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ABSTRACT
We introduce the logic LDLf K, a variant of the epistemic logic LDLK,

interpreted on finite traces of multi-agent systems. We explore the

verification problem of multi-agent systems against LDLf K spec-

ifications and give algorithms for the reduction of LDLf K model

checking to LDLK verification on a different model and different

specification. We analyse the resulting complexity and show it to

be PSPACE-complete. We report on a full implementation of the

algorithm and assess its performance on a number of examples.
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1 INTRODUCTION
Several approaches have been put forward to address the verifi-

cation of multi-agent systems (MAS). Differently from work in

software validation and in reactive systems, MAS are typically spec-

ified by using expressive specification languages that go beyond

the expressive power used in other areas. MAS specifications are

often based on AI-attitudes such as knowledge, beliefs, desires,

intentions, strategic abilities, normative states, etc. In particular,

methods addressing specifications involving epistemic states of the

agents in the system and their strategic ability to bring about states

of affairs have been developed [1, 2, 4, 6, 7, 14, 28, 29, 33–36, 38].

Indeed, several toolkits have been developed for model check-

ing MAS against epistemic specifications [21, 27, 37] and strategic

ones [3, 12, 37]. While the methods vary, one common aspect is that

the treatment of the underlying temporal specifications is based on

logics such as LTL or CTL.

However, in other areas of AI, proposals have been made for the

adoption of linear dynamic logic (LDL) as an underlying model of

time [17, 43] in a variety of applications, over infinite and finite

traces. The advantage of LDL over LTL is a considerably increased

expressivity (LDL is equivalent to monadic second-order logic),

while having the same model checking complexity of LTL. The

increased expressivity has been positively evaluated in applications

including in planning and services [15]. Contributions have recently

been made on the use of LDL in an agent-based context. Specifically,
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as we report below, a symbolic approach for the verification of MAS

against an epistemic extension of LDL has been put forward [30].

However, this approach is limited to LDL over infinite traces. In

this paper we surpass this limitation and explore verification of

MAS against LDLK specifications over finite traces.

While models where computation paths are infinite have fea-

tured extensively in computer science, recently there has been

attention to logics defined on finite executions, particularly in AI.

This is because in AI applications such as planning, it is of interest

to investigate whether temporal states of affairs hold in finite exe-

cutions. It is known, however, that the semantics of LTL and LDL

on finite traces (LTLf and LDLf , respectively) requires care [5, 16],

suggesting that finite traces should be studied separately.

In this paper we introduce the logic LDLf K, an epistemic variant

of LDL on finite traces, and put forward an approach for the result-

ing model checking problem.We study the resulting complexity and

show that the model checking problem remains PSPACE-complete.

In this way we obtain an expressive logic whose complexity is no

higher than that of LTL. In addition to theoretical results, we present

practical algorithms for verifying MAS against LDLf K specifica-

tions.We also report on an implementation of these into a prototype

toolkit, built from the open-source model checker MCMAS [37],

and report on its performance on several applications.

Related Work. [24] presented a semantics for LTLf and an al-

gorithm for verifying LTLf specifications in the OBJ specification

language [22]. The work presented here supports a different seman-

tics, based on [17], and a more expressive range of specifications

both in terms of the temporal and epistemic component.

LDLf was introduced in [17], which also presented an algorithm

for converting an LDLf model checking problem into a nonempti-

ness test for a suitably constructed alternating automaton. Our

approach is different as we do not solve the LDLf model check-

ing problem directly; instead, we reduce it to LDL model checking.

Moreover we also address epistemic properties of the agents.

LTLf and LDLf have also been used as temporal logics for spec-

ifying temporally extended goals (TEGs) in planning. [42] proposes

an approach for deterministic domains which compiles LDLf for-

mulae into alternating automata, and encodes them into the do-

main. [10] addresses strong cyclic planning for LTLf TEGs in non-

deterministic domains via a different compilation into automata.

More generally, [18, 19] discuss synthesis for LTLf and LDLf . Our

work instead focuses on MAS verification.

LDLf also sees application in multi-agent contexts. [23] consid-

ers strategy synthesis for iterated Boolean games with LDLf goals.

As above, our work instead focuses on verification, not synthesis.

Also, agents in [23] also have perfect information, while in our

treatment agents only have imperfect information.
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Related to this work is also [30], where the logic LDLK was put

forward in the context of MAS, and the model checking problem

was originally shown to be PSPACE-complete. Differently from the

approach here taken, the semantics given there is on infinite traces;

this has different properties from those here analysed.

The semantics we adopt for LDLf K in terms of path termination

bears resemblance to approaches in module checking as discussed

in [32]. This has been extended to multi-agent contexts in [26]. Our

work differs in that specifying when and how paths are terminated

stems from specification formulae, as opposed to the environment.

The rest of the paper is organised as follows. In Section 2, af-

ter summarising the semantics of interpreted systems, we define

the syntax and the semantics of the logic LDLf K and define the

corresponding model checking problem. In Section 3 we present

novel algorithms for solving the model checking problem LDLf K

by means of a reduction to the model checking problem (on a dif-

ferent model and for a different specification) for LDLK. We prove

the algorithms are correct, and that they are optimal by showing

the problem is PSPACE-complete. We continue in Section 4, where

we report on a toolkit for the model checking of LDLf K built by

extending the MCMAS experimental toolkit for LDLK. In Section 5

we report the experimental results obtained and comment on the

performance of the tool. We conclude in Section 6.

2 THE LOGIC LDLK ON FINITE TRACES
Interpreted systems [20] are a semantics for reasoning about tem-

poral and epistemic properties of MAS. In the variant we use here,

from [37], each agent has a locally defined transition relation; com-

posing these yields the global transition relation of the system. We

define A = {1, . . . ,n} as a set of agents and E as a special agent

called the environment.

Definition 1. An interpreted system may be expressed as a tuple

IS = ⟨{Li ,Acti , Pi ,τi }i ∈A∪{E }, I ,h⟩, where:

• Li is a finite set of possible local states of agent i .
• Acti is a finite set of possible actions of agent i .
• Pi : Li → 2

Acti \{∅} is a local protocol for agent i , specifying
which actions agent i can execute from each local state.

• τi : Li ×Act1 × . . . ×Actn ×ActE → Li is a local transition
function, returning the next local state of agent i following
an action by all agents and the environment. We assume

agents’ actions are consistent with their protocols; i.e., if

l ′i = τi (li ,a1, . . . ,an ,aE ) then for each i ∈ {1, . . . ,n}, we
have that ai ∈ Pi (li ).

• I ⊆ L1 × . . . × Ln × LE is the set of initial global states.
• h : AP → 2

L1×...×Ln×LE
, where AP is a set of atomic propo-

sitions, is a valuation function identifying the global states

in which each atomic proposition holds.

We define a global transition relation T , the composition of the

τi , and the set of global reachable states G ⊆ L1 × . . . × Ln × LE as

the states reachable through zero or more applications of T on I .
We also define the notion of a path on IS as an infinite sequence

of global states д0,д1, . . . such that for each i , дi ∈ G, and if i > 0,

then there exist actions a1, . . . ,an ,aE so that for every local state,

l ′j in дi , l
′
j = τj (lj ,a1, . . . ,an ,aE ) for each possible agent j ∈ A∪{e}

(where lj is the local state of agent j in state дi−1).

We also allow referencing individual states on a path. We denote

π (k) to be the k-th state of a path π = д0,д1, . . ., and πk to be the

k-th suffix of π , i.e. πk = дk ,дk+1, . . ..
Finally, for each agent i ∈ A we also define a projection li : G →

Li . This returns the local state of agent i in a given global state.

Syntax of LDLK on Finite Traces. The syntax of LDLK on

finite traces, hereafter LDLf K, is identical to that of regular LDLK,

as introduced in [30].

Definition 2. An LDLf K formula ϕ is constructed as follows:

⟨ϕ⟩ ::= p | ⊤ | ¬ϕ | ϕ ∧ ϕ | Kiϕ | EΓϕ | DΓϕ | CΓϕ | ⟨ρ⟩ ϕ

⟨ρ⟩ ::= ψ | ϕ? | ρ + ρ | ρ; ρ | ρ∗

p is a propositional atom; i ∈ A∪ {E} is an agent, Γ ⊆ A∪ {E} a set
of agents, andψ a formula not containing LDL operators (⟨ρ⟩ϕ) not
in scope of an epistemic operator

1
. We allow standard propositional

abbreviations, and a dual for the diamond operator: [ρ]ϕ = ¬⟨ρ⟩¬ϕ.

Intuitively, ρ may be viewed as a path expression that a given

prefix of a path may satisfy. The reading of ⟨ρ⟩ϕ is that there exists

some path prefix that satisfies ρ, after which ϕ is true. The reading

of [ρ]ϕ is that after every path prefix satisfying ρ, ϕ is true.

Note that throughout the paper we use observational semantics

for the agents’ knowledge.

While the syntax of LDLf K is identical to that of LDLK, its

intuitivemeaning is different, particularlywhen dynamicmodalities

are nested. We illustrate these differences by discussing various

specifications in the context of the train gate controller scenario

from [25] with just two trains.

• ⟨⊤∗⟩tun1. The reading is the same whether the formula is

interpreted on finite or on infinite traces (“Train 1 eventually

enters the tunnel”). However, on finite traces train 1 must

enter the tunnel before the trace ends.

• [⊤∗](Kc tun1 → ⟨⊤;⊤; (⊤;⊤)∗⟩tun2). On infinite traces the

reading is “When the controller knows that train 1 is in the

tunnel, then train 2 will be in the tunnel some positive even
number of steps later". On finite traces, the interpretation is

similar, but it also implies that the controller must not know

that train 1 is in the tunnel in the last two states of any trace.

• [⊤∗]⟨⊤∗⟩tun1. On infinite traces the reading is “Train 1 en-

ters the tunnel infinitely often". However, on finite traces

this is read as “train 1 is in the tunnel at the end of a trace"
2
.

• [(⊤;⊤)∗]⟨(⊤;⊤)∗⟩tun1. On infinite traces this is read as “Train
1 enters the tunnel infinitely often on even states". On finite

traces, however, this instead means “train 1 is in the tunnel

on the last even state of the trace".

• [(¬K2⟨⊤
∗⟩tun1?; tun2)

∗
;K2⟨⊤

∗⟩tun1?]¬tun2. This formula

is read in the same way for both finite and infinite traces

(“while train 2 does not know that train 1 will eventually

enter the tunnel, it remains inside; once it knows this, it

leaves the tunnel, though it may return later”).

• Kc ⟨(tun1; tun2)
∗⟩[⊤]⊥. Note that this formula is unsatisfi-

able on infinite traces, since [⊤]⊥ cannot be satisfied; it

therefore is equivalent to falsity. However, on finite traces

[⊤]⊥ can hold if the trace has ended, since no prefix will

match ⊤. Thus, on finite traces, the formula expresses that

1
For example, Ka ⟨p ⟩q is allowed forψ , but ⟨Kap ⟩q is not.

2
Consider the prefix that consists of all but the last state of a given trace.

Session 5: Logic for Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

167



“the controller knows that the trains enter the tunnel in alter-

nation for the duration of the trace, and the run ends with

train 2 in the tunnel". Note that in general, [⊤]⊥ allows us

to characterise the end of a trace [17].

Given the above we conclude that LDLf K allows us to render

very expressive specifications over finite traces. We also observe

that the meaning of LDLf K formulae can be very different from

that of syntactically equivalent LDLK formulae, suggesting that the

expressivity of LDLf K should be explored separately from LDLK.

Having discussed the differences in the readings of formulas in

finite and infinite traces we now introduce satisfaction. Satisfaction

for LDLf K is interpreted over finite traces.

Definition 3. Let IS = ⟨(Li ,Acti , Pi ,τi )i ∈A∪{E }, I ,h⟩ be an inter-

preted system and let π be an infinite path induced by IS . Further-
more, let Last be a non-negative integer that indicates the index
of the last state of π to be considered. Then, the satisfaction of

specification ϕ on the interpreted system IS over path π ending at

Last (formally: IS,π ,Last |= ϕ) is inductively defined as follows:

• IS,π ,Last |= p iff π (0) ∈ h(p).
• IS,π ,Last |= ⊤.

• IS,π ,Last |= ¬ϕ iff it is not the case that IS,π ,Last |= ϕ.
• IS,π ,Last |= ϕ1 ∧ ϕ2 iff it is the case that both IS,π ,Last |=
ϕ1 and IS,π ,Last |= ϕ2.

• IS,π ,Last |= ⟨ρ⟩ϕ iff there exists 0 ≤ i ≤ Last such that

(0, i) ∈ R(ρ,π ) and IS,π i , (Last − i) |= ϕ. Note that the latter
term is well-defined, since i ≤ Last .

• IS,π ,Last |= Kiϕ iff for every state д ∈ G if li (д) = li (π (0)),
then IS,д |= ϕ.

• IS,π ,Last |= EΓϕ iff for every state д ∈ G if li (д) = li (π (0))
for some agent i ∈ Γ then IS,д |= ϕ.

• IS,π ,Last |= DΓϕ iff for every state д ∈ G if li (д) = li (π (0))
for all agents i ∈ Γ then IS,д |= ϕ.

• IS,π ,Last |= CΓϕ iff for every state д ∈ G if д1, . . . are
states such that li (д) = li (д1), lk1 (д1) = lk1 (д2), . . ., lj (дn ) =
lj (π (0)) for some agents i, j,k1, . . . ∈ Γ and positive integer

n, then IS,д |= ϕ.

The relation R ⊆ (ρ × π ) × (N × N) is defined very similarly to

LDLK, though we need to account for the finiteness of traces:

• R(ψ ,π ) = {(i, i + 1) : IS,π i ,Last − i |= ψ }
• R(ϕ?,π ) = {(i, i) : IS,π i ,Last − i |= ϕ}
• R(ρ + ρ ′,π ) = R(ρ, s) ∪ R(ρ ′, s)
• R(ρ; ρ ′,π ) = {(i, j) : ∃k s.t. (i,k) ∈ R(ρ,π )∧(k, j) ∈ R(ρ ′,π )}
• R(ρ∗,π ) = {(i, i)} ∪ {(i, j) : ∃k s.t. (i,k) ∈ R(ρ,π ) ∧ (k, j) ∈
R(ρ∗,π )}

Observe that above there is a semantic difference between LDL

operators and epistemic ones. While LDL operators are interpreted

on the finite path up to Last , the epistemic possibilities for the

knowledge operators are defined on all global states of the model.

This is in marked difference with approaches such as bounded

model checking for epistemic logic whereby only a fraction of the

model is considered both for temporal and epistemic modalities [41].

The reason for this is that the semantics here presented is not in-

tended as a verification method. It captures, instead, the intuitive

formulation of time and knowledge on finite traces where crucially
the length of the path is not commonly known by the agents in the

system and may even depend on factors outside their control. As a

detailed example of this, we refer to the Go-Back-N protocol dis-

cussed in Section 5, where permanent channel failures could bring

the protocol to termination; agents may have no foreknowledge

of this. As an example from the literature, in [39], an application

of LTL specifications on finite traces in the context of monitoring

business constraints, the authors state “traces are finite and subject

to extensions as new events happen". The idea that traces may

remain of interest for finite but unknown length is also echoed

in [15], which considers LDLf specifications in this context as well.

It is in the spirit of LTLf and LDLf for the traces to be finite but

the trace’s length to be unknown to the agents. Considering all

epistemic alternatives as possible precisely captures this aspect.

Intuitively, the path expressions ρ are regular expressions over

propositional or epistemic formulasψ (with support for tests, which

check that a given LDLf K formula is true in a given state). These

follow the standard PDL semantics regarding choice, composition

and the Kleene star. ⟨ρ⟩ϕ is satisfied if and only if there exists some

prefix of a path matching ρ, after which ϕ holds. Conversely, [ρ]ϕ
means that after every prefix of a path matching ρ, ϕ must hold.

As in LDLK, for a global state д ∈ G , we say IS,д |= ϕ iff on every

path π starting at д and every value of Last we have IS,π ,Last |= ϕ.
Finally, we introduce the LDLf K model checking problem: given

an interpreted system IS , state д and LDLf K formula ϕ, determine

whether IS,д |= ϕ.

3 MODEL CHECKING LDLf K
In this section we introduce a model checking problem for LDLf K

and give tight bounds for the complexity of the problem.

We solve the LDLf K model checking problem by reducing it to

the LDLK model checking problem (over infinite traces); this can

then be solved via the algorithm presented in [30]. Intuitively, this

is achieved by modelling when an infinite path should cease to be

considered active (since every finite path is a prefix of some infinite

path), and translating LDLf K formulae to suitable LDLK formulae

respecting when paths become inactive.

Formally, given an interpreted system IS , stateд in IS and LDLf K
formulaϕ, we seek to find another interpreted system IS ′, stateд′ in
IS ′ and LDLK formulaϕ ′, such that IS,д |=LDLf K ϕ iff IS ′,д′ |=LDLK
ϕ ′. Note that the expression on the left uses LDLf K semantics,

whilst that on the right uses LDLK semantics; note also that the

models and the formulas are different. We now proceed to define

constructively the elements on the right hand side.

Determining IS ′. To obtain IS ′ we add an agent whose purpose

is to keep track if the current path remains “active” or not.

Definition 4. A path terminator P is an agent with local (private)

states LP = {alive,dead} and actions ActP = {continue, stop}. P
has the protocol PP (alive) = {continue, stop}; PP (dead) = {stop}.
The evolution of P is such that P is in the local state alive after a
continue action, and in the local state dead after a stop action.

To define IS ′, we also introduce the atomic proposition Alive ,
holding if and only if the path terminator is in the alive state.

Definition 5. Given an IS = ⟨(Li ,Acti , Pi , ti )i ∈A∪{E }, I ,h⟩, we
define IS ′ = ⟨(Li ,Acti , Pi , ti )i ∈A∪{E,P }, I

′,h′⟩, where P is as in

Definition 4, I ′ is the set of states where the projection of agents’
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states ignoring P matches a state in I and P is alive, and h′ is h
extended by theAlive proposition and where we assume thatAlive
holds at the initial states.

Observe that the definition above ensures we have paths of

length at least 1. We also define a notion of a corresponding path,

which links finite traces in IS with infinite paths in IS ′.

Definition 6. Given an IS = ⟨(Li ,Acti , Pi , ti )i ∈A∪{E }, I ,h⟩, IS
′

as defined in Definition 5, π a path in IS and Last a nonnegative
integer, the corresponding path π ′

is the path in IS ′ such that for

any nonnegative integer n, we have:

• for agent i ∈ A ∪ {E}, li (π
′(n)) = li (π (n));

• for agent P , lP (π
′(n)) =

{
Alive n ≤ Last

¬Alive n > Last

Notice that since we have set the states of all of the agents in

every possible state, there is only one such path for each π .

Determining ϕ ′. We now present the details leading to the

definition of ϕ ′ to account for the semantics of the path terminator.

Firstly, we need to ensure that we only consider finite paths. To do

this, we need to restrict the paths considered to thosewhere the path

terminator is eventually dead. Secondly, the dynamic modalities

need to account for the possibility that a path has terminated early.

These modalities are satisfied based on statements concerning some

or all prefixes of a path conforming to a certain path expression

ρ; it would not be appropriate to consider prefixes that would

not actually be realised (if the path terminates before the prefix is

completed). We want the path to still be alive after we have matched

this sequence. This is accomplished by the following translation

algorithm, which uses two mutually recursive procedures and the

Alive predicate defined above.

Algorithm 1 Finite Restriction

INPUT: LDLf K formula ϕ
OUTPUT: LDLK formula ϕ ′

1: function Finite-Restrict(ϕ)
2: return ⟨⊤∗⟩(¬Alive) → Live-Restrict(ϕ)
3: end function

Algorithm 1 encodes the fact that a path must be finite (so the

path terminator eventually becomes dead); Algorithm 2 propagates

the application of restrictions to subformulae and handles the re-

quirement that for ⟨ρ⟩ϕ, we only consider paths that are still live

after ρ has been satisfied.

We also assume the existence of a function Translate-Alphabet,

which applies Live-Restrict on the formulae in any occurrences of

ψ or ϕ?. This can be easily implemented, e.g., via recursive descent.

Notice that the separation of Finite-Restrict and Live-Restrict

is not strictly necessary for correctness (one could apply Finite-

Restrict throughout). However, we expect that using only Finite-

Restrictwould significantly increase the formula size, which LDLK

model checking algorithms are sensitive to [30].

We now prove the translation is correct; that is, the answers to
the two model checking problems always yield the same results.

We first prove several lemmas.

Algorithm 2 Path Liveness Restriction

INPUT: LDLf K formula ϕ
OUTPUT: LDLK formula ϕ ′

1: function Live-Restrict(ϕ)
2: if ϕ is an atomic proposition p then return p
3: else if ϕ = ⊤ then return ⊤

4: else if ϕ = ¬ϕ1 then return ¬(Live-Restrict(ϕ1))
5: else if ϕ = ϕ1 ∧ ϕ2 then
6: return Live-Restrict(ϕ1) ∧ Live-Restrict(ϕ2)
7: else if ϕ = Kaϕ1 then return Ka (Finite-Restrict(ϕ1))
8: else if ϕ = EΓϕ1 then return EΓ(Finite-Restrict(ϕ1))
9: else if ϕ = DΓϕ1 then return DΓ(Finite-Restrict(ϕ1))
10: else if ϕ = CΓϕ1 then return CΓ(Finite-Restrict(ϕ1))
11: else ρ ′ = Translate-Alphabet(ρ) ▷ ϕ = ⟨ρ⟩ϕ1
12: return ⟨ρ ′⟩(Alive ∧ Live-Restrict(ϕ1))
13: end if
14: end function

Lemma 3.1. Let IS be an interpreted system, π a path in IS , Last a
nonnegative integer and ϕ an LDLf K formula. Let IS ′ be IS defined
as in Definition 5, and π ′ defined as in Definition 6. Then,

IS ′,π ′ |= Finite-Restrict(ϕ) iff IS ′,π ′ |= Live-Restrict(ϕ)

Proof. By definition of π ′
, P satisfies¬Alive after Last+1 states.

Thus, IS ′,π ′ |= ⟨⊤∗⟩(¬Alive). Now, consider that

IS ′,π ′ |= Finite-Restrict(ϕ)

⇔ IS ′,π ′ |= ⟨⊤∗⟩(¬Alive) → Live-Restrict(ϕ)

⇔ IS ′,π ′ |= Live-Restrict(ϕ) □

Lemma 3.2. Let IS be an interpreted system and ϕ an LDLf K
formula. Let IS ′ be IS defined as in Definition 5. Let π ′ be a path
in IS ′ and suppose π ′ is not a corresponding path of any path in IS .
Then, IS ′,π ′ |= Finite-Restrict(ϕ).

Proof. We first show that π ′
must haveAlive permanently true.

Suppose this is not true, for a contradiction. There then must be

a first state where Alive is false, with index n ≥ 1; we can choose

Last = n−1. We can recover π by taking a projection of π ′
, ignoring

the path terminator’s state. Then π ′
is the corresponding path for π

and Last = n − 1. Then, by LDLK semantics, IS ′,π ′
does not satisfy

⟨⊤∗⟩(¬Alive), so IS ′,π ′ |= Finite-Restrict(ϕ). □

Lemma 3.3. Let IS be an interpreted system and ϕ an LDLf K
formula. Let IS ′ be IS defined as in Definition 5. Let π be a path in
IS , and π ′ the corresponding path in IS ′. Let PKa be the set of π∗ in
IS and values of Last such that la (π∗(0)) = la (π (0)), and let QKa be
the set of paths π† in IS ′ with la (π†(0)) = la (π

′(0)). Consider that
QKa can be partitioned into paths that are corresponding paths from
some π∗′, and paths that are not. The corresponding partition ofQKa
is precisely the set of corresponding paths to paths in PKa , PcKa .

Proof. Observe that every corresponding path π∗′ ∈ PcKa has

la (π
∗′(0)) = la (π

′(0)) and is thus in QKa . Notice that these are

equal to la (π
∗(0)) and la (π (0)) by construction, and those are equal

by definition. Hence PcKa ⊆ QKa . Conversely, suppose for a contra-

diction that there is some path π†∗ in QKa that is a corresponding
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path of some π∗∗ not in PKa . This means that la (π
∗∗(0)) , la (π (0)),

a contradiction since la (π
†∗(0)) = la (π

′(0)). Thus, QKa ⊆ PcKa .
Thus, the sets are equal. □

Lemma 3.4. Let IS be an interpreted system, π be a path in IS ,
Last be a nonnegative integer and ϕ be an LDLf K formula. Then,

IS,π ,Last |=LDLf K ϕ iff IS ′,π ′ |=LDLK ϕ ′

where: IS ′ is defined above; ϕ ′ = Finite-Restrict(ϕ); and π ′ is de-
fined as in Definition 6.

Proof. We proceed by structural induction on ϕ. The base cases
of atomic propositions and ⊤ follow by construction of IS ′ and π ′

.

Notice that by construction of π ′
and IS ′, we can apply Lemma 3.1

in all cases. It thus suffices to show

IS,π ,Last |=LDLf K ϕ iff IS ′,π ′ |=LDLK Live-Restrict(ϕ)

The Boolean cases are trivial. For the epistemic modalities, we

first consider Kaϕ. Consider that IS,π ,Last |=LDLf K Kaϕ iff for

every д ∈ G with la (д) = la (π (0)), IS,д |=LDLf K ϕ. By definition

of satisfaction on states, this holds iff for every path π∗ in IS such

that la (π
∗(0)) = la (π (0)) and value of Last , IS,π∗,Last |=LDLf K ϕ.

We claim our previous assertion holds iff for every path π† in IS ′

with la (π
†(0)) = la (π

′(0)), we have IS ′,π† |= Finite-Restrict(ϕ).
Using Lemma 3.2, the non-corresponding paths must satisfy

Finite-Restrict(ϕ). We can thus freely add or drop them. Thus

we only need concern ourselves with corresponding paths. By

Lemma 3.3 these paths are precisely the corresponding paths of

paths in π∗. Going forward, for each π∗ and value of Last , the cor-
responding path π∗′ satisfies Finite-Restrict(ϕ) by the inductive

hypothesis. Going backward, if IS,π† |= Finite-Restrict(ϕ) and
corresponds to path π∗ and integer Last , IS,π∗,Last |= ϕ by the

inductive hypothesis.

Finally, by definition of satisfaction on states we have our as-

sertion holding iff for every state д′ in IS ′ with la (д
′) = la (π

′(0)),

IS ′,д′ |= Finite-Restrict(ϕ). This precisely matches the seman-

tics of IS ′,π ′ |= Ka (Finite-Restrict(ϕ)). The proofs for EΓ , DΓ

andCΓ are similar. This completes the proof for the epistemic cases.

Finally, consider the ⟨ρ⟩ϕ case. We have that

I S ′, π ′ |=LDLK Live-Restrict(⟨ρ ⟩ϕ) iff

I S ′, π ′ |=LDLK ⟨ρ′⟩(Alive ∧ Live-Restrict(ϕ)) iff

∃0 ≤ i .(0, i) ∈ R(ρ′, π ′) ∧ I S, π ′i |=LDLK (Alive ∧ Live-Restrict(ϕ)) iff

∃0 ≤ i .(0, i) ∈ R(ρ′, π ′) ∧ I S, π ′i |=LDLK Alive and

I S, π ′i |=LDLK Live-Restrict(ϕ) iff

∃0 ≤ i ≤ Last .(0, i) ∈ R(ρ′, π ′) ∧ I S, π ′i |=LDLK Live-Restrict(ϕ) iff

∃0 ≤ i ≤ Last .(0, i) ∈ R(ρ′, π ′) ∧ I S, π i , Last − i |=LDLf K ϕ

The second last step holds because π ′
is Alive for Last + 1 steps, by

construction; the inductive hypothesis is applied in the last step.

Next, we show thatRLDLf K (ρ,π ) = RLDLK (ρ
′,π ′) for arbitrary

ρ, where ρ ′ = Translate-Alphabet(ρ). We proceed by structural

induction on ρ. We first consider the base cases RLDLf K (ψ ,π )

and RLDLf K (ϕt ?,π ). Notice that these are defined as {(i, i + 1) :

IS,π i ,Last − i |= ψ } and {(i, i) : IS,π i ,Last − i |= ϕt } respectively.
Sinceψ andϕt here are subformulae ofϕ, we apply the (main) induc-

tive hypothesis. We can thus rewrite the sets as {(i, i+1) : IS ′,π ′i |=

Finite-Restrict(ψ )} and {(i, i) : IS ′,π ′i |= Finite-Restrict(ϕt )}
respectively. We then convert instances of Finite-Restrict to

Translate-Alphabet by Lemma 3.1 and definition of Translate-

Alphabet. We then have RLDLK (Translate-Alphabet(ψ ),π
′)

and RLDLK (Translate-Alphabet(ϕt )?,π
′), by LDL semantics.

For the inductive cases, notice that the semantics for satisfaction

on choice, composition and the Kleene star are identical and only

depend on R. Thus, establishing the two base cases is sufficient.

We thus can equate R(ρ ′,π ′) with R(ρ,π ). This yields

∃0 ≤ i ≤ Last .(0, i) ∈ R(ρ,π ) ∧ IS,π i ,Last − i |=LDLf K ϕ

and from Definition 3, we have IS,π ,Last |= ⟨ρ⟩ϕ. □

We can now show the main result required.

Theorem 3.5. Let IS be an interpreted system andд be a state in IS .
Then, IS,д |=LDLf K ϕ if and only if IS ′,д′ |=LDLK ϕ ′, where ϕ ′ =
Finite-Restrict(ϕ) and д′ is д augmented with the path terminator
in the state alive .

Proof. By Definition 3, IS ′,д′ |=LDLK ϕ ′ if and only if for ev-

ery path π ′
with π ′(0) = д′, IS ′,π ′ |=LDLK Finite-Restrict(ϕ).

By the definition of Finite-Restrict, we have IS ′,π ′ |=LDLK
Finite-Restrict(ϕ) for any π ′

where P remains alive.

Thus, we have IS ′,д′ |=LDLK ϕ ′ if and only if for every path π ′

where the path terminator is eventually dead, we have IS ′,π ′ |=LDLK
Finite-Restrict(ϕ). Such paths must have the path terminator

alive for precisely Last + 1 steps for some Last , and by Lemma 3.4

hold if and only if IS,π ,Last |=LDLf K ϕ. Since π ′
was arbitrary

apart from the eventual death restriction, we have IS ′,д′ |=LDLK ϕ ′

iff for every path π and value of Last we have IS,π ,Last |=LDLf K ϕ,

i.e. if and only if IS,д |=LDLf K ϕ. □

Computational Complexity.We now turn to explore the com-

plexity of model checking interpreted systems against LDLf K spec-

ifications. We assume, as usual, that interpreted systems are given

explicitly. We first bound the size of IS ′ and ϕ ′:

Lemma 3.6. Let IS be an interpreted system and IS ′ be defined as
above. Let IS ′ be IS extended with a path terminator as defined above.
Then, the size of IS ′, |IS ′ | is polynomially bounded in |IS |.

Proof. Clearly, |G ′ | ≤ 2|G | as each state in IS can be mapped

to at most two states in IS ′, the corresponding states in which the

path terminator is alive or dead
3
. The transition relation can be

bounded by the square of the size of the state space (e.g. via an

adjacency matrix). Hence, |IS ′ | ≤ 4|IS | (asymptotically). □

Lemma 3.7. Letϕ be an LDLf K formula. Letϕ ′ = Finite-Restrict(ϕ).
Then, the size of ϕ ′, |ϕ ′ | is polynomially bounded in |ϕ |.

Proof. Consider that ϕ ′ is generated by Algorithm 1. Consider

the formation tree of ϕ. Each node in the tree experiences at most

one direct application of Algorithm 1 and at most one direct applica-

tion of Algorithm 2. Each of these algorithms, apart from recursive

calls on subformulae, adds a constant number of literals and connec-

tives. Thus, these add at most a constant factor to the space required

to represent that subformula. Hence, |ϕ ′ | is at most a constant factor

larger than |ϕ |, and thus it is polynomially bounded. □

3
The inequality is strict if there are some states in I that can never be revisited.
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We can then show the following tight result.

Theorem 3.8. Model checking interpreted systems against LDLf K
specifications is PSPACE-complete.

Proof. We first show hardness. Since an LDLf formula is an

LDLf K formula, and LDLf model checking is PSPACE-complete

hence PSPACE-hard [17], LDLf K model checking is PSPACE-hard.

We claim that our approach for solving the model checking

problem for LDLf K can be implemented in polynomial space.

Constructing IS ′ and ϕ ′ can be done in polynomial space. Con-

sider that an algorithm for constructing IS ′ can simply duplicate

each state in IS and then force the path terminator to be alive in one

copy and dead in the other. Building the transition relation could

involve replicating the edges in the original transition relation for

pairs of corresponding states in IS ′ where both have the path ter-

minator alive or both have it dead, and then for each edge (u,v)
in the original transition relation, adding an edge from u with the

path terminator alive to v with the terminator dead. This algorithm

is polynomial time, and thus polynomial space.

We can use a similar argument to that in Lemma 3.7 to show that

computing Finite-Restrict via Algorithm 1 runs in polynomial

time. Each node in the formation tree is visited at most once by

Algorithm 1 and at most once by Algorithm 2. The amount of

work done at each node is polynomial. Thus, our Finite-Restrict

algorithm runs in polynomial time, and thus in polynomial space.

We can thus perform model checking in LDLf K by transforming

the LDLf K model checking problem to an LDLK model checking

problem, where using Lemmas 3.6 and 3.7 the size of the new model

and formula are polynomial in the size of the original model and

formula. Since LDLK itself is solvable in polynomial space [30]

and the composition of polynomials is also polynomial, the model

checking algorithm for LDLf K also runs in polynomial space. □

Also observe that the algorithm is fixed-parameter tractable in
that we have exponentiality only in the size of the formula and not

in the size of the model, provided the LDLK model checking algo-

rithm is fixed-parameter tractable (such as that presented in [30]).

4 IMPLEMENTATION DETAILS
We implemented the algorithms introduced in Section 3 on top

of MCMASLDLK [30], a publicly available extension of MCMAS

1.3.0 [37]. The source code and binaries for the implementation,

MCMASLDLf K , are available from [40].

MCMASLDLf K accepts MAS descriptions in ISPL [37]. The syn-

tax for the specifications is that of MCMASLDLK [30]. Verification

over finite traces is carried out by MCMASLDLf K by invoking the

tool with the command-line flag -ldlf. This allows for additional
efficiency as we only need to perform verification over finite traces.

We do not need to separately retain IS and IS ′ in memory.

Upon invocation, the tool constructs IS ′ by adding an agent

which behaves as the path terminator from Definition 4. This has

a local variable encoding whether it is alive. The model is also

updated by adding an Evaluation variable for the path terminator

being alive, and a constraint in the set of initial states (InitStates
in ISPL) imposing the path terminator to begin in the alive state.

The reduction ofϕ toϕ ′ is further optimised with respect to what

was presented in Section 3.2. Specifically, note that MCMAS offers

support for model checking with Fairness (justice) constraints; a

fairness constraint p is true iff p is true infinitely often on a given

path [8]. Given this we add a fairness constraint !Alive so that

we do not consider the paths where the path terminator remains

alive (i.e., infinite paths). The path terminator cannot resurrect itself

once dead, so this also encodes the requirement that paths are finite.

We thus do not need to add this restriction in Finite-Restrict. In

our implementation, Finite-Restrict(ϕ) can simply return Live-

Restrict(ϕ) as MCMAS is able to use our fairness constraint to

consider only finite paths. This is beneficial for performance, as the

LDLK model checking algorithm that MCMASLDLK uses may take

time exponential in the formula size [30].

MCMASLDLf K also supports counterexample generation; this

involves finding a finite trace π in IS where IS,π ⊭ ϕ (provided

such π exists). The implementation is based on MCMAS’s existing

support for counterexample generation in CTL stemming from [13].

Since the LDLK model checking algorithm in MCMASLDLK builds

a nondeterministic Büchi automaton for ¬ϕ and looks for an ac-

cepting run, this run (if present) is also a valid counterexample. We

can post-filter the states to those in which the path terminator is

alive, to recover a finite trace counterexample. This is particularly

useful in practical contexts, as we report below.

5 EXPERIMENTAL RESULTS
Experimental Setup. To evaluate the proposed algorithms, we ran

several experiments on virtual machines with two 2.70GHz CPUs

and 16 GB of RAM, running Ubuntu v15.10 (Linux kernel v4.2). We

evaluated the performance of MCMASLDLf K in two ways:

(1) For specifications that are expressible over both finite and

infinite traces, we compared the performance of our pro-

posed LDLf K algorithm against that of the LDLK algorithms

already implemented in MCMASLDLK .

(2) For specifications that do not have an analogue over infi-

nite traces (e.g. properties involving termination), we simply

evaluated the scalability of the approach. Observe that no

other toolkit supports LDLf , nor LDLf K, and a comparison

against MCMASLDLK would not be meaningful in this case.

We modelled the popular Go-Back-N ARQ protocol [9] in ISPL,

and used it as a test bed for evaluating our algorithms. Go-Back-N is

a network communication protocol which achieves both delivery of

messages in the presence of a faulty channel, and improved channel

utilisation, especially in high-latency conditions.

Similarly to the Bit Transmission Protocol from [20], the system

consists of two agents, a sender and a receiver, and the environment.

The sender aims to communicate a vector of M packets to the

receiver across a high-latency channel that may drop packets. Each

of these packets is transmitted along with the appropriate sequence

number in 1, . . . ,M . The sender does not wait for an ack after each

packet; it keeps transmitting up to a window of N unacked packets.

Upon receipt of a packet, the receiver sends an ack with the number

of the last packet received in sequence. If the sender receives a

duplicated ack or reaches the end of its transmission window, it

restarts from the first unacknowledged packet.

In our model we use bits for data packets. This is sufficient to

assert properties concerning protocol correctness. We also model a

high-latency channel as one delivering messages with a delay of
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time (s) BDD memory (MB)

preprocessing verification

N M infinite finite infinite finite infinite finite

2

3 0.557 0.766 0.026 0.067 13.54 17.33

4 1.058 2.288 0.052 0.208 20.12 33.00

5 1.827 3.972 0.071 0.293 20.37 38.25

6 2.711 4.741 0.131 0.261 29.93 35.38

8 22.896 15.175 0.397 1.615 44.46 48.19

10 19.586 27.044 0.563 1.954 48.92 49.22

12 30.337 47.652 1.035 1.714 59.08 57.61

15 109.510 268.017 1.520 4.175 56.32 65.10

3

3 0.784 1.086 0.048 0.113 18.84 19.74

4 1.828 1.798 0.106 0.221 33.36 36.06

5 5.113 8.525 0.200 0.851 42.63 58.56

6 8.668 14.193 0.324 1.144 55.07 58.11

8 28.923 65.390 1.029 5.509 58.15 68.40

10 76.890 144.600 2.930 7.861 62.96 71.71

12 106.773 118.334 3.969 10.135 74.82 86.30

15 398.878 846.602 6.130 32.217 86.32 195.21

4

3 0.784 1.084 0.049 0.110 18.84 19.74

4 2.913 3.812 0.184 0.304 36.35 40.85

5 9.696 11.302 0.396 1.217 49.96 57.13

6 19.171 43.746 0.561 6.002 57.23 62.40

8 79.054 95.341 3.111 8.920 71.55 69.45

10 101.781 271.890 5.096 22.547 85.59 99.28

12 467.855 587.106 9.950 33.608 120.24 156.53

15 1469.131 2094.340 25.387 70.775 214.56 307.58

Table 1: Runtimes for MCMASLDLK and MCMASLDLf K
when verifying ϕ1 on infinite and finite traces of the Go-
Back-N ARQ protocol.

three rounds, possibly dropping (but never corrupting) packets. We

refer to the source of the model for more details [40].

Experimental comparison against MCMASLDLK . We com-

pared the performance of MCMASLDLK and MCMASLDLf K on a

model of the Go-Back-N protocol against specifications expressed

in both LDLK and LDLf K. We verified on both infinite and finite

traces that the sender and receiver are never in conflict on the bits

the receiver knows. Intuitively, this is true as the environment does

not corrupt the value of the bits. This may be specified as

ϕ1 = [⊤∗]

(
∧Mi=1(¬mismatchi )

)
wheremismatchi holds iff the receiver has received a bit for position

i that is different from that of the sender. The results obtained are

presented in Table 1.

Notice that unlike in standard verification experiments, we docu-

ment the preprocessing time for infinite and finite traces separately.

This is because we have a parsing load when building the new

model, and, by adding a variable, we also double the size of the

model; so reachability computations are likely to take longer.

We observe that generally as M and N increase, runtime for

both preprocessing and verification increases. This holds for both

verification over infinite and finite traces. This is unsurprising, as

increases in M and N generally result in a larger models. As M
increases, the number of bits to be conveyed increases, and as N
increases the allowed “lag” between the sender and receiver in-

creases, resulting in a larger state space. Note that although the size

of the formula appears to increase linearly in M , the propositional

shortcircuiting optimisation from [30] limits its overhead.

There are a few exceptions to the general increasing trend noted

above. One of these occurs when M = 3 and N increases from 3

to 4; runtimes are almost identical. However, this is to be expected

as the reachable state space is the same in both cases, the sender

can send all the bits without receiving an ack. Indeed, the memory

required for building the BDDs here was identical. We also observed

occasional decreases in runtime or memory usage. We suspect that

these arise from empirical efficiencies of BDDs, where the CUDD

package was internally able to work better on a specific model. This

is in line with othermodel checking experiments with BDDs [11, 31]

and, in any case, these exceptions are small and infrequent.

In general, we observe that MCMASLDLf K adds an overhead

in both preprocessing and verification. This is also expected; pre-

processing involves additional computation to derive IS ′ and to

translate the specifications; verification itself will be slower as both

the size of the model and the specification have increased. However,

the overall runtimes and memory usage are generally on the same

order of magnitude, suggesting that the overhead is limited.

Scalability Assessment. For properties which do not have an

analogue over infinite traces (for example, properties requiring

termination), a comparison against MCMASLDLK would not be

meaningful. Given this we here similarly evaluate how the perfor-

mance of MCMASLDLf K scales asM and N increase. To conduct

this analysis we attempted to verify a complex specification – that

if we abort the protocol immediately once the receiver learns about

bit M , then the sender must know the receiver knows bit M − N
(whereM > N ). This may be written as ϕ2, where:

ϕ2 = ⟨(¬ϕKM )∗⟩[ϕKM ]⊥ → ⟨⊤∗⟩[ϕKP ]⊥

ϕKM = KR (0M ) ∨ KR (1M )

ϕKP = KS (KR (0M−N ) ∨ KR (1M−N ))

where 0k is true iff bit k is 0 (and respectively for 1k ). Intuitively,

the specification should be satisfied. The sender does not send bitM
until it has received an ack for at leastM −N bits; the receiver does

not ackM −N or greater until it receives bitM −N . Observe that it

is possible to assessϕ2 by verifying a stronger property over infinite
traces, i.e., that the receiver cannot know bitM without the sender

knowing the receiver knows the bitM −N , i.e. ϕ3 = [⊤∗]¬(ϕKM ∧

¬ϕKP ). However, this does not capture circumstances where the

protocol is aborted. Consider that ϕ2 could still be satisfied even

when the receiver knows bitM but the sender does not know bit

M − N , if we can guarantee that paths will not end in this state.

Note that ϕ2 as written is unsatisfiable over infinite traces.

When testing MCMASLDLK against ϕ2 we encountered time-

outs, i.e., the checker was unable to verify ϕ2 on the model within 3

hours, even for smaller models. Observe that LDLK model checking

is exponential in formula size and ϕ2 is of considerable length [30].

In an attempt to verify the protocol against the specification,

we then proceeded to embed some of the formula assumptions

directly in the model, at the cost of increasing its complexity. The

rationale for this is that model checking LDLK is fixed parameter

tractable [30], scaling polynomially in the model size. Specifically,

we incorporated knowledge of when a trace was about to end into

the path terminator. We implemented a different path terminator

from that introduced in Section 4, shown in Figure 1. This path

terminator explicitly tracks whether the current path is in its last
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1 Agent AltPathTerminator

2 Vars:

3 state : {alive , last , dead};

4 end Vars

5 Actions = {go, brake , stop};

6 Protocol:

7 state = alive: {go, brake};

8 state <> alive: {stop}; -- last or dead

9 end Protocol

10 Evolution:

11 state = alive if (Action = go);

12 state = last if (Action = brake);

13 state = dead if (Action = stop);

14 end Evolution

15 end Agent

Figure 1: Last-state-aware path terminator in ISPL. This ex-
ample uses SingleAssignment semantics.

time (s) BDD memory (MB)

N M preprocessing verification

2

3 1.040 0.342 40.15

4 1.062 0.698 52.62

5 5.667 1.235 56.27

6 6.028 2.726 59.35

8 28.563 8.658 61.33

10 19.674 6.753 58.76

12 33.191 52.081 81.54

15 164.842 66.038 82.03

18 235.340 82.401 107.45

3

4 2.244 1.496 57.62

5 7.286 2.681 56.42

6 15.986 6.265 65.61

8 32.395 43.358 73.13

10 87.725 68.088 86.23

12 94.001 95.753 115.05

15 516.412 201.195 207.00

18 1289.344 258.506 238.46

4

5 10.138 4.745 57.59

6 32.036 33.926 72.24

8 72.549 49.842 109.60

10 140.808 153.936 149.20

12 572.372 257.079 257.01

15 1623.293 656.292 486.81

18 3616.632 773.141 581.62

Table 2: Runtimes obtained by MCMASLDLf K when verify-
ing ϕ2∗ with an alternate path terminator over finite traces of
theGo-Back-NARQprotocol. Notice thatϕ2 requiresM > N .
state. We also modified the initial states to include those where the

agent has state alive or last, as one-state paths are valid paths.

When converting the problem to infinite trace LDLK verification,

this allowed us to verify the revised model against the specification:

ϕ∗
2
= ⟨(¬ϕKM )∗⟩(ϕKM ∧ Last) → ⟨⊤∗⟩(ϕKP ∧ Last)

where Last is an atomic proposition holding in the last state of the

path. Note that the presence of Last implies the path is still alive,

and since we use MCMAS’s fairness constraints, we already only

consider finite paths.

The set of reachable states for the amended model is approxi-

mately 3 times the size of the original state space (as opposed as

“only” twice the size as in the previous encoding). The experiments

obtained are reported in Table 2. As expected, runtimes generally

increase withM andN . However, this increase appears manageable;

we were able to verify properties over state spaces of considerable

size (e.g., for N = 4,M = 18, the reachable state space was of the

order of 10
13

states). Given the benchmarks, we deduce that the

toolkit could conceivably verify even larger models.

Comparing the results in Table 2 with those obtained for ϕ1 in
Table 1, we observe that, while preprocessing still dominates verifi-

cation, this appears to be not as much as in the case of ϕ1. This is
because ϕ∗

2
contains more complex temporal semantics; so proposi-

tional shortcircuiting is less powerful. Interestingly, preprocessing

times for ϕ∗
2
are inconsistent with the finite trace preprocessing

times for ϕ1, but they are generally slightly faster. The implemen-

tation of the path terminator is different, and in the case of ϕ∗
2
, it

is optimised for the specification in question. We also note that

memory usage is consistently higher, which is consistent with the

aforementioned additional increase in the state space.

In addition to our experimental evaluation, we also checked

the correctness of the implementation on a number of examples

and testcases. Related to the case here discussed, we also verified

that the specification ϕ ′
2
differing from ϕ2 by replacing ϕKP with

KS (KR (0M−N+1) ∨ KR (1M−N+1)) is indeed false on the protocol;

the protocol allows the sender to send bitM without receiving an

ack for bitM−N +1, and the channel might drop all of the receiver’s

acks afterM − N . We verified ϕ ′
2
using an analogous optimisation,

and obtained similar runtimes. Indeed, the counterexample we

obtained helped us understand why ϕ ′
2
is false on the model.

6 CONCLUSIONS AND FURTHERWORK
In this paper we have contributed to the development of formalisms

for reasoning about MAS under the assumption of finite traces. As

we discussed, this is a recent development which has particular ap-

plications in AI. Specifically, we have introduced the logic LDLf K, a

temporal-epistemic logic in which the expressive temporal expres-

sion given by LDL can be used on finite paths. As discussed, a key

feature of the logic is that the length of paths under consideration

is not known to the agents before or during the execution, leading

to a rich interplay between temporal and epistemic modalities.

We have also studied the model checking problem for LDLf K

and identified a reduction to the corresponding problem for LDLK

(for a different model and for a different specification). We have

proved that the reduction does not increase the overall complexity

of the problem, which we showed to be PSPACE-complete. We

showed the reduction is fixed parameter tractable; it is exponential

in the size of specification formulae but not in the size of the model.

We have implemented and released an implementation of the

algorithms presented as an extension of MCMASLDLK , an exist-

ing open-source toolkit for the verification of MAS. The results

obtained point to slightly increased verification times and memory

over the existing benchmarks for LDLK due to the transformation

of the model and formula. These, however, appear limited and do

not hinder the feasibility of the approach. The toolkit we put for-

ward also supports counter-example generation, which is useful in

practically interpreting model checking results.

In future work we intend to develop the methods here presented

even further for planning and to seek application in the context of

services by following the direction suggested in [39].
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