Session 47: Robotics: Planning

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

OWL-enabled Assembly Planning for Robotic Agents

Robotics Track

Daniel BeBler
University of Bremen
Bremen, Germany
danielb@cs.uni-bremen.de

ABSTRACT

Assembly cells run by intelligent robotic agents promise highly
flexible product customization without the cost implication product
individualization has nowadays. One of the main questions an assem-
bly robot has to answer is which sequence of manipulation actions it
should perform to create an assembled product from scattered pieces
available. We propose a novel approach to assembly planning that
employs Description Logics (DL) to describe what an assembled
product should look like, and to plan the next action according to
faulty and missing assertions in the robot’s beliefs about an ongoing
assembly task. To this end we extend the KNOWROB knowledge
base with representations and inference rules that enable robots to
reason about incomplete assemblies. We show that our approach
performs well for large batches of assembly pieces available, as well
as for varying structural complexity of assembled products.
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1 INTRODUCTION

Some industrial actors have expressed interest in developing assem-
bly cells using newly available impedance controlled robot arms.
Such cells promise to be versatile and reconfigurable, a desired qual-
ity when customization is important. However, several challenges
remain before such promises can be delivered. We will focus in this
paper on issues of knowledge representation and planning.

Every product that an assembly cell can produce requires a differ-
ent assembly plan, and every time the product changes (for example
because new standards require some parts to be replaced) the plan
needs to be adapted or recreated from scratch. Further, plans are
sensitive to the kinds of resources available (the parts the cell can
access) and to the capabilities of the robot. Finally, when creating
small batches of customized products it is often the case that the
customizations are variations of each other: using one part instead
of another, or varying in terms of which accessories are attached to a
common skeleton. In principle, assembly re-planning can tackle all
of these issues, but is computationally expensive. Instead, we pursue
a knowledge-enabled approach where the robotic agent is informed
about its own capabilities and available resources, has knowledge
about the products it needs to assemble, and the representation is
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Figure 1: Architecture for OWL-enabled assembly planning that is de-
signed to run within the perception-action loop of a robotic agent.

such that it allows quick adaptation. We use OWL [8], together with
rule-based reasoning, to represent and process this knowledge.

Classical planning approaches, such as PDDL [7], make the
closed world assumption, and thus may not be able to find a so-
lution if some facts about the world are not known. This is fairly
limiting: robots can not begin an assembly until all parts are known,
and can not react on external changes of the world state or have
to re-plan in such a case. Instead, our planner uses open world se-
mantics such that the robot can begin an assembly activity with
incomplete knowledge, identify the missing knowledge pieces, and
reason about how the missing information can be obtained. Another
difference is that the goal state can be defined in terms of complex
class descriptions rather then objects and their roles.

Our approach is to describe, in an ontology, concepts of finished
assemblages by their parts, sub-assemblies, how the parts are con-
nected with each other, and how they can be grasped, and to compare
these descriptions with what the robot believes about an ongoing
assembly task to infer what to do next. Concept definitions include
restrictions the finished assemblages must satisfy. The restrictions
would initially not be satisfied by an individual, and the robot will
act so as to resolve these inconsistencies. In more detail, based on
the inconsistencies between an initial state (available scattered parts)
and a desired state (a particular assemblage), our system creates an
agenda: an ordered list of tasks that, when performed, will trans-
form the assemblage such that the inconsistencies are fixed. This
mechanism runs within the perception-action loop of the robot: The
robot’s beliefs are updated according to objects perceived and ac-
tions performed, and assembly actions are selected and parametrized
by reasoning about the robot’s beliefs and how inconsistencies can
be fixed. This architecture is depicted in Figure 1.
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The knowledge modeling for assembly processes is also not trivial
and, to our knowledge, has not been deeply developed for robots. We
extended the robot ontology KNOWROB [20] with general assembly
concepts such as mechanical part, atomic part, assemblage, assembly
affordance etc. We also added reasoning methods in KNOWROB
that allow to reason about assemblages, their parts, connections, and
inconsistencies, and how consistency can be established. To this end,
we extended KNOWROB’s handling of the robot’s belief state such
that it includes information about (partial) assemblages present, and
the connections between their parts.

Summarizing, the contributions of this paper are as follows:

e anovel robot ontology for assembly tasks that describes as-
semblages, their parts, and how parts should be grasped, held
and connected with each other;

a set of extensions to the KNOWROB reasoner that enables to
reason about (partial) assemblages, and to explain inconsis-
tencies of individuals wrt. their terminological definition;

a novel approach to knowledge-enabled assembly planning
that is designed to run within the perception-action loop of a
robotic agent, and that uses an agenda of ordered steps that
would, when performed, transform an incomplete assemblage
into one that is in accordance with its semantic model.

2 ASSEMBLY ONTOLOGY

Assemblages can be described by their parts, sub-assemblies, and
connections between them. Robots further need to know how to
grasp and hold parts to connect them with each other. We represent
this type of information in a novel robot ontology for assembly tasks
that we will describe in this section.

2.1 Ontology hierarchy

Assembly upper ontology. The most general assembly-related con-
cepts are defined here. These can be divided into concepts subsumed
by PhysicalPartOfObject (i.e., tangible parts of some spatial thing)
and Connection-Physical (i.e., tangible parts in physical contact such
that they resist spatial separation), which are defined in KNOWROB’s
upper ontology. In this ontology, we represent general concepts
such as MechanicalPart T PhysicalPartOfObject, Assemblage
MechanicalPart, and AssemblyConnection = Connection-Physical,
but also some commonly used classes of connections, parts and
assembly affordances (e.g., screwing, sliding and snapping connec-
tions). The ontology counts 236 logical axioms and 56 classes, has
the DL expressivity ALCROIQ(D), and is provided as an open-
source extension of KNOWROB.

Parts ontology. Part classes, affordances they provide, and types
of assembly connections they can enter in are defined in this ontology.
Each user of our system would define their own part ontology/ies, as
these are project-specific. Parts, however, can be reused for different
projects, hence they get a special level in our ontology hierarchy.

Assemblages ontology. Concepts for a top-level assemblage, and
the sub-assemblages that it contains are defined in this ontology.
These concepts are highly project specific. They describe the as-
sembled product in terms of parts and connections between them,
and all intermediate steps that determine how it can be constructed
(potentially in different variants).
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Simulation ontology. The previous ontologies define classes, rather
than individuals. In a real-world use case, individuals such as parts
may be asserted by perception, and any dependent individuals (such
as the affordances the parts are expected to provide) are asserted
through reasoning on part definitions. It is convenient however, es-
pecially for simulation experiments (see section 7), to have an OWL
file describing the initial state of the world: what parts are available,
where they are located, whether sub-assemblages already exist etc.

2.2 Defining Connections and Assemblages

Our knowledge modelling of assembly processes is based on the
AssemblyConnection concept, where a AssemblyConnection may
need and/or block AssemblyAffordances offered by MechanicalParts.
We look at these concepts in more detail below.

MechanicalPart. The top concept for objects that get manipu-
lated during an assembly operation. It is subdivided into AfomicPart,
which refers to parts without separable components, and Assem-
blage. AtomicPart is further subdivided into FixedPart, useful for
representing holders, and MobilePart. A MechanicalPart must offer
at least one AssemblyAffordance, which allows the part to be used
for certain assembly connections. MobileParts should also offer at
least one GraspingAffordance, which allows them to be grasped in
certain ways. Note that both AtomicParts and Assemblages can of-
fer AssemblyAffordances; this is because assembly-relevant features
may appear only when more parts are put together, for example a
tunnel formed by two longitudinal halves. When a MechanicalPart
is asserted to the belief state (e.g. because it was perceived or a new
assemblage was put together) its affordances can be inferred from
existential restrictions that constrain the hasAffordance relation, and
automatically asserted when the part is instantiated.

AssemblyConnection. The central concept in how we describe
assemblages. An AssemblyConnection needs two AssemblyAffor-
dances, and may block several other affordances. Typically an Assem-
blyAffordance that is needed is also blocked, and this is represented
by a consumesAffordance T needsAffordance object property; but
other affordances, e.g. GraspingAffordances, may be blocked by a
connection: some grasps become impossible once a part slides into a
connection. We define connections in terms of affordances they need
(rather than the MechanicalParts they connect) so as to also capture
which connections prevent others from being formed, and therefore
have information in the ontology to reason about operation sequenc-
ing. Parts involved are linked to the connection via the property
chain hasAtomicPart = needsAffordance o hasAffordance™ .

Connections are also associated with a transform that describes
how parts are placed relative to each other, and use one of the parts
as a “reference” (if the MechanicalPart in question is an Assemblage,
then its reference part is used). The current implementation presents
a limitation, in that the parts in a connection cannot be of the same
type (or else it would be impossible to disambiguate which should
be the reference without further data). We would like to solve this
rare issue in a future revision of the assembly ontology.

Assemblages. The aggregates of mechanical parts. An Assem-
blage uses exactly one AssemblyConnection, and may place fur-
ther restrictions on the types of involved parts. This is because
connections can be fairly general, such as slide-in connections,
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whereas an assemblage may require a particular wheel to be slid
on a particular axle. Another important property when defining
Assemblage subclasses is the linksAssemblage property chain that
we define as: linksAssemblage = hasAtomicPart o hasAtomicPart™ o
usesConnection™ . Using restrictions involving the linksAssemblage
property we can explicitly encode sequencing information about
assembly operations (e.g., place chairs on a chassis only after all
the wheels have been placed) as well as infer what are all the parts
needed for a particular assembly task.

3 ASSEMBLY BELIEF STATE

KNOWROB has been designed for service robots acting in the
kitchen [4]. The belief state, in this case, contains information about
(what the robot knows about) the position of objects in the world
and which objects are being grasped at the moment. Another way to
look at this is that KNOWROB can answer questions such as "what
objects are present?”, "what objects are being grasped?", "what is
the transform between tool frame and grasped object?", etc.

Assembly robots also need information about how objects are
connected into (sub)assemblages. We have extended KNOWROB’s
belief state to include this information. In other words, we make
KNOWROB able to answer queries such as "what are the parts that
are contained in an assemblage?", "what parts are (possibly indi-
rectly) connected to a given part?", "what is the transform between
two parts that have a connection between them?". These are imple-
mented as Prolog queries, and part of an open-source add-on for
KNOWROB. Some example queries are shown in section 7.

In terms of implementation, we have adjusted KNOWROB’s han-
dling of belief states so that an object pose (for all objects that are not
robot links) is reported in a frame in which the object is fixed. For
a free-floating object, this is the world frame. For an object that is
part of an assembly with none of its component parts grasped, either
that object is the reference object for the assembly (in which case
its pose is given in world coordinates), or the object pose is given
relative to the reference object. A grasped object, or an object that is
part of an assembly which has one component grasped, has its pose
given in the tool frame of the gripper. The reason for this approach
is that there could be many objects available to a robot doing assem-
bly, so to reduce the load on the transform message channel and its
subscribers that keep track of where everything is, we publish object
poses rarely: whenever the reference frame changes (the object has
entered/left an assembly, or a grasp/ungrasp happened), or at some
large interval (typically a couple of seconds).

4 REASONING EXTENSIONS

In description logics, ontologies are called consistent if an interpre-
tation exists that satisfies all axioms in the TBox and all assertions
in the ABox [1], and it is usually interpreted as an error if no such
model exists. The TBox contains intensional knowledge in the form
of a terminology, and the ABox contains extensional knowledge. In
this paper, we assume that the TBox has no faulty axioms, and ex-
ploit that faulty or missing assertions in the ABox can be discovered
by checking the assertions against the concepts they describe (e.g.,
similar to [12]). In this section, we describe reasoning techniques
that we employ to explain inconsistencies in the ABox.
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4.1 Property semantics

Properties can be grouped in a subsumption hierarchy, and axioms in
the TBox can restrict their domain and range. Range axioms can be
deduced from intersection (1), and union (L) class descriptions. The
range of a property P; for an intersection class C (denoted p (P;,C))
is simply the intersection of, and the range for an union class is the
union of inferred range axioms. OWL classes can further constrain
property values using universal (VP;.C), existential (3P;.C}), and
has-value (P; : o) restrictions. Further range axioms p(P;,C) may
be inferred for qualified restricitons by exploiting the subsumption
hierarchy to find classes K with C C K, and their range for P;. K can
be found by computing the range of the inverse of the restricted prop-
erty on the class qualified by the restriction. This is, for universal
restrictions VP;.C;, the range K € p(P, ,C2) which may constrain
P, for instances of the restriction: All P; values must be instance
of each range p (P}, K). Finally, cardinality restrictions may be used
to specialize range axioms according to constraints on the cardinal-
ity of subclasses of the range (i.e., to eliminate subclasses whose
cardinality must be zero). The property range of individuals can be
deduced from the range of its types, and in the case of a functional
or inverse functional property from the specified property value. We
expect that the TBox is static during planning and can therefore
employ efficient caching for class level range inference.

4.2 Specializability

The assembly ontology restricts assemblages to link certain parts that
have certain properties. Initially, some of the restrictions are violated
such as that an assemblage must link a particular part type. Given
the inferred property range, potential candidates that are instances
of the range can be deduced. Individuals that are not instances of the
range, on the other hand, could be specializable such that they turn
into an instance of the range by asserting new facts about them.

DEFINITION 1. An individual is specializable to a class if one of
its types can be specialized, or new (consistent) properties can be
asserted such that the individual turns into an instance of the class.

We write s > C if individual s can be specialized to the class
description C. Ranges are arbitrary class descriptions, and the spe-
cializability test must therefore be defined recursively and for various
class constructs that may appear in range descriptions.

ABox specializability. Sufficient conditions for the specializabil-
ity need to be defined for various possible property range axioms.
The most trivial conditions are depicted in Figure 2. An individual s
is specializable to a simple class C if one of its types has a subclass in
common with C, to a complement class —C if it is not an instance of
C, and to a union or intersection class if it is specializable to at least
one or all of the set members respectively. Similarly, an individual is
specializable to a universal restriction VP.C if all the existing values
of P are specializable to C, and to an existential restriction IP.C if at
least one of the existing values of P is specializable to C.

Property restrictions may imply minimum cardinality for quali-
fied property values. This is the case for existential, and has-value
restrictions, and for qualified cardinality constraints that specify the
minimum number of values explicitly. The inferred range of property
P may restrict the minimum cardinality of another property P; on
objects it denotes. Individual s with not enough values for P; may
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Class axiom  Specializability condition

C Jtype(s,T): XCTAXLCC
-C =C(s)
¢ n---nc, VvCe{C,....,.Ch}:s>C
Cu---uc, 3ICe{Cy,...,.Ch}:s>C
VP.C VP(s,x):x>C
P.C JP(s,x) :x>C
Pp:a 3P(s,a)

Figure 2: Some sufficient ABox specializability conditions for different
class axioms.

still be selected as candidate value for P if it can be deduced that
adding the n missing values would not lead to more inconsistencies.
We say that s is decomposable n-times along the qualified property
Py if n new qualified values can be asserted:

decomposable(s,P;,C,n) <
n = max_card(s,Py,C1) — #{x| P, (s,x) ANC1 (x) }

Where max_card(s,P;,Cy) is the maximum number of P; val-
ues that can be instance of Cj. In the next step, it is enforced that
C) is specializable to every range of P;: VR € p(Py,s) : C; > R.
This ensures that Cy is a valid type for values of P according to
property range constraints on the individual s. Finally, a backwards
check ensures there are no range constraints about the inverse of
P; imposed on Cj that are conflicting with the description of s:
VR~ €p(P; ,C1):s>R".

TBox specializability. Similar to ABox specializability, a simple
class is specializable to another class if a common subclass exists, an
intersection class is specializable to another class if all its members
are specializable, and union classes are specializable to another class
if at least one of the members is specializable the other class.

Additionally, qualified restrictions are specializable to a class C if
the qualified class Cj is a valid value for the restricted property P
on instances of C (i.e., if the inferred range is specializable to Cy),
and if the range of P|” on the qualified class is specializable to C
(i.e., instances of C; must be consistent values for P|):

VX € p(P,C) : X1 > C|A
VX, € p(P,C1): X0 >C=Cr>C

Where Cy is either an universal (VP;.C}), existential (3P;.Cy), or
cardinality (< maxP).C| or > minP).Cy) restriction.

Finally, a restriction Cg; is specializable to another restriction
Cpy if the restricted property P, is a sub-property of Pj, the qualified
class Cj is specializable to the qualified class C; (if any), and (1) Cg;
and Cp, are either both existential or universal restrictions, (2) Cg;
and Cp; are (qualified) cardinality restrictions and Cg, subsumes the
cardinality of Cgy (min; < miny,max| > max;), or (3) Cg; and Cgo
are has-value restrictions with the same value.
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4.3 Explaining ABox inconsistencies

In our approach, planning the next step during an assembly activity is
driven by identifying and fixing (local) inconsistencies in the ABox
of the KB. Individuals are assumed to be consistent wrt. the KB
if they are in fact a proper instance of each of their asserted types.
Asserted types are arbitrary class descriptions and it can further be
deduced up to which statement in the complex class description
an individual is an instance of it. We say that a class description
is satisfied up to the statement at which this test fails. Identifying
such statements enables to explain why an individual is inconsistent,
and is essential for planning actions that establish consistency in the
ABox by asserting or retracting facts about an individual.

Consistency checking is restricted to a local context. This is be-
cause (1) the KB may contain many facts that are irrelevant for
successful assembly, (2) it allows more compact and reusable plan-
ning knowledge, and (3) the robot can dynamically switch contexts
such that it changes its task without interruption. The context is
spanned by the partonomy of the assembly ontology: Assemblages
establish connections between affordances of atomic parts that may
be linked to some sub-assemblages with some other affordance.

The partonomy of the assembly ontology is reflexive (i.e., the
linksAssemblage relation). This is why it is not possible to decide
the sub-assembly relation solely in the ABox. Instead we need to
consider linksAssemblage constraints in the TBox that implicitly
define the sub-assembly hierarchy. More formally, an assemblage
b is a sub-assemblage of another assemblage a if (1) both have a
common atomic part: JhasAtomicPart(a,x) : hasAtomicPart(b,x),
and (2) one of the asserted types of a is a qualified restriction on the
linksAssemblage property and b is an instance of the qualified class
Cy: Jtype(b,T) : T C C;. An assemblage is considered to be fully
specified if it is consistent wrt. its required sub-assemblies (i.e., if
the sub-assemblies are fully specified), and if it links all the required
direct atomic parts.

Satisfiable Class Descriptions. The consistency of assemblages
may break at arbitrary OWL class descriptions such that the inference
up to which statement the individual satisfies the description must
be recursively defined.

Trivially, an individual a satisfies a simple class description C,
with —C(a), up to being classified as instance of C. Union or inter-
section classes are not satisfied if the individual does not satisfy all
of or one of the set members respectively. Unions are satisfied up to
where a satisfies a union member X for which a > X holds (if any),
and up to the union class otherwise. Intersections are satisfied up to
where a satisfies each of the intersection members.

e has-value constraints are violated if the value is not specified, and
the restriction is then satisfied up to the specification of this value.
Universal restrictions are not satisfied by a if not all the values of
the restricted property P are instances of the qualified class Cy:
3Py (a,v) : =C;(v). The restriction class is satisfied up to where
the value satisfies C| if the value is specializable to Cy, or up to
detaching the value from a otherwise.

Existential restrictions are violated by a if there is no value of
Py that is instance of the C|. The restriction is satisfied up to
where one of the existing values satisfies Cj if any of the existing
values is specializable to it, or to the specification of a new value
otherwise.
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Subject <—|£ Classify { Decompose
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about KB_Task == Specify
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! t t
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Figure 3: Consistency tasks are caused by some unsatisfied constraint
and describe how to fix the inconsistency by asserting or retracting a
fact about a subject.

e Qualified cardinality restrictions are not satisfied by «a if there
are not enough or too many P; values that are instance of the
class Cj. The restriction is satisfied up to detaching card — max
Py values that are instance of C) if there are too many values
(where card = #{v|P;(a,v) ANC{(v)} is the current, and max the
inferred maximum cardinality). In case of not enough values, the
restriction is satisfied up to where one of the P; values satisfies
C if the value is specializable to but not yet an instance of C;.
The restriction is further satisfied up to the specification of min —
card — ¢ new values if ¢ existing candidate values were found that
can be specialized to Cy, and if min — card — ¢ > 0 holds.

5 ESTABLISHING CONSISTENCY

The process of transforming an incomplete and underspecified as-
semblage to one that is fully specified needs to be controlled. We
propose a knowledge-enabled approach that allows to switch be-
tween different tasks, order actions using domain specific knowl-
edge, explain why actions were planned, and reason about how an
action can be performed. In this section, we describe the data struc-
tures and knowledge pieces used by this process, and how it can be
decomposed into multiple steps.

5.1 Consistency agenda

Actions that were planned to transform an underspecified assemblage
into one that is consistent are represented in a data structure that we
call consistency agenda. Agenda items are generated because (1) an
individual needs to be further classified, (2) a required property is
not specified and a new value must be instantiated (decomposition),
(3) a required property is not specified and an existing individual
must be used to specify the property (integration), or (4) a property
value must be retracted (detaching). Note that properties can be
described as integratable if existing values should be used for them.
Processing these items requires to select (1) a more specific type,
(2) a set of types for newly instantiated individuals, (3) an existing
individual, or (4) which existing value should be retracted. The items
are caused by some unsatisfied constraint and are concerned with
the specification or retraction of a fact about a subject such that
the constraint becomes satisfied. Note that the restricted individual
with unsatisfied constraints is not necessarily the same as the subject
of the item for which a new fact must be asserted (i.e., in case
of violations in nested restrictions). Items are represented in an
ontology to allow for OWL reasoning about them, and to support the
specification of constraints in OWL terms. The consistency agenda
ontology is depicted in Figure 3.

1688

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

(1) Prefer items that were processed less often (Inhibition)

(2) Prefer to stick to the same individual (Continuity)

(3) Prefer classify tasks (Pattern)

(4) Prefer usesConnection relations of Assemblage in-
stances (Pattern)

Figure 4: Sequences of prioritized selection criteria are used to sort the
tasks deduced from local inconsistencies.

The agenda can be filtered according to patterns of agenda items.
These partial descriptions are represented as OWL classes, and to
infer if an agenda item matches a pattern it can be checked whether it
is an instance of it. Patterns may include constraints about the items
type, subject, and its cause. This allows, for example, to match items
that are concerned about subjects with a specific type, or subjects
with specific property values.

The fact to be asserted is restricted by the violated axiom that
caused the existence of the item. Such constraints are represented
using universal property restrictions on the about property. The
classification of a subject as instance of type T is represented as:
Y about.T, and the specification of an instance of class description
C as value for property P as: V about.(3 P.C).

Whenever an item is selected its validity is ensured. Items are
caused by a restriction R that is satisfied up to an axiom addressed
by the item. The item represents the restriction as: V causedBy.R,
and its validity is checked by testing if there is still an unsatisfied
axiom up to which R is satisfied, and which is a specialization of (or
the same as) the axiom that caused the item.

As an illustration, some example agenda items are listed and
explained below:

o “decompose TopWingInBodyl (uses— TopWingLooseOnBody)”
The existing connection TopWinglnBodyl is missing an assem-
blage that uses the connection. The assemblage must be an in-
stance of TopWingLooseOnBody.

“integrate TopWingInBody1 (consumes PlaneTopWingSlideInM)”
The existing connection TopWinglInBodyl is missing one of the
parts it must link. The part must have an affordance that is an
instance of PlaneTopWingSlideInM.

“detach BoltInHolderl (consumes BoltAffordancel)”

The bolt with affordance BoltAffordancel must be removed from
the connection BoltInHolderl that attaches the bolt to a holder.

5.2 Consistency strategy

Consistency may break at multiple axioms in the ABox such that a
decision has to be made about which axiom to establish next. This
is, for example, the case for assemblages with multiple connections
that link some parts that are not yet specified. The selection proce-
dure also implies the search strategy (e.g., following the partonomy
implies depth first search). Users need to have fine control over the
selection procedure to allow for flexible adaption to new planning
tasks (i.e., new or adapted assembly tasks). This is one of the reasons
we also employ ontologies for the representation of such selection
knowledge. Figure 4 shows a simple example of a selection strategy.

In section 4.3, we have listed reasons why enforcing consistency
in the ABox is restricted to local context. Meaningful context is
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Selection Strategy
Continuity Inhibition Specification Attention
is-a *
contains PatternSelection ItemPattern PatternAttention

Figure 5: Consistency strategies are composed of strategies for focusing
on relevant aspects, the selection of the next task, and procedures that
specify consistent property values (or further restrictions).

highly domain dependent. Assembly focuses on atomic parts and
their connections with each other while a different planning task
could be concerned with cooking a meal from a set of ingredients
according to a recipe that is formalized using DL, or even with
instantiating a motion controller based on what the robot knows
about the task ahead. To allow for such versatile planning tasks we
also employ knowledge pieces that describe what is relevant for a
given planning task (we say attention knowledge) as ontology.

Attention knowledge allows to decompose assembly tasks into
multiple phases that are concerned about establishing consistency in
different local contexts. For example, the robot may need to put a
part onto a holder such that one of its affordances is accessible. This
implies a connection between part and holder that is not part of the
final product, and thus can not be planned using the description of it.
Instead, the process can be decomposed into first putting the parts
on holders, and next putting parts together.

The agenda item selection procedure needs domain dependent
heuristics to make good decisions. The robot could, for example,
decide based on distance or reachability which part would be a
good next selection. Further, agenda items may need to be deferred,
for example, in case none of the candidate parts is reachable for
manipulation. To allow for user defined methods for the specification,
restriction, and deference of unsatisfied class statements we also
employ knowledge pieces that describe methods for the specification
of new facts (we say specification knowledge) as ontology.

All control knowledge pieces are composed into one data structure
that we call consistency strategy (depicted in Figure 5). Strategies
can be dynamically switched such that the robotic agent can flexibly
change between different assembly tasks.

5.3 Procedural view

The ultimate goal is to transform a scene of cluttered parts into an
assembled product according to the semantic description provided.
This transformation process can be decomposed into following steps:

(1) Strategy selection Strategies are collections of knowledge
pieces to control the establishment of local consistency using
control knowledge. The strategy is selected externally by the
robot’s plan executive.

(2) Initialization Initially, the target assemblage class describing
the final product is instantiated. It is also possible to start with
an existing partly specified assemblage. The assemblage is
traversed such that items are generated for all of its initially
linked parts. Items are generated for all the statements up to
which the traversed individuals satisfy their types.
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(3) Task selection Agenda items are sorted according to priori-
tized criteria that are described in the selection knowledge
pieces of the active strategy. The item with highest priority
is selected and further processed such that consistency is es-
tablished wrt. the unsatisfied class statement that caused the
existence of the item. Other items that would result in more
specific values for the same property and on the same subject
are also taken into consideration for additional restrictions on
candidate values to avoid unnecessary computation.

(4) Specification Consistency is enforced for candidate values
wrt. constraints implied by their role in the assemblage. The
specification process (e.g., finding a more specific type in
case of classify agenda items) can be controlled by methods
described in the specification knowledge pieces of the active
strategy. It is also allowed that these methods further restrict
candidate values instead of fully specifying the unsatisfied
axiom. The item is inhibited and re-added to the agenda if no
consistent value was found.

Projection The specification process does not assert new be-

liefs, this is done in a separate projection step. New individ-

uals are instantiated according to inferred type constraints,

and for each asserted property value, it is checked whether a

more specific property can be deduced from constraints on

the subject for which the property needs to be specified.

(&)

6 ASSEMBLY ACTIONS

We consider two general actions for this paper: Grasping of parts and
assemblages, and connecting two parts to form an assemblage. These
actions may be performed in many different ways, and with different
part and connection types (e.g., screwing and slide-in connections
need to be operated with different motions).

General action descriptions, called action designators, can be
derived from knowledge about the structure of an assemblage, and
how parts can be put together. It is up to the plan executive how
action designators are instantiated such that they are executable on
a particular robot. Additional action relevant information, such as
the location of the object, where to grasp it, or its physical proper-
ties, can be queried by the plan executive during action designator
instantiation to enhance the reusability of the plan schemata.

Connecting Something. Action designators are generated in a
bottom-up fashion starting from fully specified assemblages without
sub-assemblages, and following the inverse of the sub-assemblage re-
lation until an underspecified assemblage was reached. They include
information about the involved parts and their intended connection
with each other, and thus can only be generated after this information
was specified. An example action designator is depicted in Figure 6.
Mapping of partially specified assemblages to action designators
executable by the robot is done in an additional step: Each time when
new facts about an assemblage were asserted it is checked whether
an action can be derived from its description.

The robot has to reason about which of the parts needs to be
moved into the other part, and which part should remain fixed during
action execution. The fixed part must be held such that the assembly
affordance that is intended to connect it to the other part is exposed.
Single armed robots potentially need additional tools, such as holders
or clamps, to fix one of the parts. Dual arm robots may choose to
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[an, action,
[type: 'AssembleTwoParts'],
[part: [an, object,
[type: 'PlaneBottomWing'],
[name: 'PlaneBottomWing_1']]],
[with-part: [an, object,
[type: 'PlaneChassis'],
[name: 'PlaneChassis_1']1],
[with-connection: [a, thing,
[type: 'BottomWingSlideInChassis'],
[name: 'BottomWingSlideInChassis_1"']]]

Figure 6: An action designator generated during assembly planning to
be executed by the robot.

hold the fixed part with one gripper in such a way that the other
gripper can move the other part into it. The assembly ontology does
not represent this type of information (it only models how parts
are connected in the final product), and thus it can not be directly
inferred which of the objects should remain fixed.

We employ a heuristic for the determination of mobile and fixed
part in an assembly action that uses prioritized criteria to decide
which of the parts is better suited to be moved into the other one. The
prioritized list is as follows: (1) prefer parts with an unblocked grasp-
ing affordance, or which are connected to a part with an unblocked
grasping affordance (i.e., try not to destroy existing assemblages to
be able to grasp some part); (2) prefer parts whose assembly affor-
dance is blocked by a fixture (they must be moved anyway to expose
the affordance); (3) prefer parts that are not attached to a fixture; and
(4) prefer parts connected to a small number of other parts (move
small assemblages into big ones).

Grasping Something. The robot needs to reason about if and
how parts can be grasped. Each part may have multiple grasping
affordances that imply some way to grasp the part. Assemblages
may block the grasping affordance in case it is occluded by some
other part. Parts are only graspable if they have at least one grasping
affordance that is not blocked by some assemblage. The robot may
indirectly grasp a part, however, if it is connected to some other part
with an unblocked grasping affordance.

We employ a simple grasping subsumption hierarchy with differ-
ent types of power and precision grasps. Assembly parts can further
describe the contact point, pre-grasp pose, grasping force, and how
wide the robot should open its gripper when approaching the object.
A connection is established between the end effector of a robot and
the part it holds. Grasping connections may block assembly affor-
dances. This allows robots to reason about whether they hold the
part in the right way to perform an assembly action.

7 EXPERIMENTS

We characterize the performance of the proposed assembly planning
along following three dimensions: Steps required to formalize a
new assembly task, what types of queries can be answered about
assemblages, and how fast the next action can be deduced.

We selected a toy plane assembly targeted at 4 year old children
for evaluation. The toy plane is made of 21 plastic parts that are
mainly put together using loose slide in connections, and fixed with
bolts afterwards. The parts are comparably huge such that grasping
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them is easier. We use a single armed robot with a KUKA LWR
arm, and test the assembly planning in a Gazebo [10] simulation
environment. The plane is part of the YCB Object and Model Set [5].

Modeling. First we create a parts ontology for the toy plane, and
populate it with concepts corresponding to the parts (in this case,
there are 12 part types). Each part concept defines the assembly and
grasp affordances that it offers. We have added the affordances to
the definitions by hand, but we will look at ways to automate this,
either based on semantic annotations provided with the CAD files as
in [15], or possibly some geometric reasoning on part features.

The next step is to create an assemblages ontology and popu-
late it with sub-assemblages, up to the complete toy plane (in this
case, 22 sub-assemblages). Each sub-assemblage also defines what
sub-assemblages it should contain, which places some ordering con-
straints on how they are created. In this way we allow the user to
describe not just sequencing knowledge but also knowledge about
variations: sub-assemblages can be specified in terms of more gen-
eral classes from the parts ontology (e.g. Wing) as long as any
subclass is appropriate (e.g., StraightWing, BacksweptWing).

For the toy plane, we did the parts and assemblages modeling in
protégé [13], which took 4 hours. We expect that a dedicated tool
(e.g., with a form to specify a list of affordances, rather than the
many Add Object Property operations required in protégé) would
considerably speed up the process. We had CAD models of the parts
available and an instruction sheet on how to assemble the plane.

Querying. In the assembly domain, querying is mostly concerned
with the structure and the current state of an assemblage, as well as
how the robot should grasp, hold and put together parts.

Assemblages are made of connected assembly affordances. The
robot can reason about this structure by asking questions such as

“what are the assembly affordances used in an assemblage?”:

?7— assemblage_connection (Assemblage ,
rdf_has (Connection, 'consumesAffordance',
rdf_has (Part, 'hasAffordance',

Connection),
Affordance),
Affordance ).

The robot needs to identify incomplete assemblages to reason
about what to do next. Local context is enforced by only following
the subassemblage relation:

?7— subassemblage (Assemblage, SubAssembly),
assemblage_underspecified (SubAssembly ).

The robot can explain why an assemblage is incomplete by iden-
tifying unsatisfied axioms in the terminological model:

?7— owl_instance_from_class (kb: 'ToyPlaneBody ',
owl_type_of (Assemblage, Type),
owl_satisfies_up_to (Assemblage, Type, UpTo).

Type kb: "'Restriction_1",

UpTo specify (Assemblage ,

Assemblage),

kb:usesConnection, (exactly 1

(UpperBodySlideInFrame and
o)) D).

The robot can also reason about if and how a part can be grasped
to assemble it. For example, the grasp is not possible if the assembly
affordance would be blocked by the grasp. The robot may put the
query as follows:

(linksAssemblage some

?7— assemblage_connection (Assemblage ,
assemblage_possible_grasp (Assemblage ,
(Part , Affordance , Grasp)).

Connection),

Connection ,
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Figure 7: Run time performance for toy plane assembly planning with
varying number of available assembly parts (left), and with varying
number of constraints the assemblage must satisfy (right).

Run time performance. The run time performance of our approach
to assembly planning depends on factors such as the size of the KB,
and the structural complexity of the assembled product. Varying the
complexity of the assembly ontology itself is difficult. Instead, we
choose to vary the structural complexity by testing our approach
with different assemblages that the plane ontology describes. Further,
we measure the planning performance for growing size of statements
in the ABox by varying the number of parts available for assembly.

In the first test, we assert n random toy plane parts in addition to
the 21 parts that are required. The parts are asserted together with
their affordances, which yields, depending on the part type, from 8
up to 29 triples for each of the asserted parts. We vary n from O to
3.8 x 10*. We repeat this test 30 times to average out the random
selection of part types. With only 21 parts, the planner is able to
find a solution in roughly 1.1s within 32 planning steps. On average,
each step takes 34ms. In our experiments, the runtime performance
dropped maximally to 2.103s for the test with 3.6 x 10* additional
parts. The performance does, however, not drop continuously. This is
caused by hash table behavior of the triple storage employed in SWI
Prolog [22]. Anyway, the test shows that the current implementation
can deal with huge batches of parts: even with 5 x 10° additional
parts a solution was found in 1.75s

In the second test, we vary the complexity of the assemblage task
in terms of constraints the final assemblage must satisfy. The toy
plane ontology includes 22 assemblage descriptions with varying
complexity from which we choose 11 for this test. The complexity
is measured by counting the number of assertions and retractions
that were required to make an assemblage consistent. The most
simple assemblage requires 5 KB transactions and can be planned in
0.101s (averaged over 20 trials), while the most complex assemblage
with 62 transactions requires 1.629s of planning time. However, the
average time between transactions remains nearly constant at 0.025s
such that online planning is not affected much by the structural
complexity of the assembled product.

In more detail, the run time test results are shown in Figure 7.

8 RELATED WORK

There are several efforts to provide ontologies for robotics. By far the
largest is that of the IEEE-RAS working group ORA (Ontologies for
Robotics and Automation)[18], which aims at standardizing knowl-
edge representation for robotics. The ORA core ontology[17] has
been augmented with others for specific industrial tasks[6]. These
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extensions cover tasks such as kitting, where a robot places a set of
parts on a tray or similar receptacle to be carried towards an assembly
cell. Other robotic ontologies are the Affordance Ontology[21] and
the open-source KNOWROB ontology[20], the latter of which we
have chosen to use and expand. None of the mentioned ontologies
model assembly concepts as of yet.

As mentioned, the knowledge-enabled approach has been success-
fully employed for some industrial processes such as kitting[2, 3, 16].
Knowledge-enabled assembly has been investigated by the EU
ROSETTA project[9, 14, 19]; their knowledge representation in-
cludes concepts for tasks and sequences of tasks (including concepts
such as partial order constraints and graphs of tasks) and basic robot
skills. Other approaches to knowledge-enabled assembly convert
OWL descriptions into PDDL specifications[3, 11]. Knowledge-
enabled programming has also been employed as a means to ease
teaching a robot cell to assemble new products[15]; similar to our
knowledge modelling approach, they insist on annotating geometric
data about mechanical parts with information about semantically
meaningful features which can then be used to construct constraints
and sub-goals for an assembly task description.

In the cited works, the represented knowledge is to be used and
exchanged between various system components such as planning,
perception, and executives (so as to allow reasoning and replanning)
or training interfaces (in which case they provide the “vocabulary”
to describe a sequence of tasks in). Generation of action sequences
based on the semantic descriptions themselves is not done, unlike our
approach. Also, to the extent that knowledge modeling intended for
assembly appears, it is either very generally about sequences of tasks
(as in [9]) or focuses on geometric features of atomic parts (as in
[15]) as opposed to affordances and intermediary sub-assemblages.

9 DISCUSSION

Some relevant issues remain unconsidered in the scope of this paper.
This is, for example, the ability to take back decisions in the face of
changes that conflict with what was planned. Further, strategy selec-
tion could be done rule-based to make plan schemata more reusable.
We would also like to apply our approach to other domains such as
perception or motion control. Further, we have only worked with a
simulated robot. In the future, we want to employ our system on a
real robot, and in multi agent scenarios. Finally, some of the manual
steps could be automated. For example, we believe that some parts
of the terminological model can be auto-generated from existing
documents such as technical drawings or construction manuals.

10 CONCLUSION

In this paper, we have proposed a novel approach to assembly plan-
ning that employs formal descriptions of what an assembled product
should look like to plan the next action according to faulty and miss-
ing assertions in the belief state of a robotic agent. We have shown
that our approach scales well with growing number of parts available,
and also with varying structural complexity of the assembled product
such that online planning is feasible. We believe that our approach is
a step towards versatile and reconfigurable assembly cells, and that
these flexible assembly cells will, in the near future, allow customers
to individualize products without the cost implication customization
has nowadays.
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