of −0.0685 and

−0.1867, which indicate negative to no relationship between degree

and influence status. In the DOSIM study, the graph topology itself,

with 5 connected components in addition to 7 nodes of degree 0,

restricts information spread under the ICM and LTM to maximally

reach 68% of all non-Peer Leaders. Even under perfect information

propagation, as long as nodes are only able to influence neighbors,

simulations under-predict the observed information spread.

Discussion of alternate hypotheses: We now address alter-

nate explanations that may be suggested to explain why these

results greatly diverge from predictions made by graph-based mod-

els like the ICM and LTM. We draw upon a large body of existing

work in sociology and network theory to argue that such alternate

hypotheses are highly implausible or at the very least insufficient

to explain the observed pattern of influence spread.

We start with the prominent presence of isolated nodes, as their

high rate of conversion is one of greatest points of dissonance with

predictions put forth by the ICM and LTM. One counter-hypothesis

may suggest that these nodes were not truly isolated but in fact

had social ties that had gone unreported and as a result, were not

captured in the graph collection process. However, we note that the

existence of truly isolated nodes is consistent with previous social

work with adolescent populations. Networks composed of a large

connected component along with several dyads, triads, and a large

number of isolates have been confirmed inwork on high-risk adoles-

cents in the Bronx, other work with homeless youth communities,

and friendship networks among high school students [12, 33, 37].

In general, when there is a loose boundary to a community such
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as a school, homeless drop-in center, or neighborhood, adolescents

form social networks with a fairly consistent structure akin to the

graphs collected in Yadav et al. [39]. Social isolates are therefore not

aberrations of these types of networks, rather they are features. We

conclude that dismissing prima facie the existence of truly isolated

nodes and assuming that such nodes are “mistakenly" isolated, is

not viable within the larger context and lineage of research in these

areas, and thus (at least many of) these nodes are truly isolated and

had no preexisting social connections.

Further, in the follow-up survey, such youth definitively iden-

tified having had a conversation with a Peer Leader. The survey

stated, “For the next several questions we are going to ask you

about conversations you may have had about HIV or AIDS in the

past month with a Peer Advocate in the Have You Heard program.",

followed by a list of the Peer Leaders’ names. Youth were then asked

to rate their agreement with the statement “The conversation was

awkward" and were given the option of selecting the response "I

didn’t have a conversation with a Have You Heard Peer Advocate

about HIV or AIDS." if no such Peer Leader conversation had oc-

curred. The isolated nodes in Table 1 responded in the affirmative to
the question, answering how they felt about the conversation (rather
than indicating that no such conversation occurred). Thus, these
responses provide direct evidence that social influence occurred

outside of preexisting network connections.

We now turn to the finding that there is no significant corre-

lation between a node’s degree of connection with Peer Leaders

and their likelihood of becoming informed. An alternative hypoth-

esis for such a finding could be that the constructed network was

missing a crucial set of connecting edges along which informa-

tion actually diffused. But in fact, research on social network data

collection indicate that collected graphs are actually more likely

to be systematically skewed in favor of the ICM and LTM. The

standard graph collection techniques that were used in the field

study are biased toward persons reporting edges where there is

greater emotional strength or more frequent interactions [4, 29],

and these are precisely the strong, frequently accessed ties which

would be most likely to propagate information under prevailing

models. Hence, our dataset should be biased to include edges used to
spread information and omit weaker ties that are less likely to carry

information. While it is always certainly possible to collect more

detailed data in the field, it is highly unlikely that all inaccuracies

in these current methods were aligned exactly to invalidate the

ICM and LTM (and occurred similarly in three separate networks).

Thus even on a constructed network that should have been biased

towards the ICM and LTM, we nevertheless see no evidence that

diffusion is explained solely by existing ties. There is therefore

strong evidence that an alternate mechanism of information spread

underlies the observed outcomes.

These results are also consistent with prominent social network

theories such as sociologists Mark Granovetter’s and Ronald Burt’s

theories of weak ties [19] and structural holes [6]. Both are based

upon empirical findings that suggest that social influence often

occurs in counter-intuitive and non-linear ways. In each of these

theories, influence occurs such that more distant or indirect social

ties can have greater importance than strong direct ties, especially

when novel information is being disseminated within a network,

contrary to leading graph-based computational models of social

influence today. We see our new model, proposed in the follow-

ing section, as a formal mathematical treatment of similar social

dynamics as theorized by Granovetter and Burt.

Taken together, the multiple aforementioned contradictions with

prevailing models indicate that the empirical results cannot be dis-

missed as simply anomalous. Given the unique challenges and

complexities of information diffusion on physical networks, we

suggest that the data’s divergence from predictions by models that

have been largely validated only on digital networks is one step in

uncovering and understanding a qualitatively different influence

process. We thus conclude that there is no evidence that a cascade

or threshold-like process of information diffusion produced the ob-

served data and move toward developing a new model of influence

dynamics on real-world physical networks.

3 PROPOSED MODEL
In this section, we introduce a new model of information spread

for this class of peer-to-peer diffusion phenomena.

3.1 Activation Jump Model
Beginning with the premise that instances of social exchange are

not limited to nodes that share a tie, our model of diffusion does

not constrain information flow to the edges within a network. In

the Activation Jump Model (AJM), influencing agents may leave

their immediate social neighborhood to contact and propagate

information to other nodes. This action of contacting nodes beyond

one’s first-order ties is signified as a “jump." We recognize the

heterogeneity of active nodes’ social dispositions by differentially

modeling each influencer’s jump behavior. A seed node’s jump

activity has two main components: 1) activation level, a measure

of how many other nodes it will attempt to influence throughout

the course of the diffusion period, and 2) landing distribution, a
probability distribution that expresses to which inactive nodes it

will jump. Together, these two features describe how often and to
whom an influencing agent contacts as she navigates the network

to spread information.

Thus the AJM comprises two stages: First, each seed node de-

termines its activation level, giving the number of other nodes to

which it will jump. Second, the seed set is deployed in the network,

and the social influence process unfolds in time. When a given seed

jumps at time t , it selects from its landing distribution a target node

uninformed at time t , modeling the process by which seed nodes

seek nodes to inform. Influence is then successfully propagated to

an uninformed node with probability p.
The AJM takes a multi-agent systems approach to the influence

maximization problem by constructing a model of node activation

that is a function of both individual and “team" attributes. In con-

trast to prior models, the seed set is not a collection of independent

influencers, rather nodes exhibit behavioral dependencies wherein

group dynamics either contribute to or detract from aggregate

activation levels.

3.2 Model Formalization
While throughout this paper and in all our results, we use a form

of the AJM tied to the graph’s structural properties, we first discuss

the general form of the model to show that it can accommodate a
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Figure 1: In theActivation JumpModel, a seed nodev is asso-
ciated with an activation level distribution that is a function
of individual node as well as seed set S attributes.

broad range of properties and then discuss our specific form. We

return to the generalization of the model in the Discussion.

Consider a team of seed nodes, S , tasked with information diffu-

sion on a network G = (V ,E). Each seed node draws its activation

level, giving the number of social jumps, or influencing attempts, it

will make, from a distribution that is a function of both the node’s

individual attributes as well as the seed set’s team attributes. For-

mally, let ∆Z be the set of distributions over integers Z ≥ 0. Each

nodev ∈ V is associated with a function fv : 2
|V | → ∆Z that maps

the set of seed nodes to a distribution A(v, S) over discrete activa-
tion levels. A(v, S) is a parameterized distribution (e.g., geometric)

with mean µv = h(S)[aT xv ] where xv is the node’s attribute vec-

tor with coefficients aT . Together aT xv represents the particular

node’s maximum activation level, which is modulated by the team

activation level term given by h(S) ≤ 1, a function of the struc-

tural positions of nodes in S that captures discomplementarities

among team members. Figure 1 illustrates this dual—individual and

team—composition of a seed node’s activation level distribution.

Each node v is also associated with a landing distribution, Lv,T ,
giving the probabilities with which v jumps to a set of potential

target nodesT . The landing probability is a function of the attributes
of the influencing seed v and particular targeted node u. Based on

these qualities, the node pair is assigned a score ϕ(v,u) ≥ 0, and

Lv,T (u) = Γϕ(v,u) where Γ is a normalization factor such that∑
u ∈T Lv,T (u) = 1.

We now instantiate the AJM in a specific form that features the

concept of “structural diversity," which highlights groups with mem-

bers who participate in multiple distinct social contexts. The team

thus acts to unite otherwise disparate nodes, producing the “Break-

fast Club" effect, which has been shown to be a key determinant of

diffusion in networks [36]. Thus we formulate the function

h(S) = 1 −
1

k

∑
(u,v)∈E

1 [u,v ∈ S] (1)

where k is the total number of seed nodes to be selected.h illustrates

the negative effect of social homogeneity in the form of between-

seed-node edges on a team’s effectiveness. Each pair of connected

seed nodes entails a loss of
1

k of the team’s effectiveness. Barring

negative influence, h′(S) = max(h(S), 0) without loss of generality.
To reflect the correlation between degree and propensity towards

sociality and thus activation, we parsimoniously set aT xv = deд(v).

That is, high-degree nodeswill bemore active in spreading influence

(so long as they are part of a diverse team).

The landing distribution score for seedv and target u is given by

ϕ(v,u) = 1

d (v,u) , where d(v,u) is the path-length distance between

the two nodes. When d(v,u) = ∞ (there is no path from v to u),
we set ϕ(v,u) = ϵ , where ϵ > 0 is a small constant. As in the ICM,

the propagation probability p is able to be varied (we discuss this

further in Section 3.4).

Information diffusion thus occurs in two stages. First, during

the activation stage each node in the seed set v ∈ S is initialized by

drawing an activation level Av from its distribution A(v, S). Then,
the jump stage unfolds over the time interval [0, 1]. Each seed nodev
draws a series of jump times tv

1
...tvAv

from the uniform distribution

over [0, 1]. At each jump time tvi ,v jumps to an uninfluenced target

node u drawn from Lv,T where T the set of uninfluenced nodes at

tvi . Finally, u is successfully influenced with probability p.

3.3 Model Discussion
The Activation JumpModel’s incorporation of seed set team dynam-

ics follows a line of multi-agent systems research, which demon-

strates the importance of team formation when agents must collab-

orate to achieve a goal [1, 13, 14, 26]. In particular, previous work

has focused on the value of forming a diverse team [2, 21, 28]. In the

AJM, we operationalize this concept by using the group effective-

ness function h to model network structural diversity by penalizing

seed sets with many within-team edges. Thus h ∈ [0, 1] is decreas-
ing in the level of connectivity among seed nodes, and influencing

nodes are more active when they occupy distinct neighborhoods of

the network rather than when the team is socially homogeneous.

It is important to note that under this model setup, a node’s

marginal effect on the aggregate activation level of a seed set is

not guaranteed to be positive. There may exist a nodew ∈ V such

that

∑
v ∈S h(S)[a

T xv ] >
∑
v ∈S∪w h(S ∪w)[aT xv ], with the effect

that the influence function f (·), giving the expected number of

influenced nodes, is non-monotone. Although this is a significant

departure from the ICM and LTM, we argue that non-monotonicity

is a realistic feature of team-based influence spread. A new seed

node may interfere with team dynamics, resulting in a deleterious

effect that outweighs its positive individual contribution to the

team. This balance between the quantity and quality of members

in a seed set is an important consideration in team formation in

the real world. As a result, the influence maximization problem

under the AJM requires examination of not only a node’s individual

attributes but also its effect on nodes already in the seed set.

We remark that the AJM is intended specifically to model in-

formation spread on physical, mid-scale networks. It is not ap-

propriate for modeling “passive" diffusion processes such as the

network spread dynamics of a disease, which may be transmitted

by a non-seed node. Moreover, the AJM is a progressive model such

that once a node becomes influenced, it cannot revert to being in

an uninfluenced state. Hence, the model is not suited to situations

where nodes may repeatedly change their mind depending on social

circumstances. Nevertheless, this leaves a great space of possible

information spread scenarios that may be captured by the AJM. The

multi-agent aspect of the model makes it particularly amenable to

modeling targeted campaigns run by a team of influencers, which

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1635 



HEALER DOSIM DC

20

40

60

80 77
75

61

48
46

29

44

34

20

Network

A
U
R
O
C

AJM ICM LTM

Figure 2: Comparison of model classification performances

are common whenever particular members with special knowl-

edge are charged with disseminating social awareness within their

communities. Such instances are common in the domains of public

health, community organizing, and even team-based marketing.

3.4 Model Validation on Post-Intervention Data
We evaluate the performance of the Activation Jump Model by

comparing its predictions to Yadav et al.’s dataset of HIV aware-

ness spread on three distinct social networks of homeless youth.

Standard experiments of diffusion models compare the magnitude

of total influence spread under simulations to that observed em-

pirically in order to assess model accuracy. Here, we perform a

finer-grained analysis by evaluating and comparing AJM, ICM, and

LTM predictions of node-level influence. We treat each model as a

binary classifier that outputs the predicted probability of each node

becoming influenced. Each model is then evaluated according to

its AUROC, a standard measure of classification accuracy.

Parameter settings: Physical networks present challenges in data

collection that limit the ability to view multiple cascades, render-

ing standard methods of inferring diffusion parameters inoperable.

We instead fit the ICM directly to the test data by running simula-

tions under the propagation value that gives its best classification

performance and then forcing the AJM to also work under this

propagation value. Thus any experimental bias favors the ICM.

For the AJM, the only parameter we set is the small constant

ϕ(v,u) = 0.1 for the landing distribution score when d(v,u) = ∞.
By contrast, we present the strongest possible version of the ICM

for each network, fitting it directly to the test data by selecting the

propagation value p that maximized the ICM’s AUROC value. We

then used this same probability for the AJM. By forcing the AJM to

operate under the ICM’s optimal parameterization, we ensure that

our experiments truly test the AJM’s better suitability for modeling

the data, rather than a better ability to “memorize” the data.

Assessing classification accuracy: Using selected Peer Leaders

in the field experiments as seed nodes, we generated diffusion in-

stances according to the Activation Jump, Independent Cascade,

and Linear Threshold models, tracing out Receiver Operating Char-

acteristic (ROC) curves for each set of simulations. This evaluation

methodology has been used in previous node-level analyses of in-

formation diffusion models [16, 38] and has been recognized as

Figure 3: Models’ ROC curves on HEALER network

superior to Precision-Recall curves for the binary classification

task [32]. ROC curves plot a classifier’s True Positive Rate (TPR)

against its False Positive Rate (FPR) with each point on the curve

corresponding to a predictive threshold such that all nodes with

a probability of being informed above (below) the threshold are

classified as influenced (not influenced). We used the area under the

ROC curve (AUROC) to evaluate classification performance [10]

where an AUROC of 1 corresponds to a perfect classifier.

Results: Each model’s AUROC values for the three networks are

shown in Figure 2; the ROC curves for all three models’ predic-

tions on the HEALER network are shown in Figure 3. The AJM

outperforms the ICM and LTM across all networks, with the model

achieving accuracies (measured via AUROC) of 77% and 75% on the

HEALER and DOSIM networks respectively, while the best ICM

and LTM issue predictions that, on average, perform worse than

a random classifier (20-48%). For DC, one possible explanation for

all three models’ lower AUROCs is the overall poor permeation

of influence throughout the network, since low base-rates cause

the measure to be sensitive to small classification changes. Even

so, the AJM is far from a trivial classifier, with an AUROC of 0.61

compared to the ICM and LTM values of 0.29 and 0.20 respectively.

4 THE INFLUENCE MAXIMIZATION
PROBLEM UNDER THE ACTIVATION JUMP
MODEL

We now consider the influencing activity of a coordinated multi-

agent team under the AJM. Since seed agents do not target nodes

that have already been informed, the influence function is cap-

tured by the total number of expected jumps, given by f (S) =
h(S)

∑
v ∈S a

T xv , where h(S) follows the form in Equation 1. We

show that under natural conditions, f is a (potentially nonmono-

tone) submodular function.

Lemma 4.1. h is monotone-decreasing and submodular.

Proof. h is monotonically decreasing by inspection. For sub-

modularity, consider the marginal impact of adding a given node v
to an existing seed set S :

h(v |S) = −
1

k

∑
(u,w )∈E

1 [{u,w} * S, {u,w} ⊆ S ∪ {v}] .
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Algorithm 1 StochasticGreedyAJM (V , f ,k)

1: initialize S = ∅, P = ∅
2: for v ∈ V do
3: with probability 1

2
, P ← P ∪v

4: while |S | < k and ∃v ∈ P such that f (S ∪v) ≥ f (S) do
5: v = argmaxv ∈P f (S ∪v) − f (S)
6: S ← S ∪v
7: return S

Now consider some S ′ ⊇ S , v < S ′. The indicator function in

the above sum counts edges where one of the two nodes is not

contained in S , but both are contained in S ∪ {v}. If S ′ extends S
but does not contain v , then the summation for h(v |S ′) can only

include more nonzero terms than the summation for h(v |S). Since
each term is nonpositive, h(v |S ′) ≤ h(v |S). �

In fact, h being monotone-decreasing and submodular is suffi-

cient for the objective f to also be submodular:

Proposition 4.2. Whenever h is a monotone-decreasing submod-
ular function, f is submodular.

Proof. Consider the marginal gain of adding a nodev to a given

seed set S :

f (v |S) = h(S ∪ {v})aT xv + [h(S ∪ {v}) − h(S)]
∑
u ∈S

aT xu

We prove that f is submodular by showing that each corre-

sponding term in f (v |S ′) can only decrease for all S ⊆ S ′. The first
term decreases since h is a submodular function as shown in the

lemma. The second term, corresponding to the individual contri-

bution of v , also decreases because h is monotonically decreasing.

Thus f (v |S ′) ≤ f (v |S). �

Having shown that f is submodular, a natural approach to seed-

ing would use the greedy algorithm, giving a 1 − 1

e approximation

for the ICM and the LTM [8, 23, 25]. However, since f is non-

monotone, this approach does not apply. Instead, we adopt the

stochastic greedy algorithm proposed by Feldman, Harshaw, and

Karbasi [11]. Algorithm 1 runs the normal greedy algorithm (lines

4-6) but only selects from a limited set of nodes P . Each node is

included in P with probability 1/2. This random removal reduces

the chance that the greedy method will prematurely commit to

a node that later become problematic due to non-monotonicity.

Feldman et al. [11] show that this algorithm obtains a guaranteed

1

4
-approximation to the optimal value and has excellent empirical

performance. Our experiments follow their suggested strategy of

running the algorithm several times (we both use 4).

4.1 Meta-Analysis of Influence Spread Metrics
The finding that the ICM is a poor predictor of node-level influence

is dissonant with the fact that seeding algorithms based on the

ICM have proved effective in the field [39]. After all, how can

a seeding algorithm based on an inaccurate model of diffusion

manage to nevertheless achieve a high level of influence spread? To

address this seeming conflict, we confront a larger question about

the prevailing methodology of the influence maximization problem.

In this section, we show that appealing solely to the magnitude of

influence spread achieved is a fundamentally inconclusive method

of determining whether a particular diffusion model underlies an

observed instance of spread. This ambiguity is problematic when

using the influence maximization framework to inform the seeding

strategies of network interventions in sustainability domains. In

many such cases, in addition to diffusing information generally,

programs seek to target particular individuals or groups, and thus

a model’s ability to make node-level predictions is a valuable asset

for real-world use cases.

Magnitude of Influence Spread Previous research compar-

ing information diffusion model predictions to empirical results

has tended to rely on metrics related to volume of spread—such as

minimizing RMSE as a function of actual spread or recapitulating

cascade sizes—to determine the fidelity of a model to ground truth

processes [17]. However, we argue that one cannot extrapolate pro-
cesses from such coarse-grain outcomes. The following experiments

use three examples of physical, meso-scale networks: Homeless, a
network of 142 nodes gathered via interviews with homeless youth,

India, a household-level network gathered from a rural village in

India [3], and SBM, a synthetic network of 200 nodes generated

via the Stochastic Block Model, which replicates the community

structure found in real social networks.

We evaluate how seed sets selected under one diffusion model

perform in an influence maximization task under the other models.

Figure 4a examines the consequences of model misspecification for

influence maximization. We set the parameters equally across all

networks—0.1 for propagation probabilities in the ICM and AJM

and edge weights in the LTM. Each table entry shows the percent-

age of optimal influence spread obtained when a seed set selected

according to the model on the column is assessed with the model on

the row. For example, the cell (ICM, LTM) indicates that a seed set

selected via the greedy algorithm for the LTM produced influence

spread that was 99.8% optimal when diffusion actually occurred

under the ICM. Given that all entries are greater than 90%, deter-

mining model fit by examining the magnitude of influence spread

achieved under its seeding strategy leads to great ambiguity. Since

all of these models result in high influence spread, any model could

account for the “true” underlying process of diffusion.

One explanation for this phenomenon points to the community

structure common in social networks. Algorithms for influence

maximization under the ICM tend to distribute seed nodes across

different communities to avoid the redundancy of seeding the same

community multiple times. But seeding according to the AJM re-

sults in a similar recommendation to ensure diversity among seed

nodes. Hence, attaining high influence spread is insufficient for

identifying a model as the true diffusion mechanism. On the one

hand, achieving comparable final magnitudes of influence spread

is useful for influence maximization tasks, as it suggests that high-

quality results are attainable even when the true model is uncertain.

However, many tasks require a descriptively accurate diffusion

model, not just one that works by coincidence.

Next, in Figure 4b, we show that common diffusion models are

capable of reproducing any observed level of total influence spread.

Each plot gives the fraction of the graph influenced by a random set

of 10 seed nodes under the ICM and LTM as we vary a parameter

for each model. For the ICM, we vary the propagation probability p.
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Figure 4
ICM LTM AJM

ICM 100 99.8 98.6

LTM 99.6 100 98.8

AJM 97.4 96.1 100

ICM LTM AJM

ICM 100 98.4 99.8

LTM 99.9 100 98.9

AJM 93.7 97.8 100

ICM LTM AJM

ICM 100 98.7 99.4

LTM 99.3 100 99.8

AJM 96.3 93.9 100

(a) Percentage of optimal influence spread achieved when network
is seeded according to the column model and evaluated according
to the row model. Networks top to bottom: Homeless, India, SBM.

(b) Fraction of all nodes informed under ICM and LTMwith varying
parameters. Networks left to right: Homeless, India, SBM.

For the LTM, we assign each edge (u,v) a weight w
deд(v) and vary

w . Each line is an average of 30 draws of the random seeds. Under

both models, any level of influence can be explained by a parameter

choice in either of the models. We conclude that even if a given

model exactly replicates the observed amount of influence spread

in a network, this fact alone provides no evidence that the model

truly describes the underlying diffusion process. Hence, we must

use a finer-grained assessment such as node-level activations to

produce accurate diffusion models.

TowardNode-Level Influence Spread The prevailingmethod-

ology’s blind spot to node-level information spread also engenders

severe limitations in the actual deployment of the influence maxi-

mization problem in the real world. Seeding networks to maximize

the total volume of influence spread is unproblematic when one is

agnostic about who is influenced. But in many application domains,

the objective for influence maximization is not to reach the greatest

number possible out of all nodes, but rather to maximize the num-

ber reached in a given subset. In the Introduction, we referenced

the variety of network interventions that seek to target particu-

lar individuals or sub-populations. Therefore, the total influence

spread in the entire network is uninformative about the true objec-

tive. Such a task requires a model which makes accurate node-level

predictions, because this is the only way to find a seed set which

influences the intended targets (while one can incorporate targeting

into the ICM/LTM objective, this will only yield meaningful results

if the model can accurately predict node-level activations). We have

shown that the AJM significantly outperforms leading models in

node-level predictions of who will be influenced by an intervention,

making it much more suitable for applications.

5 DISCUSSION
A breadth of research has investigated information diffusion on

online networks, but the problem of influence maximization re-

mains under-explored on natural networks. By analyzing node-

level data from a large-scale study of influence maximization on

physical social networks, we show that neither of the prevailing

models of information diffusion–the Independent Cascade and Lin-

ear Threshold–could account for the empirical findings. Even after

fitting the best of these models to the data, they perform worse
than a random classifier in predicting a node’s ultimate influence

status. There is a long line of work in the AI literature on influence

maximization under the ICM and LTM. Our results are significant

because they open up a new setting for algorithm development and

network modeling, moving beyond the prevailing models at least

where physical networks are concerned.

We approached the shortcomings of the dominant models with

an open mind to related research that may inform our understand-

ing of information diffusion in this domain. Our proposed Acti-

vation Jump Model (AJM) draws from a lineage of work in multi-

agent systems and social network theory that suggests that 1) social

exchange need not only occur along network ties and 2) an individ-

ual’s influencing behavior is affected by her surrounding commu-

nity. Of particular note, we model seed set structural diversity as

conferring benefits to each individual seed node’s influencing level.

The AJM is a more inclusive model of diffusion and superior to

leading models in its predictive prowess. When validated on three

real-world networks with information diffusion data, the AJM is-

sues predictions of node-level influence spread that improve upon
the best ICM and LTM predictions by 60% to 110%. More generally,

as the Activation Jump model relies on fewer network assumptions

than standard graph approaches to information diffusion, we sug-

gest that the framework may be of special interest to social network

intervention programs where nodes have a high-level of familiarity

with the rest of the network, and the act of social “jumping" is

commonplace. Since the AJM is submodular and non-monotone,

we adopt a seeding algorithm that achieves a
1

4
-approximation to

the optimal influence spread. Thus high-efficacy influence maxi-

mization under the AJM is computationally ready to be deployed

in the real world.

It has long been accepted in the social sciences that the link

between individual and group social behaviors is bidirectional

[30]. A multi-agent team perspective is thus particularly suited

to describe peer-to-peer information diffusion in the natural world,

where a group’s social dynamic impacts how individual members

will behave in spreading information. By explicitly modeling team-

formation, a central component of many network interventions in

the field, the AJM significantly updates the influence maximization

problem for natural world settings. Its framework, with flexible

activation level and landing distribution functional forms, also al-

lows for contextually relevant information such as node-specific

attributes like gender and ethnicity to be incorporated when de-

ployed in real-world network applications.
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