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ABSTRACT
Autonomous educational social robots can be used to help promote
literacy skills in young children. Such robots, which emulate the
emotive, perceptual, and empathic abilities of human teachers, are
capable of replicating some of the benefits of one-on-one tutoring
from human teachers, in part by leveraging individual student’s
behavior and task performance data to infer sophisticated models
of their knowledge. These student models are then used to provide
personalized educational experiences by, for example, determining
the optimal sequencing of curricular material.

In this paperwe introduce an integrated system for autonomously
analyzing and assessing children’s speech and pronunciation in the
context of an interactive word game between a social robot and a
child. We present a novel game environment and its computational
formulation, an integrated pipeline for capturing and analyzing
children’s speech in real-time, and an autonomous robot that mod-
els children’s word pronunciation via Gaussian Process Regression
(GPR), augmented with an Active Learning protocol that informs
the robot’s behavior.

We show that the system is capable of autonomously assessing
children’s pronunciation ability, with ground truth determined by
a post-experiment evaluation by human raters. We also compare
phoneme- and word-level GPR models and discuss trade-offs of
each approach in modeling children’s pronunciation. Finally, we
describe and analyze a pipeline for automatic analysis of children’s
speech and pronunciation, including an evaluation of SpeechAce
as a tool for future development of autonomous, speech-based
language tutors.
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1 INTRODUCTION
Developing robots capable of interactive educational play could
have profound impact for access and scalability of high-quality
early childhood education. Such robots can combine the scale and
precision of educational software with the physical embodiment
and sensing of good human teachers. In addition, robot learning
companions can use sophisticated models of individual student’s
performance and ability to provide personalized educational expe-
riences, e.g., adapting to an individual’s preferred teaching style
or introducing new curricular elements at a optimal pace for each
student.

Typically, such student models are inferred by directly asking the
student to demonstrate their knowledge with test questions, each
of which may be linked to a particular piece of knowledge in the
curriculum. However, when the curriculum is large, directly testing
student knowledge may be infeasible or unpleasant. The design
of "digital workbook" style software is well-suited for maximizing
the number of testing opportunities, but often leads to disengaged
behaviors, colloquially known as "gaming the system" [1]. Students
frequently exhibit a high degree of engagement in interactions with
socially expressive robots, which has led to significant research
into developing social robot tutors to provide more personalized,
interactive, and engaging educational experiences. Though it is
increasingly feasible to deploy autonomous robot tutors in schools
([2], [15], [10]), it is still challenging for such systems to leverage
the real-time, situated nature of the interaction by sensing natural
interaction cues. As sensing technologies become more widespread
and accessible, integrating this data into student models will lead
to more natural and effective digital tutoring agents.

Already, researchers are developing autonomous robot tutors
that can analyze facial expressions, electrodermal activity (EDA),
or body pose (e.g., [5, 33]). One interaction modality with potential
for particularly strong impact is speech. Despite the importance of
speech as a channel for natural communication, as well as the rapid
increase in performance and adoption of speech-based technologies
by adults, modeling children’s speech remains a difficult and open
research problem.

1.1 An interactive robotic system for collecting
and analyzing children’s speech

In this paper, we present an autonomous robotic tutoring system
designed to evaluate and model children’s productive vocabulary
by recording and analyzing their spoken responses. It combines
1) an interactive tablet game interface, 2) word- and phoneme-
level student models based on Gaussian Process Regression (GPR)
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for children’s word pronunciation, 3) an active learning protocol
for efficiently determining and introducing adaptive, personalized
content, 4) a sensor suite and automated analysis pipeline for cap-
turing and analyzing children’s speech and pronunciation based
on Amazon Mechanical Turk and the SpeechAce pronunciation
software and 5) a physically-embodied social robot and associated
behaviors to facilitate an engaging and entertaining educational
interaction. To our knowledge, this is the first work to rigorously
and autonomously model children’s spoken word pronunciation in
the context of an interactive game with a social robot.

The design of the game, built on an Android tablet, is inspired by
the principles of peer-to-peer learning and educational play. Thus,
the interaction is framed as a competitive game between a peer-like
robot (an expressive robotic ‘character’ with a child-like voice and
expressive sound effects, see Sec: 3.1) and the child. The competitive
design of the game and its variable reward structure help mask the
sometimes tedious nature of collecting data for student models.

To evaluate whether the system is capable of sustaining a speech-
based interaction with children and accurately modeling their pro-
nunciation, we conducted an experiment with 15 children, in which
each child played several rounds of an interactive word game called
"WordRacer" on an Android tablet against a robot (Fig. 1). The
child and the robot sit across from each other with the tablet in
between and a "ring-in" button on each side. Pictures and letters of
words from a Test Curriculum (e.g, animals or common house-
hold items, see Sec. 3.3) appear in the center of the tablet, and when
a picture/word pair appears, the robot and child "race" to tap their
button and "ring in", giving the player who rings in first a chance
to say the word out loud and receive a point if the pronunciation
is deemed "correct". The design of the game allows us to collect
and analyze children’s speech samples in a natural and engaging
fashion during gameplay.

The robot analyzes the collected speech from each child’s in-
game responses to construct two different models of word pronun-
ciation ability: a PHONEME-GPR model, which models the child’s
average pronunciation score of each phoneme in the standard ARPA-
bet list of English phonemes as a normal random variable, and a
WORD-GPR model, which models the average pronunciation score
of each word in the Test Curriculum as a normal random variable.
Note that while a PHONEME-GPRmodel can be transformed into a
WORD-GPR model (by averaging the posterior prediction mean of
each phoneme in a word), the structure and training of each model
is different.

In addition to modeling children’s pronunciation, the GPR mod-
els provide a mechanism for personalized content sequencing. After
each round of the game, the tutoring agent selects the next word
via an active learning protocol, based on one of the GPR models.
Active Learning is well-suited for domains in which labeled data is
rare, but in which the algorithm can can access unlabeled examples
and selectively prompt the user to label a given example. In this
case, our unlabeled examples are either un-answered words from
the Test Curriculum or ARPAbet phonemes (depending on the
model) which the agent has not observed the user respond to. After
each round, the word used in the next round is selected from the
Test Curriculum by an active learning protocol based on either
the WORD-GPR model or the PHONEME-GPR model. During data
collection, half of the children played against a robot that used

Figure 1: Picture of the interaction setup from which the
data was collected and system was evaluated. Children
played a competitive word game with a social robot, fol-
lowed by a self-paced quiz using only a tablet

the word model (WORD-GPR) to adaptively select the words in
the game, while the other half played against a robot that used
the phoneme model (PHONEME-GPR) to select words. We refer to
these conditions as theWord-Led and Phoneme-Led conditions,
respectively.

After the experiment, each child completed a comprehensive
post-test evaluation in which the child was prompted to pronounce
each of the words in the Test Curriculum (45 words in total) in
sequence. The recorded audios were then uploaded to Amazon
Mechanical Turk and the pronunciation of the intended word was
rated from 0-5 by human experts. This comprehensive examination
serves as the "ground truth" by which we evaluate our model’s post-
game accuracy. We show that SpeechAce provides an acceptable
off-the-shelf classification solution at the phoneme level for chil-
dren’s speech, and that student models based on Gaussian Process
Regression can quickly and effectively assess student’s productive
vocabulary across a large curriculum from speech samples recorded
and analyzed during an interactive game. Sec. 4.1 contains more
detail on the evaluation procedure and analysis pipeline.

With this project, we advance research into alternate methods
of assessing child vocabulary from speech in the context of an
engaging, interactive game. To further the impact of our work, we
are releasing the source code and digital assets for the game, as well
as an integrated suite of software to support rapid implementation,
integration, and evaluation of additional Student and Agent models
for assessing, modeling, and responding to children’s speech. We
hope the tools we have developed will advance the broader goals of
developing autonomous agents capable of facilitating speech-based
educational interactions with children.
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2 RELATEDWORK
Here we review work related to analysis of children’s productive
vocabulary, computational inference of student models, and other
adaptive educational child-robot interaction systems.
2.1 Modeling children’s vocabulary from

speech
Learning to read is one of the most important tasks of early child-
hood education, but in 2013, only 35% of 4th, 36% of 8th and 38%
of 12th grade students in the USA achieved proficiency in reading
on the National Assessment of Educational Progress (NAEP) [23].
Pre-literacy skills, like phonological awareness, alphabetic and vo-
cabulary knowledge, are important precursors to the development
of literacy skills in later grades and can help prevent academic
failure [4, 8, 14, 24, 32]. Social robot learning companions have
been proposed as a technological intervention to help address this
gap [34], based on the ability of such systems to personalize and
provide adaptive content as well as the scale and ease-of-use af-
forded by social technologies. In order to fulfill the promise of
long-term, personalized tutoring interactions, such robots must
possess techniques for engaging, age-appropriate, and autonomous
assessment [37]. Our system is designed to address the problem of
rapidly assessing children’s vocabulary and pronunciation across a
large curriculum of age-appropriate words.

Assessing children’s vocabulary and pronunciation is important
but difficult. Comprehensive tests such as the Peabody Picture
Vocabulary Test (PPVT) are among themost widely usedmethods to
asses a child’s vocabulary level. The PPVT requires asking children
to identify depictions of increasingly difficult target words until
they fail to correctly identify a fixed percentage of words; a full
administration can require prompting a child for an answer over 200
times. Moreover, because children indicate their answer by pointing
rather than speaking, the PPVTmeasures only children’s ‘receptive’
vocabulary. Assessments of ‘productive’ vocabulary — the words
that a child can speak aloud and pronounce correctly — are often
conducted in a clinical setting by a trained speech therapist.

Compared to adults, children’s speech is far more idiosyncratic
and less regular, featuring frequent disfluencies (such as ‘Um’ or
‘Uh’), omissions, mispronunciations, and other irregular language
patterns. Physiologically, children are more diverse in their motor
development and exhibit greater variation in spectral and temporal
parameters [21]. A recent analysis by Kennedy et al. concluded that
ASR systems which use language models trained on adults do not
performwell in similar interactionswith children and, consequently,
speech-based interactions between children and digital agents are
more difficult to implement and evaluate [19].

Despite these challenges, progress has been made in modeling
and analyzing children’s speech. Due to the challenges of main-
taining an engaging interaction while simultaneously collecting
enough speech data to train a good model, many of the most suc-
cessful models are derived from specialized feature models collected
in non-interactive settings (e.g., [35]). In another recent analysis,
Yeung et al. used a template-based model derived from sparse data
for analyzing rhotic pronunciations [38]. Fringi et al. analyzed chil-
dren’s phonological errors and determined that while correcting
for children’s pronunciation errors can improve recognition per-
formance, there remain myriad other sources of model error. Thus,

analyzing children’s speech remains an open research topic, with a
unique set of challenges compared to adult speech [3].

2.2 Autonomous speech-based robot tutors
Developing autonomous literacy tutors has been a long-standing
motivation for research on interactive systems that can analyze
children’s speech [12, 13]. This application is enjoying renewed
effort and attention from the research community, as enabling
technologies such as robust robot platforms, cloud-based speech
interfaces, and algorithms and infrastructure for learning from large
datasets develop into mature fields.

Sadoughi et al. created a robot that uses children’s speech fea-
tures to modulate its own vocal behavior during an interactive game
with children. However, in line with the recommendations outlined
by Kennedy et al. [19], their implementation relied on prosodic
features of speech that can be reliably detected, not on semantic
or phonetic features, which are more challenging to identify [30].
Gordon & Breazeal used a Bayesian active learning algorithm to
model a child’s vocabulary and select new words to introduce to
a child during an interactive literacy game. However, the interac-
tion did not analyze or rely on children’s speech, and outside of
the choice of words introduced, the robot’s game behavior was
scripted [9]. Park et al. developed a robot that learned parameters
for a rule-based model of "social backchanneling" from children’s
speech and gaze cues and evaluated it in the context of a subsequent
speech-based interaction between a child and a robot [25].

From this prior research, among others, we highlight two themes.
First, situated interactions provide necessary context to help ease
the burden of collecting natural, realistic speech data from children.
Second, children’s speech poses unique modeling challenges which
must be overcome to facilitate impactful speech-based tutoring
interactions for literacy. Notwithstanding the promising efforts of
recent years, the problem of analyzing children’s speech in real
time during an autonomous interaction remains a challenge for
future development of speech-based tutoring systems.

3 SYSTEM ARCHITECTURE OVERVIEW
In this section we give an overview of our integrated system for
collecting, analyzing, and modeling children’s spoken word pronun-
ciation during interactive gameplay. The full system architecture is
outlined in Figure 2.

The system is based on aModel-View-Controller design, with the
core system built on top of the open-source Robot Operating System
(ROS) framework [28]. The WordRacer Controller manages the
state of the game, receives input from the Sensors, sends data and
queries to the Agent and Student Models and sends commands to
the View, the tablet interface itself and the robot hardware, both of
which run native software that receive commands to load content
and play appropriate visualizations, animations, and sound effects.

The source code of the system and instructions for interfacing
with the game can be found at https://github.com/mitmedialab/
speech-tapgame-aamas18. All modules communicate via ROS, ex-
cept for the View components (the tablet and robot hardware),
which communicate with the Game Controller via ROSbridge, a
websocket-based protocol that allows awider range ofweb-connected
devices to interface with a ROS system [6]. Unlike the broader
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agents community, there are few, if any, widely-accepted baseline
implementations of common algorithms and modeling techniques
for educational tutoring agents and student models, as the edu-
cational tasks and environments in which they are evaluated dif-
fer considerably across projects. The computational formulation
of WordRacer is essentially that of a multi-objective sequential
decision-making problem, and its design and architecture are fully
extensible for new content, sensors, and modeling techniques. By
releasing our system code and assets, we hope to take a step towards
fostering reproducibility and shared baselines in the field, and hope
that WordRacer and its associated software architecture may serve
as a testbed for a variety of models of interactive educational agent
behavior and student knowledge.

3.1 WordRacer: task and model overview
In this section we introduce WordRacer, an interactive vocabulary
game designed for children age 4-6, and its computational formal-
ism.

Fig. 1 shows a closeup of the game interface and the experimental
setup used for evaluation. A robot and child sit across from each
other with a tablet in between them. Each side of the tablet has
a button, which the players tap to ‘ring in’ (the robot presses the
button digitally, lights up an on-board LED ring, and makes a quick,
expressive motion to signal its ring) when an image of a vocabulary
word appears in the center of the tablet screen. The first player to
tap their button is given an opportunity to say the word. If the word
is pronounced correctly, that player ‘wins’ the round and scores a
point, otherwise neither player ‘wins’ and the game moves on the
the next round. The game ends after a fixed number of rounds, and
whichever player has won more rounds is declared the winner.

Despite the conceit of the game, the robot’s decision to ring in or
not, its expressive behavior, and the word introduced in each round
are carefully structured by the ongoing inference of the student
model and the corresponding active learning procedure.

3.1.1 Agent Model and task formulation. For each round, the
robot can choose to ring in and say the word correctly (denoted
here as action RING-IN ), in essence demonstrating to the child
how to pronounce the word, or else not ring in (denoted here as
action DONT-RING ), and let the child demonstrate their ability
to pronounce the word. The two actions correspond to different
objectives: the RING-IN action helps to teach the child new words
by demonstrating a correct pronunciation of a word, while the
DONT-RING action informs the agent about the child’s state of
knowledge by giving the student an opportunity to pronounce
words (and subsequently letting the agent assess the pronunciation).
The robot chooses which words to teach based on the predictions
of the student model, thus refining the student model ultimately
helps achieve the teaching objective.

In this initial evaluation, the agent samples from these two ac-
tions according to a weighted random sampling method, choosing
action DONT-RING with a decreasing weight, ϵ . For this study,
we used an initial value of ϵ = .8, with ∆ϵ = −.03. Thus, in the
first round of the game, the robot chooses action RING-IN with
probability .2, and in the second round, chooses RING-INwith prob-
ability .23. This implementation choice reflects the fact that in the
initial rounds of the game, the agent has not yet received enough

information to infer an accurate student model, and thus should
take actions that allow it to gather information; in later rounds,
when the model is more certain, the agent is more likely to ring
in and demonstrate word pronunciations. The stochastic nature of
the action selection procedure helps maintain the variable reward
structure of the game.

From an agent behavior perspective, the game is essentially a
multi-objective sequential decision making task: at each round
the robot decides what game action to take for that round and
which word to introduce to maximize some objective (e.g., gaining
information, teaching words, or simply facilitating an engaging
interaction). In line with the focus of this paper (evaluating whether
the system can effectively assess children’s word pronunciation), we
use the sampling model described above; future work will address
learning an action policy for the game, based on both real-time
interaction features and features from the student model.

3.1.2 Active Learning protocol. After the agent has selected an
action (RING-IN or DONT-RING ), it uses an active learning proto-
col to select a word from the Test Curriculum best suited to the
particular objective. Active learning has been shown to improve
the efficiency of learning, especially in machine learning systems in
which labeled data is difficult or expensive to obtain. Active learn-
ing is also well-suited to domains in which the system designers
can computationally characterize the structure of the data space,
thereby enabling the active learning system to intelligently select
unlabeled points in the input space for querying. Student modeling
systems for literacy skills fit both criteria: excessively prompting
students to demonstrate their reading/pronunciation ability is tire-
some and tedious, and advances in natural language processing
have yielded rich models of human language that accurately model
many aspects of English phonetics and semantics.

The active learning protocol depends on two variables: which
model is driving the active learning (i.e., Phoneme-Led orWord-
Led condition) and which action is chosen for the current round
(determined by the weighted random sampling method described
in Sec. 3.1.1). If the chosen action is RING-IN , then the protocol
selects the word from the Test Curriculum with the lowest poste-
rior mean (i.e., the word that the model predicts the child is least
likely to pronounce correctly). If the chosen action is DONT-RING
, then the protocol selects the word from the Test Curriculum
with the highest posterior variance (i.e., the word about which
the model is most uncertain). If theWORD-GPR model is driving
the active learning, this is a straightforward search over words in
the Test Curriculum . In the Phoneme-Led condition, the mean
and variance of each word in the Test Curriculum is determined
by phonemizing each word and averaging the posterior means or
variances in the PHONEME-GPR of the constituent phonemes.

3.2 Pronunciation analysis module
We analyzed children’s speech using SpeechAce, a commercial pro-
nunciation analysis software for second-language learners [17].
During gameplay, speech samples are analyzed via the SpeechAce
REST API by sending a sample of recorded audio and a phonemized
representation of the expected word. SpeechAce computes a set
of scores (from [0,100]) representing how well each phoneme was
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Figure 2: Diagram of interactive system for children’s speech analysis. Student and Agent modules are easily reconfigurable
to support a variety of models; sensor modules can be easily added or removed. All modules communicate with each other via
ROS, except where otherwise noted

pronounced in the word. For example, to analyze a child’s pronun-
ciation of the word ‘CAT’, we send the recorded audio file and
the phonemization, ["K", "AE", "T"] to SpeechAce. Sample scores
are returned as formatted JSON. All phonemizations are computed
within our system, using the ARPAbet phoneme list and the CMU
pronouncing dictionary [36]. Each analyzed phoneme and its score
is added to the training set of the PHONEME-GPR model, we aver-
age the score over all phonemes in the word to compute the score
for theWORD-GPRmodel. As part of our model evaluation, we also
compare the results of SpeechAce analysis to the ratings of native
English speakers collected via Amazon Mechanical Turk (see Sec.
4.1), to characterize SpeechAce’s utility as a tool for further research
on autonomous assessment of student word pronunciation.

3.3 Test Curriculum
While the GPR models are extensible to any words for which we
can compute pairwise covariance, in this work we evaluate the
models on a subset of 45 words for which we have prepared game
assets (graphics, sound recordings, and animations). These words
constitute both the input domain of training data for theWORD-
GPRmodel and the test domain for bothmodels. For the PHONEME-
GPR model, the input domain is the set of 39 ARPAbet phonemes,
whose scores are averaged to yield a word model for comparison
to human pronunciation rating.

Our motivation for this research is to further the science of in-
telligent, autonomous, speech-based tutors, with a specific project
focus on helping promote early literacy skills in children. Therefore,
we chose the initial words in the Test Curriculum in consulta-
tion with experts on early childhood literacy and reading, based
on pedagogical best-practices. We reviewed typical sight word and
word-frequency lists for children in our target age-range, then aug-
mented the list with additional categorical words important for

basic conceptual development (e.g., animals, household objects, na-
ture words). With a few exceptions for important ‘sight words’,
we selected words that are highly regular in English spelling and
conform to a basic CVC or CVCC structure. Finally, we added and
removed some words from the final list to ensure good representa-
tion of ARPAbet phonemes in the Test Curriculum .

The system is specifically designed to accommodate a changing
curriculum of words. Included in the system repository are assets
and animations for 35 additional words that were not used for this
study. The specific models described in the following section are
applicable to a curriculum of any words for which we can compute
a phonemization and a word-vector representation.

3.4 Gaussian Process Regression models of
children’s word pronunciation

In this section we discuss how a computational tutoring agent can
construct Gaussian Process Regression (GPR) models of a student’s
knowledge, and leverage the clean representation of the GPR pos-
terior in an active learning procedure.

Gaussian Processes are a non-parametric method for regression
(i.e., function approximation), and have been widely applied in
geospatial statistics (where GPR is also known as ‘kriging’). They
have also been used for educational tasks and other classification
contexts in which training data is scarce. Lindsey and Mozer used a
GPR-based model for structuring optimal sequencing of a curricu-
lum [22], and Griffith et al. used GPR to model human learning of
rules describing functions [11]. Kapoor et al. combined Gaussian
processes with active learning for image classification, demonstrat-
ing that GPs can be a computationally efficient way to classify data
in a large concept space, given an appropriate kernel for computing
the covariance between inputs [18].
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Gaussian Processes have a number of computational properties
that make them well-suited for modeling student vocabulary skills.
First, for each point in the test domain they provide Gaussian out-
puts, defined by a posterior mean and posterior variance. In other
words, unlike non-probabilistic discriminatory methods (e.g., Sup-
port Vector Machines), Gaussian Processes quantify the uncertainty
in their classification. This has a natural semantic interpretation
in our models as a measure of the expected pronunciation score
for a given word or phoneme, as well as the uncertainty about that
estimate, which we leverage in the active learning protocol to select
the most appropriate word for the current objective.

Second, GPR models defined over one test domain can be easily
extended to another (still finite) test domain, so long as we can
compute the covariance between observed data points and the new
test points (in this case, words for which we can compute phonemic
and/or word-vector representations), without additional training
data. In other words, after training, GPR models generalize well to
other words "near" the original training data, even if not explicitly
modeled when training occurred.

Finally, GPR models make efficient use of data compared to other
state-of-the-art learning models (e.g., deep neural networks). The
GPR model training step takes O(n3) time, which is often impracti-
cal for very large datasets, but is computationally acceptable and
provides good performance on tasks where there are few labeled
examples [31]. This is often the case with personalized educational
models, especially speech-based models.

These properties makes Gaussian Process Regression an intrigu-
ing tool for quickly learning models of student knowledge from few
data points. In the next section we review the technical details of
GPR models in general, and discuss the training and construction
of the WORD-GPR and PHONEME-GPR models specifically.

3.4.1 Phoneme and Word GPR models of student pronunciation.
Formally, a Gaussian Process is defined by mean and covariance
functions, and specifies a distribution over regression functions.

f ∼ GP(m(x),k(x,x’) (1)

While traditional implementations setm(x) = 0, in this case, we
use a mean function ofm(x) = 0.5, reflecting our prior assumption
that unobserved words or phonemes are equally likely to be an-
swered correctly or not. After observing data, the mean function
contributes nearly nothing to the posterior [29].

One of the key insights that makes Gaussian Process Regression
tractable is that while a GP is a distribution over possible functions,
we need only define each possible function’s values at a finite
collection of points, which we refer to here as the test domain.

We define two Gaussian Processes: aWORD-GPR model defined
over a test domain of words,w ∈W , (whereW is the set of words
in the Test Curriculum ) and a PHONEME-GPR model defined
over a test domain of phonemes, p ∈ P , (where P is the set of
ARPAbet phonemes). We incrementally retrain the GP after each
round of the game, and the agent uses the latest posterior means
and variances of the model to select the word for the next round.

The training data is a chronologically ordered sequence of ob-
servations, O = {o1,o2...,ot }, where each observation, ot , is a
word-score pair, {wi , {sp 0, ...sp j , }} consisting of a word from the

Test Curriculum and a set of scores for the pronunciation of each
phoneme in the word, evaluated by SpeechAce (see Sec 3.2).

The GP posterior at time t is a mapping from a (finite) set of
points in the test domain to a set of normally distributed random
variables, GPt : ({xi } ∈ X ) → {N t

i }, with each N t
i = {(µti ,σ

t
i )}.

Throughout this paper, we refer to µti and σ
t
i as the posterior mean

and posterior variance of wordwi at time t .
For words that we have observed directly, this is straightforward

Maximum A Posteriori estimation – we assume that the child’s
answer is generated by a normal random variable and calculate the
most likely mean and variance, given the data we have observed.
For words that we have not observed directly, we can still update
our posterior estimate: we define a kernel (covariance) function
that specifies how "close" or "far" each word is from each other.
In this way, we can get more information out of few samples and
quickly learn a good model across all words in the vocabulary.

3.5 Phonetic / Semantic Distance Kernel
AGPRmodel’s behavior is largely defined by its covariance function.
Hence, to apply GPR to word and phoneme pronunciation, we must
define how "close" each pair of words and phonemes are to each
other. In this section, we define two covariance metrics, one based
primarily on phonemic similarity (for the PHONEME-GPR model)
and another for theWORD-GPRmodel that combines the phonemic
similarity metric with a semantic similarity metric, based on the
pedagogical reality that words are learned, recognized, and recalled
as conceptual entities in a semantic graph.

3.5.1 Phoneme-based Covariance. Some pairs of phonemes feel
intuitively "more similar" than others. To quantify this intuition,
Hixon et al. derived a Weighted Phoneme Substitution Matrix
(WPSM) for American English by analyzing multiple acceptable
pronunciations for words (e.g., To-MAY-To vs To-MAH-To) [16].
Instances of two phonemes being substituted in alternate pronun-
ciations bring the distance between those two phonemes ‘closer’
to each other. For the covariance function for the PHONEME-GPR
models, we used a normalized version of Hixon’s WPSM (Eq. 2).

3.5.2 Word-based Covariance. The covariance function for the
WORD-GPRmodel is a weighted sum of two word-distance metrics:
a phonemic distance metric and a semantic distance metric. Intu-
itively, if we observe that the child can correctly pronounce "CAT"
then we believe they are likely to also know how to pronounce
"CAR" because they are phonetically similar, and also "DOG" be-
cause they are semantically similar.

The phoneme distance between two words is derived by comput-
ing the Levenshtein distance between phonemized representations
of words (i.e., theminimum-cost combination of additions, deletions,
and substitutions necessary to transform one word into another).
By convention, addition and deletion costs are fixed at 1. We use the
normalized WPSM from the PHONEME-GPR covariance function
as the substitution costs for each set of phonemes (Eq. 3)

The semantic distance between two words is the cosine dis-
tance between their word-embedding vector representation. We
used word-embedding vectors from the pre-trained Common Crawl
GloVe vectors [27], included with the SpaCy Python package.

The Levenshtein distances between words are normalized to [0,
1] and combined with a semantic word-distance metric to determine
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the final covariance between each pair of words. For this evaluation,
we set α = .33, β = .66 (Eq. 4).

k(p1,p2) =WPSM(p1,p2) → [0, 1] (2)

WLD(w1,w2) = Levenshtein(w1,w2,WPSM) (3)

k(w1,w2) = αWLD(w1,w2) + βCos(GloVe(w1),GloVe(w2)) (4)

4 EXPERIMENT AND ANALYSIS DESIGN
We recruited 15 children from the local area to participate in a
system evaluation interaction in three phases: PRACTICE, EXPER-
IMENT, and POSTTEST. After arriving at our lab, children were
asked to draw a picture of a robot as a ‘warm-up’ exercise while
the parent filled out a survey and consent form. The child was
introduced to the robot and the experimenter explained the rules
and interface of the game. For this experiment, we used a com-
mercially available social robot, though any ROS-compatible robot
platform can be used, as the agent’s gameplay behaviors are ab-
stracted through a software interface. After the participant was
introduced to the robot, they were invited to play 7 practice rounds
of the game with the robot while the experimenter gave advice (not
always followed) to speak slowly and clearly and to help children
understand the structure and timing of the game. The robot’s behav-
ior was fully scripted during the practice round to allow the child
opportunities to ring in and practice using the game interface, as
well as see the robot ring in and pronounce a word. The PRACTICE
phase served as an attempt to help mitigate common issues with
analyzing children’s speech, such as disfluencies, repetition, or clip-
ping in the recordings. None of the words used in the PRACTICE
phase were used in the EXPERIMENT or POSTTEST phases.

After completing the PRACTICE phase, participants were asked
if they wanted to practice again or move on to the EXPERIMENT
phase. With a few exceptions, participants chose to move on to the
game immediately. The experimenter then launched the full system,
including the robot controller, the Agent and Student models, and
the sensors. Participants played the game with the robot until they
had given 20 pronunciation demonstrations, or unless they wished
to stop, in which case their data was not included in the analysis.

After the EXPERIMENT phase, the experimenter conducted a
short qualitative survey with participants as a break. Once the
survey was completed, participants moved on to the POSTTEST
phase, in which then played a version of the game without an
opposing agent player. Using the same tablet interface, but without
the robot across from them, children were presented with each
word in the Test Curriculum in sequence and allowed to ring-in
and pronounce the word, as before. The POSTTEST phase was
intended to emulate the interaction style of ‘gamified’ workbook-
style software, with animations, scores, and sound effects, but no
agent-based interaction. After the POSTTESTwas completed or the
child indicated they did not want to play any more, the interaction
ended and the child was given a choice of several stickers as a
thank-you for participating.

4.1 Ground Truth Human ratings
We used the audio recordings from the POSTTEST phase to derive
a "ground truth" of pronunciation quality from human raters using
Amazon Mechanical Turk (MTurk). Each of the recordings was
posted as a Human Intelligence Task (HIT) on MTurk. Each posted

Figure 3: Example HIT interface for human raters

HIT contained five different recordings and only one worker was
allowed to submit each HIT. No MTurk workers could rate the
same audios more than once. To ensure rating quality, we set the
following qualifications: (1) a qualified worker must be geographi-
cally located in either the United States or Canada (2) a qualified
worker must have a HIT approval rate higher than 90% (3) a qual-
ified worker must have completed at least 100 HITs in the past.
Only workers who satisfied all three requirements were considered
eligible pronunciation evaluators. To reduce inter-coder variability,
qualified workers were required to listen to five ‘reference’ audios
(i.e., exemplars of each class) before they completed each HIT. A
screenshot of our rating HIT interface is displayed in Figure 3.

In order to obtain reliable, consistent rating scores for our speech
samples, our rating system only finalizes a score for a recording if
it receives two ratings of the same score and the absolute difference
between this score and its nearest-neighbor score is no larger than
1. The rating system initially sent the full set of collected speech
audios to MTurk to receive 3 independent ratings for each audio.
After workers completed all HITs, the system evaluated the ratings
for all audios, and re-uploaded recordings that did not meet the
rating consistency criteria as new HITs to obtain additional ratings.
This process repeated until all audios had consistent, final scores.

5 EVALUATION, RESULTS, AND DISCUSSION
We evaluate the classification performance of the WORD-GPR and
PHONEME-GPR models by using the final posterior mean (after
the EXPERIMENT phase) of each word in the Test Curriculum
as a classification probability to predict the pronunciation accept-
ability labels provided by human raters from POSTTEST phase
recordings. The models are trained on SpeechAce scores from the
EXPERIMENT phase, however we also provide a side-by-side com-
parison of how well SpeechAce scores from the POSTTEST phase
predict the human labels from the POSTTEST phase. This compari-
son serves as both an evaluation of the SpeechAce software itself
and a rough bound for how well we might reasonably expect the
GPR models to perform.
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Figure 4: Classification results (total area under the
Precision-Recall curve) of Word- and Phoneme- GPR mod-
els trained on data from the Experiment phase. SpeechAce
results were derived directly from Posttest data.

To evaluate the GPR models, we conducted an area-under-the-
curve (AUC) analysis, a common evaluation technique for proba-
bilistic binary classifiers that balances the rate of True and False
Positives across a variety of classification thresholds.

For AUC analysis, the true class labels must be binary. Therefore,
we binarized the expert ratings such that pronunciations with a
rating of 3, 4, or 5 indicate an acceptable pronunciation, while a
rating of 0, 1, or 2 indicated an unacceptable pronunciation. Under
this binarization, the final ground truth test set had 396 acceptable
(positive) examples and 148 unacceptable (negative) examples.
This type of class imbalance can skew the more common Receiver
Operating Characteristic (ROC) AUC; our AUC results are therefore
derived from the area under the Precision-Recall Curve, a more
balanced metric for datasets with significant class imbalances [7].

Figure 4 shows theAUC scores of bothWORD-GPR and PHONEME-
GPR models, in both the Phoneme-Led and Word-Led conditions,
alongside the AUC of a classifier derived directly from SpeechAce.
For each audio recorded during the POSTTEST phase, we use the
word-score received from SpeechAce to predict the ground truth
rating label of the same audio. All analyses were implemented using
scikit-learn, a freely-available Python library with implementations
of many common data science and machine-learning algorithms
[26]. Error bars represent standard error of the mean (SEM).

5.1 Experiment-trained GPR Models accurately
predict Children’s Posttest performance

The results show that SpeechAce can be used to classify children’s
pronunciation as acceptable or not (avg. AUC = .81). More inter-
estingly, the GPR models trained on data from the EXPERIMENT
phase yield nearly as good classification performance, despite being
trained on speech samples from a different experimental phase and
with training data less than half the size of the full Test Curricu-
lum (20 vs. 45). These results suggest that GPR can be an effective
and efficient way to quickly assess children’s productive vocab-
ulary for educational modeling. The WORD-GPR models overall
perform better (avg. AUC = .81) than the PHONEME-GPR models

(avg. AUC = .77) and all models trained in theWord-Led condition
perform better than models trained in the Phoneme-Led condition.
This computational result supports the pedagogical guidance that
informed our WORD-GPR covariance kernel: that word pronuncia-
tions are learned and practiced in a semantic context, that children’s
word pronunciation mastery is not a linear function of phoneme
mastery, and that learning to read is a more complex process than
simply identifying and pronouncing the correct phonemes.

5.2 Limitations of GPR and Future Work
GPs assume the training data comes from a static function and thus
struggle to model changes in a student’s knowledge that may occur
during the interaction. If a child pronounces a word incorrectly, the
active learning protocol will correctly select that word for a future
demonstration by the robot. After the demonstration, however,
the posterior variance of that word remains low, and thus is not
likely to be selected by the active learning protocol as a word to let
the student try again. While previous work has shown that these
sequences of pedagogical behavior patterns (prompt for a word,
observe incorrect answer, demonstrate correct answer, promptword
again) can be learned from data [20], the nature of the GP Model
(variance does not substantially increase) and the current Active
Learning protocol (words with low variance are less likely) interact
such that we see few examples of this behavior.

We therefore recommend GPs as a method for quickly assessing
student knowledge when it may be too expensive, time-consuming,
or impractical to observe/evaluate the student’s knowledge across
a large curriculum. Other techniques, such as Bayesian Knowledge
Tracing (BKT), are better suited to assessing change in student
knowledge, and we are intrigued by the ways different models
could complement each other. For instance, GPR could be used to
quickly assess a child’s pronunciation ability, and the final model
could be used as a personalized prior to a BKT model better suited
to representing change in knowledge throughout an interaction.

6 CONCLUSION
In this paper we present an integrated system for efficiently and
autonomously assessing children’s word pronunciation in the con-
text of an educational game with a social robot. We also presented
an open-source game environment (the "Word Racer" game) and an
accompanying open-source architecture for integrating and evalu-
ating autonomous tutoring agents and student modeling algorithms.
We have evaluated this system with an agent model that supports
efficient assessment of the student’s knowledge via active learning
and phoneme- and word-based GPR models of student vocabulary
learned from children’s speech, and have shown that the system
can effectively assess children’s pronunciation ability from speech
captured during autonomous, interactive gameplay.
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