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ABSTRACT
The objective of this research is to provide scalable decision making
algorithms for autonomously navigating urban environments. The
vehicle must plan in a stochastic environment with many entities
to avoid, rapid changes in driver behavior, and partial observability.
Partially observable Markov decision processes (POMDP) offer a
theoretically grounded framework to model such problems. We aim
at developing a scalable POMDP formulation that takes into account
dynamic occlusions, interaction between entities, and can general-
ize to a variety of different scenarios. This work demonstrates utility
fusion and deep reinforcement learning methods to efficiently find
optimal policies to navigate occluded urban environments.
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1 INTRODUCTION
Autonomous vehicles are expected to drive safely and reliably in
crowded urban environments. Decision making for autonomous
vehicles is challenging because they must anticipate rapid changes
in the intentions of human drivers and pedestrians. In addition,
they only have partial observations of the environment due to sen-
sor noise and occlusion. Providing appropriate behavior requires
reasoning about the potential locations of pedestrians and other ve-
hicles along with their motion over time. Hand-engineering strate-
gies to navigate such environments would require anticipating the
space of possible situations and finding a suitable behavior for each,
which places a large burden on the designer and is unlikely to scale
to complicated situations. Instead, our POMDP planning and utility
decomposition method automatically finds suitable behavior by
optimizing decision policies.

Previous work has explored modeling autonomous urban navi-
gation scenarios as POMDPs, which is a mathematical framework
for modeling dynamic, uncertain scenarios with imperfect state
measurements. Most POMDP approaches in the literature provide
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tailored solutions considering only a small number of agents, fo-
cusing either on intention prediction or occlusions but rarely both,
and still face tractability challenges [2, 5]. Some of them rely on
discretization, which imposes a rigid and suboptimal representa-
tion. Recent advances in POMDP planning techniques have demon-
strated their practical use on a robotic platform navigating in a
crowd [1]. Although these results are promising, it is still unclear
how the approach would perform in multi-modal scenarios with
sensor occlusions. In addition, large problems require simplified
models that fail to exploit interactions between traffic participants.

We propose a generic representation of driving scenarios as
POMDPs, considering sensor occlusions and interaction between
entities. The limitation of this framework is the computational
tractability, which we are addressing through utility fusion tech-
niques [9]. We demonstrate how to combine state-of-the art deep
Reinforcement Learning (RL) methods in a POMDP formulation.
Future research directions involve generalizing the approach to a
variety of scenarios and safety verification of the resulting policies.

2 PROPOSED APPROACH
Autonomous driving can be described as a sequential decision mak-
ing problem where the autonomous vehicle receives a partial ob-
servation of the environment and must take an action to maximize
a high level objective. We first explain how to model urban naviga-
tion scenarios as POMDPs and then demonstrate a decomposition
method to efficiently solve large decision making problems.

2.1 Modeling autonomous driving scenarios
In a POMDP, the environment is fully described by a state and
evolves through time following an underlying probabilistic model.
The agent only has partial observability of this state. At every time
step, the autonomous vehicle receives a noisy observation con-
taining partial information about the state and must decide which
action to take. Since the state is not fully observable, the agent must
estimate it using the history of its past observations and actions.
It aggregates the resulting information in a belief state, which is a
distribution over the possible states of the environment. Solving a
POMDP involves finding a mapping between the belief state and
the action to execute that maximizes the expected accumulated
discounted reward.

To model such scenarios, we suggest an entity-based represen-
tation of the state. An entity can be a pedestrian, another vehicle,
or a stationary obstacle such as a parked truck. Each entity is rep-
resented by its physical state (its position, heading, velocity, and

Doctoral Submission AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1731



geometry). Including stationary obstacles in the state representa-
tion allows the formulation to generalize to a variety of occluded
environments. The road topology is not explicitly present in the
state space but is assumed to be known by the planner. The au-
tonomous vehicle receives a noisy measurement of the physical
state of all the visible entities. However, some road-users might
be occluded by fixed obstacles or other moving entities. We have
demonstrated that belief state planners are well suited to reason
about the location of undetected road-users [4].

2.2 Utility Decomposition
To scale the POMDP approach to complex environments involving
a large number of entities, we propose decomposing the problem
into several tractable subproblems. Utility decomposition involves
approximating the global utility function as a combination of the
optimal utility function of each subproblem [6, 9]. A full scale navi-
gation scenario involving cars, pedestrian and stationary obstacles
can be decomposed in subgroups of three interacting entities, one of
them being the ego vehicle, to account both for interaction between
traffic participants and dynamic occlusions. Since the subproblems
are lower dimensional, they can be solved using offline POMDP
planners. For each of them, the solution method gives an approxi-
mately optimal belief-action utility function. The utility function
of the full scale problem is then approximated by combining the so-
lutions of the individual subproblems. This operation significantly
reduces the computational effort while enabling the planner to
consider a very large number of road-users. The resulting policy
outperforms rule-based methods, but the utility decomposition
sacrifices optimality.

To address this suboptimality, we proposed a technique inspired
by multi-fidelity optimization to derive a corrective term using
a neural representation [3]. This technique relies on the deep Q-
learning algorithm to learn the correction term gearing the solution
from utility decomposition towards optimality. Initializing the pol-
icy using the solution from the decomposition method significantly
reduces the exploration needed in deep Q-learning. The correction
term is sparse and easy to learn compared to learning the full-scale
utility function. We have shown empirically, through simulation
of an occluded crosswalk scenario, that learning the correction
term improves the quality of the policy in terms of the number of
collisions and the efficiency of the trajectory.

The decomposition method enables scaling POMDP techniques
to very large problems currently intractable by state-of-the-art
offline POMDP planners [8].

3 FUTURE DIRECTIONS
Thus far, This work has applied POMDP techniques and utility de-
composition to planning for autonomous driving in spite of sensor
occlusions. Additionally, we proposed an improvement on existing
approaches through learning an additive correction using a neural
representation. These works showed promising results in POMDP
methods for automotive applications.

The next steps of this research include extending the experiments
to different scenarios involving dynamic occlusions and interaction
between traffic participants. Considering subproblems of three enti-
ties allows us to model interactions between two traffic participants

as well as the ego vehicle. We first consider simple heuristics to
model this interaction and analyze the benefits of this modeling
on the resulting policy. An extension would be to model the other
agent using game theoretical approaches such as level-k models.
Enabling interaction-awareness in the planning model is likely to
improve the quality of the policy.

Another open problem is the generalization to different scenar-
ios. Given the recent advances in deep RL algorithms, we decided to
investigate the integration of neural representations in the POMDP
planning procedure. Our first consideration is to use recurrent neu-
ral networks to carry out the state estimation part (belief update)
of the planning. Using a neural representation as the state esti-
mator is likely to provide better generalization performance than
conventional Bayesian filters. Since obstacles are part of the state
description, the agent can keep a belief over possible obstacle con-
figurations. The resulting policy should be robust to any obstacle
shape.

Finally, another challenge to address is the lack of performance
and safety guarantees. Our current approach uses the reward func-
tion of the POMDP to balance conflicting objectives such as safety
and efficiency by varying the cost associatedwith collisions [2]. Met-
rics, such as time to reach the goal and collision rate, are then used
to choose a suitable operating point. Tools from formal methods
can be used to verify properties of a system with high confidence
and to constrain the search in RL or POMDP algorithms [7].
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