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ABSTRACT
Computational epidemiologists frequently employ large-scale agent-
based simulations of human populations to study disease outbreaks
and assess intervention strategies. The agents used in such simu-
lations rarely capture the real-world decision-making of human
beings. An absence of realistic agent behavior can undermine the re-
liability of insights generated by such simulations and might make
them ill-suited for informing public health policies. In this paper,
we address this problem by developing a methodology to create
and calibrate an agent decision making model for a large multi-
agent simulation, using survey data. Our method optimizes a cost
vector associated with the various behaviors to match the behavior
distributions observed in a detailed survey of human behaviors
during influenza outbreaks. Our approach is a data-driven way of
incorporating decision making for agents in large-scale epidemic
simulations.
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1 INTRODUCTION
Behavior is a crucial aspect of infectious disease outbreak control
in general, as demonstrated most recently by the Ebola outbreak
and the measles outbreak in the USA. The spread of HIV in parts
of Africa also was facilitated by social, economic and behavioral
factors [12]. SARS rates fell during the epidemic, partly due to
behavioral choices made by individuals which led to a reduction
in population contact rates and to rapid hospital attendance by
symptomatic individuals [31]. Understanding the interaction of
self-initiated individual behavior with disease dynamics is essential
while studying epidemic spread through human populations [13].

Influenza epidemics occur annually and place a huge cost upon
society [21]. Vaccination rates for seasonal influenza tend to be less
than 50% in the USA, which means that strategies for mitigation
are very important, including self-initiated behavioral interven-
tions such as hygiene practices, staying home when sick, avoiding
crowded places, and more. Additionally, influenza can often have
mild or no symptoms, so only a small fraction of the infected go

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to hospitals, making it hard to assess the true size of the epidemic.
Further, the extent to which people change their behaviors dur-
ing an influenza outbreak to reduce their susceptibility is not well
understood so far. Infectious disease outbreaks also have an associ-
ated contagion of information, with people adjusting their behavior
based on their perceptions of risk, upon receiving information
about the outbreak. Modeling self-initiated human behavior is a
very important piece of the puzzle in furthering the understanding
of infectious disease epidemics, yet most epidemiological models
rarely include models of human behavior.

There have been only a few attempts to model behavior in a data-
driven way for social simulation (see [30] for a recent example).
Part of the reason for this is the relative paucity of data on behaviors
during epidemics. Another crucial issue is how to calibrate behavior
models when data are indeed available. Computational simulations
of epidemics have become quite sophisticated at incorporating
multiple sources of data and calibrating disease models [11], but the
analogous methodology for representing and calibrating behavior
models and integrating them with these large-scale simulations is
yet to be developed.

In this work we take a phenomenological approach to behavior
modeling, in which we are concerned with getting the population-
level distributions of behaviors right, but are less concerned with
the individual decision-making process and the psychological and
cognitive factors that might be involved. This is because the goal of
our work is to be able to simulate populations of behaving agents
and to extrapolate the population-level consequences of patterns of
behavior. Thus we use a Markov Decision Process (MDP) to model
agent decision making about disease avoidance behaviors in a large
scale influenza simulation. We use a survey of influenza avoidance
behaviors to calibrate the MDP model such that the distribution of
these behaviors adopted by the simulated agent population closely
matches the distribution of behaviors adopted by individuals in the
real world. Figure 1 gives a high-level overview of our data-driven
approach to modeling agent behavior.

We begin by analyzing the adoption of influenza avoidance be-
haviors by a representative sample of the US population captured
in a survey. We map these behaviors into interventions in the simu-
lation that reduce the simulated individual’s (i.e., agent’s) suscepti-
bility to influenza contagions. An agent’s decision to adopt a set of
behaviors is driven by the MDP, and we posit that the right parame-
ters for the MDP would lead to a close match between the patterns
of behavior observed in the simulated and real world. To this end
we iteratively tune the parameters of the MDP model used in the
epidemic simulator in an optimization loop which is the process of
behavior model calibration. We experiment with three optimization
methods for the calibration process and find that our approach can
closely match observed distributions of disease avoidance behaviors
from the survey data quite well in the simulation.
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Figure 1: The behavior model calibration approach

The rest of this paper is organized as follows. We begin by dis-
cussing related work on behavior modeling from an agent’s per-
spective and from a public health perspective. Then we describe
the survey data which is used to parameterize the behavior model,
and the behavior model itself. Next, we describe the epidemic simu-
lator, the synthetic population used in this study and the contagion
spread models used by the simulator. Next we detail the agent de-
cision model and the behavior model calibration problem and the
optimization approaches used for calibration. We present results of
our experiments with different optimization approaches and end
with a discussion of limitations and future work.

2 RELATEDWORK
Efforts at modeling human behavior and decision-making have a
long history in the public health and psychology literature. These
approaches generally focus on the within-agent decision-making
process, such as the Health Belief Model (HBM) [32], the Theory
of Planned Behavior [2], and the Theory of Reasoned Action [3].
These approaches are now also being implemented in computa-
tional models [8, 25]. The main limitations of these approaches are
that the models seem hard to calibrate since some of the param-
eters appear to be confounded (e.g., perceived risk and perceived
severity), and further the data required to infer the parameters of
these models are hard to obtain.

On the other hand, there are many examples of behavior mod-
eling in computational epidemiology and other domains where
behaviors are modeled in a counter-factual or prescriptive way. For
example, in a study trying to evaluate whether it is better for people
to evacuate or shelter in place after a nuclear detonation [26, 38],
the authors only have to model the counter-factual scenarios where
everyone shelters or everyone evacuates.

Similarly in large-scale simulation studies of flu interventions,
modelers generally restrict themselves to assuming that all indi-
viduals in the model do the behavior (with some compliance rate).
For example, Halloran et al. [15] studied multiple intervention sce-
narios in a flu pandemic in the city of Chicago. This work ranked
interventions by effectiveness, but did not consider people’s typical
behavior during flu epidemics.

In a different context, Singh et al. [34] have used the Belief Desire
Intention (BDI) framework to create agents which are embedded

Figure 2: Demographic distributions of the survey sample

into large-scale social simulations. Their approach is more focused
on the engineering aspects of the problem, such as the agent archi-
tecture, modularity, and the design of the simulation platform, than
on calibration of the behaviors. They also focus on explainability
of agent decision-making and acceptability to the end-users.

The most relevant recent work is that of Pynadath et al. [30].
They used survey data to parametrize a Partially ObservableMarkov
Decision Process (POMDP) model of stay/leave decision-making in
a disaster response scenario. They show how to create the states,
actions, environment, and rewards for an agent and then train the
agent.

The unique contribution of our work is that we bring together
survey data on behavior with a large-scale simulation that is capable
of implementing those same behaviors. The combination of the two
things leads to a more direct calibration method for the behavior
models in our work. The survey provides the relative proportions of
a sample of the various behaviors in the population. The simulation
allows us to determine the probability of agents acting in particular
way due to the infectious disease and information flow dynamics
in the population. In combination, we can search the space of costs
associated with the behaviors (essentially an inverse reinforcement
learning setting [22]).

3 SURVEY OF FLU-RELATED BEHAVIORS
We used data from an epidemiological survey aimed at understand-
ing people’s experience with the influenza illness. The survey was
administered to 2168 participants which constituted a nationally
representative sample of the US population.

Figure 2 shows the demographic distributions of the sample pop-
ulation. The survey captured respondents’ responses about their
health behaviors, demographics, risk perceptions, vaccine uptake,
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Figure 3: Distribution of individual avoidance interventions
in the survey responses

and information sources for outbreak updates. Of particular rele-
vance to this work were the actions taken by respondents to avoid
getting influenza (interventions). These interventions are: Avoid
touching eyes (ATE), Avoid touching nose (ATN), Avoid touching
mouth (ATM), Wash hands with soap (WHS), Use hand sanitiz-
ers (UHS), Clean surfaces at home (CSH), Clean surfaces at work
(CSW), Eat nutritious food (ENF), Get adequate rest (GAR), Get rec-
ommended vaccine (GRV), Take preventive medicine e.g. antiviral
(TPM), Use surgical mask to cover nose and mouth (USM), Avoid
contact with people who are sick (ACS) and Avoid crowded places
(ACP). For each of these interventions, a respondent chose one of
three possible responses: Never, Sometimes, or Always. Figure 3
gives the distribution of survey responses for the 14 interventions.
We assume that if a respondent selected Sometimes or Always for
an intervention, they undertake that intervention in their daily
lives to avoid getting an influenza infection. Selecting Never for
an intervention implies that the respondent does not undertake
that intervention. This simplifying assumption transforms an in-
dividual’s choice of interventions into a binary decision problem.
Furthermore, an individual can undertake a combination of these
interventions, for example, one might undertake three interven-
tions: avoid touching eyes (ATE), wash hands with soap (WHS)
and get recommended vaccine (GRV), so as to avoid getting an
influenza infection. We found that there were 351 such intervention
combinations in the survey responses. In the rest of this paper, we
refer to the interventions as actions and a combination of inter-
ventions as behavior. Therefore, an individual choice of actions
constitutes their behavior. Figure 4 gives the frequencies of each
of the behaviors observed in the survey data plotted on log10 scale.
Here, the most likely behavior (marked by 1 on the horizontal axis)
corresponds to the individual choosing all actions. The first 10 be-
haviors are selected by 60% of the individuals. Additionally, 58%
of the behaviors (i.e., behaviors 145 to 351) have a frequency of 1.
Next, we describe the epidemic simulation approach used in our
experiments.

4 EPIDEMIC SIMULATION
Large-scale agent-based epidemic simulators work on social con-
tact networks [14], to simulate the spread of social contagions such
as epidemics, social memes, news and information through these
networks. In this study we use Episimdemics [6], which uses a
synthetic population to simulate the spread of infectious diseases
through this network. Synthetic populations are commonly used in

Figure 4: Distribution of influenza avoidance behaviors ob-
served in the survey.

large-scale simulations in multiple domains, including influenza epi-
demics [11, 28], disaster response [27], and more. Next, we describe
the process of generating the synthetic population for Montgomery
County, Virginia, which is used for simulating influenza in this
study.

4.1 Synthetic population
The synthetic population of Montgomery County, VA, is available
online 1. It represents all the residents of Montgomery County and
has 77,820 people grouped into 32,827 households. Each synthetic
individual is assigned a daily activity schedule, with multiple activ-
ities in the day. The total number of activities is 429,590, and these
activities are carried out in 26,941 distinct geographic locations.
A location can have different sizes and can contain “sublocations”
(e.g., rooms within buildings), which can accommodate 25 to 50
people. The synthetic population is constructed in a series of steps
by integrating data from multiple sources like the American Com-
munity Survey (ACS) [20], the National Household Travel Survey
(NHTS) [33] and HERE (formerly NAVTEQ, for road network data).
The process employs algorithms like the iterative proportional
fitting (IPF) algorithm [7] and gravity model [10] to generate a
synthetic population which is statistically indistinguishable from
the real population. A person-person social contact network can
be derived from this synthetic population by assuming that people
who are at the same location for an overlapping period of time are
in contact with each other. Details of the process can be found in
the report by Adiga et al. [1]. The resulting social contact network
has 77,820 nodes representing people and over 2 million edges.
Episimdemics operates on this person-person social contact net-
work, and simulates agents or synthetic individuals as nodes of
the network [37]. The spread of contagions through the social con-
tact network is modeled through coupled disease propagation and
disease progression models.

4.2 Contagion propagation and progression
models

The contagion propagation (inter-host) and contagion progression
(intra-host) models used in this study were developed by the Na-
tional Institutes of Health, Models of Infectious Disease Agent Study
(MIDAS) project [24]. The inter-host model specifies how an unin-
fected agent gets exposed to the disease by an infected agent. Such
exposures are probabilistic in nature and result from interaction
between agents [4]. We can use a probability function to model
the probability of a susceptible agent i getting infected based on
1http://ndssl.vbi.vt.edu/synthetic-data/
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Table 1: Variable values used in the influenza propagation
model

Variable Value

r in Susceptible states 0.0

r in Exposed state 0.0

r in Infectious state 1.0

r in Recovered state 0.0

si in Susceptible states [0.574649378, 1.0]
si in Exposed state 0.0

si in Infectious state 0.0

si in Recovered state 0.0

ρ 1.0

Figure 5: Within-host disease PTTS

its immediate social contact network neighborhood and disease,
and agent- and environment-specific parameters. The probability
function is defined as,

pi = 1 − exp

(
τ

∑
r ∈R

Nr ln(1 − rsiρ)
)
. (1)

Here, pi is the probability of a susceptible agent i getting infected,
τ is the duration of exposure in minutes, which is the time spent
by agent i at the same location as Nr (collocated) infectious agents,
R is the set of infectivities (rs) of each of the Nr infectious agents
collocated with the susceptible agent i , si is the susceptibility of
i and ρ is the probability of a single completely susceptible agent
getting infected by a single completely infectious agent through
one minute of exposure [5]. The specific values of the disease prop-
agation model parameters used in our influenza simulations are
given in Table 1. Upon getting infected the progression of the dis-
ease within an agent is modeled using the disease progression or
intra-host model. This model is a Probabilistic Timed Transition
System (PTTS), which is based on the SEIR model. Figure 5 shows
a schematic of the disease PTTS we have used in this study for
simulating the progression of influenza within an individual.

Each agent remains in the susceptible (S) state until it comes
in contact with one or more infected agents in its social contact

Figure 6: Within-host information PTTS

network neighborhood. Then we calculate pi based on the suscep-
tibility of agent i (which in turn depends on its behaviors) and the
number of infected agents in the neighborhood (Nr ). Agent i is
then set to be exposed with probability pi . In this case the agent’s
disease PTTS transitions to the exposed (E) state from the Suscepti-
ble (S) state. An agent remains in the exposed (E) state for a period
of one to two days after which it transitions into the infected (I)
state. The exact duration (in hours) for which an agent remains
in the exposed state before transitioning to infected state is once
again determined by a random draw from the uniform distribution
U(24, 48). However, a transition to the infected state is guaranteed
to happen in 48 hours of getting infected. Once an agent transitions
to the infected state, it remains infectious for a period of two to
six days, after which it transitions to the recovered (R) state. The
duration (in days) for which an agent stays in the infected state is
determined using the distribution: (3 days/4 days/5 days/6 days),
(0.3/0.4/0.2/0.1) as shown in the histogram presented in Figure 5.
Agents in the infectious state can spread the infection to other
susceptible agents, which come in contact with them through the
social contact network as evident by the infectious agent’s infectiv-
ity of (1.0). An agent in the recovered state is no longer contagious
and cannot get new infections.

The intra-host and inter-host models can also be used to sim-
ulate the propagation of other contagions in the social contact
network. One such contagion is that of information about the dis-
ease outbreak, which can be used by the agents to decide on a
disease avoidance behavior. Figure 6 models the spread of infor-
mation contagion about the influenza outbreak. This within-host
information PTTS functions similarly to the disease PTTS, but has
only two states (i.e., uninformed and informed). Initially, all agents
are in the “uninformed” state, but once an agent gets infected by the
influenza contagion, its information state changes to “informed”.
Agents in the contact network neighborhood of an infected agent
get informed about the outbreak faster than they get infected. This
is achieved by having an information contagion susceptibility two
times the susceptibility to the disease contagion. This results in the
information about the disease outbreak spreading faster than the
disease itself. The information contagion model reflects the role of
peer influence in an individual’s decision-making. Table 2 lists the
specific values of the variables that were used for the information
contagion in our simulations. Upon receiving information about
the outbreak, an agent can decide to undertake one or more actions
so as to avoid getting the disease. In the context of influenza, an
agent can undertake any of the 351 combinations of the 14 actions
that were discussed in Section 3. For the purpose of this study we
assume that adopting a combination of actions (i.e. a behavior) only
leads to a reduction in the agent’s susceptibility to influenza. When
a susceptible agent decides to undertake an action combination b
their disease PTTS transitions to the corresponding Susceptible_b
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Table 2: Variable values used in the info. propagation model

Variable Value
r in Uninformed state 0.0
r in Informed state 0.5
si in Uninformed state 0.00008
si in Informed state 0.0
ρ 1.0

state, which are shown in Figure 5. Each of these 351 susceptible
states implies a lower susceptibility towards influenza for the agent
than the original Susceptible (S) state. We assume that if an action
is easy to take then a lot of people will take it, but it will also have a
smaller effect on susceptibility. Hence, the reduction in susceptibil-
ity due to an action is an inverse function of the number of survey
participants who responded as undertaking that action. Therefore,
upon receiving information about the influenza outbreak a suscep-
tible agent can decide to undertake a behavior, which will reduce
its susceptibility towards influenza.

The assumed inverse relationship between ease of undertaking
an action and the reduction in susceptibility associated with it may
or may not hold in the real world. This assumption and the sim-
plified disease and information models used in this study are not
central to the behavior calibration methodology and merely serve
the purpose of demonstrating the behavior calibration approach,
which is the main contribution of this paper. Given the availability
of quantitative data linking actions with reduction in susceptibil-
ity, one can easily eschew this assumption, without affecting the
overall behavior calibration approach. Additionally, the disease and
information models can be substituted with more complex variants
for modeling any infectious disease as well as peer influence. These
aspects are outside the scope of the current study. Next, we define
the agent behavior selection process modeled as a MDP.

5 AGENT DECISION MAKING MODEL
We define the Markov decision process (MDP) driving agent de-
cision making by

〈
S,B,P,R

〉
. The state space S consists of all

the possible health states for an agent, which are the states of the
intra-host disease PTTS shown in Figure 5. The behavior space B
consists of the 351 behaviors that an agent can adopt. The transition
model P determines the transitions in the state space, given an ac-
tion b ∈ B. In our case, P is intensively specified by the simulation
model and cannot be computed extensively. The reward function
R in an MDP determines the expected value of reward received by
an agent upon transitioning to a state in S. In the context of the
influenza simulation, we associate not getting infected with a posi-
tive reward for an individual and taking an action with a negative
reward (or cost). Thus, on a particular day in the simulation, if an
agent remains in one of the susceptible states they receive a positive
reward. An agent can select a behavior, leading to lower suscepti-
bility and increased chance of remaining in the susceptible states.
Although this will lead to accumulation of more rewards, selecting
a behavior has a cost associated with it which reduces the reward.
Hence, the behavioral decision for a susceptible and informed agent

Table 3: Variable values used in the ODE model

Variable Value
ODE simulation duration 100 days
µ 0.0
β [0.3, 0.6]
γ 0.125
σ 0.5
Initial proportion of exposed agents 0.0001
Initial proportion of infectious agents 0.0001
Initial proportion of susceptible agents 0.9998
Initial proportion of recovered agents 0.0

is to select an optimal behavior such that its accumulated reward
over the simulation duration is maximized. On a particular day
in the simulation, this behavioral decision depends on the agent’s
probability of getting exposed and the cost associated with the 351
behaviors. Taking these aspects into account, we define a value
function Vd (b) for a behavior b on day d as,

Vd (b) =
D∑
i=d

{
(1 − costb ) ∗ (1 − Pi (S → E |b))

}
. (2)

Here, costb is the cost associated with the behavior b and Pi (S →
E |b) is the probability of any agent in the population transitioning
from the susceptible state (S) to the exposed state (E) on the ith day
of the simulation, given that the agent undertakes the behavior b.
D is the total number of days for which the simulation is being exe-
cuted. The first term of the value function represents the net reward
received by the agent on a particular day, which is the +1 reward
for not transitioning to the exposed state minus the cost associated
with the behavior b. The second term represents the probability
of not transitioning to the exposed state on a particular day. The
optimal behavior for the day d will be the one that maximizes the
value function. On each day of the simulation, each agent has to
choose a behavior based on its estimate of its probability of getting
infected. Since an agent does not have access to the full state of the
simulated population, it uses a simple differential equation model
of the SEIR process [16] to estimate Pi (S → E |b):

dS

dt
= µ − (βI + µ)S,

dE

dt
= βSI − (µ + σ )E,

dI

dt
= σE − (µ + γ )I ,

dR

dt
= γ I − µR.

Here, S,E, I and R represent the number of susceptible, exposed,
infectious and recovered agents in a population. µ and β represent
the natural mortality and transmission rates respectively. γ and
σ represent the recovery and infection rate respectively. For the
purpose of this study, the values of variables used in the ODEmodel
are listed in Table 3. We assume the natural mortality rate to be zero
and the values of other variables are taken from a standard ODE
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Figure 7: Epicurves generated by the ODE model for 21 of
the 351 behaviors

based SEIR model [17]. Also, repeated exposure is not modeled
because once an agent gets infected and recovers, they cannot
be infected again by the same strain of influenza virus. The ODE
model generates epidemic curves or “epicurves”, which represent
the fraction of exposed individuals in the population over time.
We use these fractions to estimate Pi (S → E |b). We assume that
adopting one of the 351 behaviors would lead to a change in the
transmission rate (β), while the recovery and infection rates (γ and
σ ) would remain unchanged. This assumption leads to a range of β
values as specified in Table 3. This results in different epicurves for
each of the 351 behaviors. Figure 7 shows 21 of the 351 Epicurves
generated for the avoidance behaviors. Given Pi (S → E |b), i.e.,
the probability of any agent in the population transitioning from
the susceptible to the exposed state on day i for each of the 351
behaviors and costb , i.e., the cost associated with each behavior b,
we can compute the optimal behavior for any dayd in the simulation
asmaxbVd (b), where d refers to the day in the simulation for which
the optimal behavior is being computed. During each simulation
day any susceptible agent who has received information about the
outbreak would choose to undertake the optimal behavior.

However, the costs associated with the behaviors are unknown.
The survey described in section 3 gives information about the be-
haviors that people do, but does not tell the perceived cost of each
behavior. Note that cost does not refer to actual dollar costs, but
the implicit “behavioral” cost. For example, people may not prefer
to use surgical masks, even though they provide the best protection
against infection, because of perceptions of a lack of social accept-
ability to their daily use. To determine these implicit costs that can
lead to the observed behavior, we calibrate the model by treating
it as an inverse reinforcement learning problem where we have to
use the forward simulator in a loop with an optimizer to estimate
the cost vector. This is described in the next section.

5.1 Behavior model calibration
We consider the distribution of behaviors selected by participants
of the outbreak survey as our real world observations. We cali-
brate the costb parameter of the MDP so as to minimize the mean
squared error (MSE) between the simulation and survey distribu-
tions of behaviors. Thus, the objective of behavior model calibration
is to compute an optimal cost, cost∗b , associated with behavior b,

∀b ∈ B. This can be viewed as an inverse reinforcement learn-
ing problem [23] where given the States, Actions and Transitions
(i.e.,

〈
S,A,P

〉
) of an MDP, along with some estimate of an optimal

policy π∗, an optimal reward function R is estimated. We specify
the costs associated with the behaviors in a vectorC , such that each
element ci ∈ C corresponds to costi ∀0 ≤ i ≤ 350. The objective
function J (C) is defined as follows:

J (C) = 1
2 ∗ |C |

∑
b ∈B

(NCb − Nb )2 (3)

C∗ = argmin
C

J (C) (4)

Here, C is a vector of costs associated with the 351 behaviors. NCb
is the proportion of agents which decide to follow the behavior b
in the simulation, for the costs vector C . Nb is the proportion of
survey respondents that selected behavior b. In equation (4), C∗ is
the optimal cost vector, which minimizes the objective function
J (C), thereby minimizing the difference between the distribution
of behaviors produced by the agent decision model used in the
simulation and those observed in the survey data. We experiment
with three optimization methods for behavior model calibration, viz.
Numerical Gradient Descent (NGD), Cross Entropy (CE) method
and Smoothed-Cross Entropy (SCE) method:

(1) NGD for behavior model calibration: In this approach, we
begin with a random cost vector Ĉ and generate K − 1 cost
perturbations uniformly around Ĉ . This can be achieved
by sampling K − 1 points uniformly from the surface of an
n−sphere centered at Ĉ , where n = 351 is the dimensionality
of Ĉ . TheK cost vectors (i.e. Ĉ along withK−1 perturbations)
form the set of candidate optimal cost vectors which are used
to parametrize the agent decision making model inK Episim-
demics influenza simulations. In each of the K simulations,
agents employ the corresponding cost vector along with the
ODE SEIR model to decide on behaviors as influenza and
information propagate through the social contact network.
Each of the K simulations result in a distribution of behav-
iors. Thus, we can compute the objective function defined
in equation (3) for each of the K cost vectors and compute
the optimal cost vector C∗ out of the K cost vectors which
has the minimum value of J (C). We then generate K − 1
new cost vectors around C∗ and repeat this process over n
iterations to get successively better optimal cost vectors, or
until the value of the objective function J (C) falls below a
particular threshold. Figure 8 shows the flow chart of the
NGD algorithm applied to behavior model calibration.

(2) CEmethod for behavior model calibration: An issue with NGD
is slow convergence. One way to achieve faster convergence
is to use a fastMonte Carlo-based combinatorial optimization
algorithm like the Cross Entropy (CE) method [18, 35]. The
CE method operates by generating a random data sample
using a particular mechanism (e.g., sampling from a Gauss-
ian distribution), followed by updating the parameters of
the mechanism (e.g., updating the mean and variance of the
Gaussian distribution) to produce a “better” sample in the
next iteration. In the case of using CE method for behavior
model calibration, once again we begin with a random cost
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Figure 8: Flow chart of numerical gradient descent for behavior model calibration

Figure 9: Flow chart of CE method for behavior model calibration

vector Ĉ and generate K − 1 perturbations uniformly around
Ĉ from the surface of an n− sphere centered at Ĉ . The K per-
turbations are used to parametrize the agent decision making
model in K Episimdemics influenza simulations. Similar to
NGD, we then compute the value of objective function J (C)
for each of the K perturbations. However, instead of selecting
one perturbation with the minimum value of J (C), we select
P perturbations that have the least values for the objective
function J (C) out of the K perturbations. Next, we compute
the mean m and covariance matrix S for these top P per-
turbations and use the multi-variate Gaussian distribution
N(m, S) to once again generate K perturbations for use in
the next iteration. We continue this process for n iterations
before reporting the results. Figure 9 shows the flow chart
for the CE method applied to behavior model calibration.

(3) Smoothed-CE method for behavior model calibration: In our
experiments we observed that the covariance matrix S com-
puted by the CE method quickly converged to zeros at an
early stage of the optimization. This is analogous to the algo-
rithm getting stuck in a local minimum. In order to prevent
this behavior of the CE method, we use a smoothing param-
eter α to update the meanmt and covariance matrix St on
the t th iteration [19].

mt = αm̂ + (1 − α)mt−1 (5)

St = α Ŝ + (1 − α)St−1 (6)

Here, m̂ is the mean and Ŝ the covariance matrix of the top P
perturbations computed for iteration t ,mt−1, St−1 is the mean and
covariance matrix computed for the last iteration (i.e. t − 1) and α is
the smoothing parameter such that 0 < α < 1. Next, we present the
calibration results obtained using the NGD, CE and SCE methods.

6 RESULTS
In order to compare the calibration results obtained using the three
approaches, we initialized each of them with a common Ĉ vector,
with each element in Ĉ being equal to a constant c (we kept c = 0.5
in our experiments). We initialized the NGD algorithm with K = 15
and executed it for N = 2000 iterations, which resulted in a J (C)
value of 0.0001651. The calibration resulted in a mean error of
0.009268 for the action choice distribution as shown in Figure 11.
In order to obtain faster optimization, we experimented with the
CE method, initializing it with K = 30, P = 15 and executed it
for N = 100 iterations. This resulted in a J (C) value of 0.00020380
and a mean error of 0.013574 for the action choice distributions.
Although the final objective function value and the mean error
obtained using CE method were worse than those obtained using
NGD, the CE method substantially reduced the number of iterations
(from 2000 to 100), which amounts to a 20 times speedup, since
each iteration takes the same amount of time in both the cases.

We realized that the covariance matrix S computed in the CE
method converged to zeros on the 30th iteration, which stopped
the optimization process at an early stage. To address this problem
we experimented with the Smoothed-CE (SCE) method, initialized
with a smoothing factor α = 0.5 and executed it for N = 100 itera-
tions. This time the calibration process resulted in a J (C) value of
0.00016363 and a mean error of 0.008447, which are an improve-
ment over the CE method results and are much closer to the results
obtained using NGD. Figure 10 compares the distribution of the ac-
tion choices observed in the survey responses with those generated
by an uncalibrated agent decision model and those generated after
calibration using NGD, CE method and SCE method.
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Figure 10: Distribution of influenza avoidance action choices observed in the survey, those generated by an uncalibrated agent
decision model and those generated by the three calibration approaches

Figure 11:Mean error between the avoidance action distribu-
tion observed in the survey and those generated by the three
calibration approaches

7 CONCLUSIONS
In this work, we have shown how to use survey data to calibrate
an agent decision making model for a large-scale flu epidemic sim-
ulation. The technique is not specific to infectious diseases, so it
applies to surveys and simulations in general, though it requires
domain-specific decision-making model for each agent akin to the
SEIR model used here. The objective of this work was to simulate
populations of behaving agents which match the behaving indi-
viduals in real populations and exhaustive parameter sweeps for
the optimization techniques used in the calibration might improve
the results reported here. Additionally, gradient free optimization
techniques like Nelder-Mead Simplex or CMA-ES might be better
suited for the optimization process. However, all of these aspects
are independent of the basic behavior model calibration approach
discussed in this work.

While we could construct regression models to predict the prob-
ability of an agent adopting a particular behavior using the survey,
this does not give us a model of agent decision-making. Our ap-
proach gives a model of agent decision-making, which can be inter-
preted, inspected and compared with other models in the literature.
We have developed a very general and practical representation
of behaviors for simulations. The behaviors, like options [36], are
higher level descriptions that have initiation and termination con-
ditions, and a policy which can alter the actions (in the form of the
activity schedule) and the states (in the form of the FSMs) of each
agent. This general representation can be adapted to most social
simulation scenarios. Of course, there are scenarios where FSMs

will not be powerful enough to represent the agent’s state, but in
that case the behavior model will just have to specify how to work
with the more complex representation of state.

There are many opportunities for extending this work. In gen-
eral, the scientific process of gathering data through a survey and
then developing a model with it proceeds in an abductive loop
in the sense of Peirce [29]. Thus one of the most useful purposes
of such simulations is in the “context of discovery”, i.e., to gener-
ate new hypotheses. By integrating behavior models, we can now
generate detailed forecasts of behavior adoption, which can then
be confirmed (or disconfirmed) through new surveys. The goal is
to bring rapidity and rigor into the study of human behavior in
context. This need to be done by making the behavior modeling
process as data driven as possible and then using the models to
drive further hypothesis generation and data collection.

In general, human behavior, disease dynamics, and interventions
co-evolve. So there is not necessarily a static model of human
behavior that can be inferred once and used thereafter. The feedback
between these three facets of the system needs to be accounted
for. This will require modeling how behaviors change over time
and under different circumstances. For example, a challenge would
be to be able to predict the level of worry that was observed over
Ebola in the US even though the number of actual cases was very
small. This requires, as a first step, a more careful modeling of the
information contagion process, and extending it to include emotion
or fear contagion as well (e.g., see [9]).
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