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ABSTRACT
In the field of multi-agent systems, as some agents may be not

reliable or honest, a particular attention is paid to the notion of

trust. There are twomain approaches for trust: trust assessment and

trust reasoning. Trust assessment is often realized with fuzzy logic

and reputation systems which aggregate testimonies – individual

agents’ assessments – to evaluate the agents’ global reliability. In

the domain of trust reasoning, a large set of works focus also on

trust in the reliability as for instance Liau’s BIT modal logic where

trusting a statement means the truster can believe it. However, very

few works focus on trust in the sincerity of a statement – meaning

the truster can believe the trustee believes it. Consequently, we

propose in this article a modal logic to reason about an agent’s trust

in the sincerity towards a statement formulated by another agent.

We firstly introduce a new modality of trust in the sincerity and

then we prove that our system is sound and complete. Finally, we

extend our notion of individual trust about the sincerity to shared

trust and we show that it behaves like a KD system.

KEYWORDS
Logics for agents and multi-agent systems; Trust and reputation.

ACM Reference Format:
Christopher Leturc and Grégory Bonnet. 2018. A Normal Modal Logic for

Trust in the Sincerity. In Proc. of the 17th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden,
July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
In the field of multi-agent systems, a particular attention was paid

to the notion of trust. Indeed, in many multi-agent systems, agents

must cooperate with each other in order to satisfy their goals. How-

ever, not all agents are necessarily reliable or cooperative and one

of the main technique for determining whether an agent is reliable

or not is to use a reputation system [20]. In such systems, agents

which interact evaluate each other with a trust value which is re-

fined as new interactions happen. Agents can then exchange those

values with testimonies: a communication in which an agent tells

if it trusts another agent. The aggregation of those testimonies

provides a reputation value, which represents a notion of collective

trust. Generally, an agent with a high reputation can be trusted

by other agents, even if those latter has never interacted with the

former before. It is important to notice that, as reputation systems

aim at approximating the reliability of the agents, testimonies do

not represent a ground truth: they represent a subjective evaluation
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of a single interaction. Consequently, taking into account differ-

ent (even contradictory) testimonies about an agent is of interest.

Moreover, as testimonies are subjective evaluations, they can be

biased by the agents’ capabilities or intentions (for manipulation

purpose for instance). To mitigate this problem, classical reputation

systems weigh the testimonies with respect to the agent’s repu-

tation [11, 12, 19]. However, several works show the interest to

clearly differentiate trust in reliability and trust in honesty of a

testimony, this latter being called credibility [14, 18, 21, 24, 26].

In the literature dedicated to model the socio-cognitive aspects

of trust [1], some works are interested to model how to assess

trust [6, 8, 13, 25]. Some other works focus on reasoning about

trust instead. They are interested to model trust with modal logics

[7, 10, 22, 23] and to characterize what are the logical implications

to trust another agent. Those modal logics make it possible to

express trust by means of one or more modalities such as intentions,

beliefs, goals or acts.While those approachesmake it easy to express

some aspects of trust such as delegation, they focus on trusting the

actions of other agents. However, in reputation systems, agents are

required to communicate testimonies to inform the other agents, for

example, of the quality of the services offered by third-party agents.

To address this problem, some works are devoted to knowledge

revision based on trust [9, 16], and others are devoted to modeling

the trust an agent expresses about the discourse of another agent

[3–5, 15].

While most of those latter deal with trust in the reliability of an

agent when he communicates a proposition, very few works deal

with trust in the honesty. For instance, Liau [15] defines a trust

modality to express trust in the judgment of another agent over a

proposition. By this modality, he understands the trust granted by

an agent to the reliability of a discourse of another agent, which is

indeed well different from the trust granted to the honesty of an

agent. Thus, based on the Oxford dictionary definition of honesty –

"free of deceit, truthful and sincere" –, we propose a first step with

a modal logic expressing the trust in the sincerity granted by an

agent i to a statement ϕ proposed by another agent j. The main

characteristic of our logic is to link trust modality with the beliefs

of the trusted agent: an agent is sincere if it believes what it says.

We prove the soundness and completeness of our logic, along with

several interesting properties, such as the non-transitivity of trust

in the sincerity: it is not because an agent i trusts in the sincerity

of an agent j about its trusts in the sincerity of an agent k that the

agent i should trust in the sincerity of the agent k .
This article is structured as follows. In Section 2, we present

a state-of-the-art on modal logics for trust then, in Section 3, we

present the semantics and the axiomatics associated with our logic.

We show that our semantics is sound and complete in Section 4 and

we give several properties of our logic in Section 5.
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2 MODAL LOGICS OF TRUST
Castelfranchi and Falcone [1] studied various fundamental com-

ponents of trust, including its dynamic aspects, particularly in the

context of decision-making and the construction of intentions. They

also studied the act of self-trust, or how to authorize the delegation

of shared tasks. They show that modeling trust in its entirety is

very complex. Thus, most logical approaches restricted themselves

to specific aspects of trust. We distinguish in this section two types

of approaches: modal logics that use predicates to represent trust

and modal logics that rely on a trust modality.

2.1 Trust as a predicate
Herzig et al. [10] consider trust as a predicate, meaning that agent

i trusts another agent j about an action α having for consequences

the proposition ϕ if, and only if, all the following statements are

true:

(1) i has the goal ϕ,
(2) i believes that:
(a) j is able to execute the action α ,
(b) j by doing α will ensure ϕ,
(c) j intends α .

This makes it possible to define a predicate of occurrent trust.
This notion reflects an aspect of trust in the present, namely the

fact that an agent j is well-prepared to perform the action for which

i trusts it. A second notion of trust, dispositional trust, expresses
the trust granted by an agent i to an agent j about the fact that this
agent j will realize the proposition ϕ in a specific context. Smith et
al. [23] also consider an occurrent notion of trust meaning that an

agent i trusts another agent j for ϕ if, and only if, all the following

statements are true:

(1) i has the goal ϕ,
(2) i believes that j performs ϕ,
(3) i intends that:
(a) j performs ϕ,
(b) i does not perform ϕ.

(4) i has the goal that j intends ϕ,
(5) i believes that j intends ϕ.

Let us remark both trust notions are trust in the reliability of

an agent. Moreover, those trusts cannot characterize trust in the

reliability of a communication. Indeed, the previous definitions

assume that an agent j is communicatingψ to an agent i , denoted
α j,i then the communication’s consequences are ϕ = Biψ . By

applying the definition of Herzig et al., i trusting j for the action α j,i
implies that i aims to believe the propositionψ . Thus, it expresses
the fact that the agent trusts because it has to believe as a goal.

Some other works, such as those of Christianson and Harbi-

son [3] or Demolombe [5], propose to model other aspects of trust.

Interestingly, Demolombe proposes a model for trust in the sincer-

ity and trust in the honesty. His logic relies on several modalities

– Ki , Bi , Comi, j , O , P , and Ei which are respectively Knowledge,

Belief, Communication, Obligation, Permission, and Bringing it

about – and defines predicates for trust. On a first hand, trust in the
honesty is defined as:

Thoni, j (ϕ)
△
= Ki (Ejϕ ⇒ PEjϕ)

It means an agent i trusts in the honesty of j if, and only if, i
knows that if j brings it about that ϕ then j is allowed to bring it

about that ϕ. Here, trust in the honesty is related to the noninfringe-

ment of norms, and does not encompass all aspects of honesty. On

the other hand, trust in the sincerity is defined as:

Tsinci, j (ϕ)
△
= Ki (Comj,iϕ ⇒ Bjϕ)

It means an agent i trusts j when i knows that if j communicates

ϕ to j , then j believes ϕ. Although, it captures the notion of sincerity,
the predicate is linked to a communication action modality associ-

ated with a minimal semantics. Consequently, it makes the trust

predicate dependent of the communication axiomatic and Tsinc
cannot behaves like a KD system, which is important to not trust

in the sincerity of an agent if it says something and its contrary.

2.2 Trust as a modality
Expressing trust of an agent i towards an agent j with a modality

allows for expressing inference mechanisms that are necessary

when we consider a trust aspect like a disposition of an agent to
act [22] or a reliability of information [4, 7, 15].

The first approach, proposed by Singh [22], expresses a dispo-

sitional trust through a modality Tdi, j (ϕ,ψ ) meaning that an agent

i trusts another agent j to realizeψ in a context ϕ. If ϕ is true, the

trust of agent i towards j is activated. An occurrent trust can be

expressed then as Tdi, j (⊤,ψ ) meaning that at every moment (and

therefore in the present moment) i trusts j about the statementψ .
Singh’s approach uses around twenty axioms. For example, ifψ is

already true then the agent i does not trust j so that, in the context

ϕ,ψ is true.

The second approach, proposed by Liau [15] and extended by

Dastani et al. [4], introduces the BIT formalism for reasoning about

trust of an agent i in the judgment of another agent j . This modality

T ri, j is associated with a minimal semantics as the trust may be irra-

tional: an agent can trust another agent that says something and its

contrary (T ri, jp ∧T
r
i, j¬p is not inconsistent). In order to deduce new

beliefs thanks to information acquisition and trust, Liau introduces

a modality Ii, j which means that i has acquired information from

j. While Demolombe uses a minimal semantics for Comi, j , Liau

defines Ii, j as a KD system representing the consequences of a suc-

cessful communication. Interestingly, BIT is extended with several

axiomatic systems such as BA, TR, SY, in order to catch specific

aspects of trust in the reliability. For instance, BA is the less restric-

tive system: it considers one axiom for trust to infer new beliefs, i.e.

⊢BA Bi Ii, jϕ ∧T
r
i, jϕ ⇒ Biϕ, and one other axiom to represent self-

awareness of the granted trust, i.e. ⊢BA T ri, jϕ ≡ BiT
r
i, jϕ. As another

example, the SY system captures the case where an agent can trust

the reliability of another agent for both ϕ and ¬ϕ in order to ac-

quire new knowledge when asking a question: ⊢SY T ri, jp ⇒ T ri, j¬p.

This axiom is highly relevant in reputation systems as it allows to

acquire new knowledge without knowing in advance the response

given by the agent. Indeed, when an agent i questions an agent j
about a proposition p (denoted thatQi, jp), Liau asserts that if agent

i trusts j for its ability to answer the question, that is, if i trusts the
judgment of j for p then i also trusts the judgment of j for ¬p.

Even the BIT formalism clearly takes the perspective of acquiring

new information, its trust modality cannot express trust for two
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agents that say propositions which contradict each other. In this

sense, this approach does not deal with trust in the sincerity but

trust in the reliability. Hence we propose the opposite: being able

to trust agents that contradict each other and being unable to trust

an agent that contradicts itself. This notion makes sense when

agents are aware that they can be deceived by other agents. Indeed,

we consider that, since trust is often accompanied by a risk, it is

necessary to have rules of inference preventing the agents from

blindly trusting another agent which contradicts itself from the

sincerity perspective. However, it should be noted that trust in the

reliability and trust in the sincerity are related.

Thus, we propose a normalmulti-modal logicwith amodality that

allows representing trust in the sincerity of a discourse produced

by an agent. More precisely, we want a truster agent being able to

trust several agents that may contradict each other, as the sincerity

is not related to truth: an agent may be wrong while being sincere.

3 A NORMAL MODAL LOGIC OF TRUST
In our modal logic, trust between agents is expressed by a modality

T si, jϕ which means that i trusts in the sincerity of j about a proposi-
tion ϕ. As we also consider a belief modality Bi , we call our system
TB (trust and belief).

3.1 Language
Let us define a languageLT ,B which considers a set of propositional

letters P = {a,b, c, ...}, a set of agents N with i, j ∈ N two agents,

and p ∈ P a propositional variable. We consider the following BNF

grammar rule :

ψ ::= p |¬ψ |ψ ∧ψ |ψ ∨ψ |ψ ⇒ ψ |T si, jψ |Biψ

Let us notice that Bi differs from T si,i because the latter means

that an agent i trusts itself in its sincerity about ϕ. Furthermore,

unlike Liau and Demolombe [5], we do not introduce explicitly an

information acquisition or communication modality. Firstly, Liau

considers trust as a potential trust modality, meaning that if an

agent trusts in the judgement of another agent then the truster

can (i.e. has the potential to) believe the trustee for its answer. Our

trust modality T si, j is different as it is an effective trust modality

which is active in the present time: when it is the case that an

agent trusts in the sincerity of another agent for ϕ, it means that

the truster believes that the trustee believes what it said. Secondly,

as we focus on logical implications of trust, we define an atomic

fragment of a modal logic for trust in the sincerity. We consider

that when an agent i trusts in the sincerity of another agent j about
ϕ, i has already acquired information from j to deduce if j is sincere
or not. Therefore, we do not need a specific modality to represent

information acquisition.

3.2 Associated Kripke semantics
We define a Kripke frame C = (W, {Bi }i ∈N , {T

s
i, j }i, j ∈N ) associ-

ated with LT ,B where:

• W is a non-empty set of possible worlds,

• {Bi }i ∈N is a set of binary relations such that:

∀i ∈ N ,∀w ∈ W : Bi (w ) := {v ∈ W|wBiv}

• {T s
i, j }i, j ∈N is a set of binary relations such that:

∀i, j ∈ N ,∀w ∈ W : T s
i, j (w ) := {v ∈ W|wT s

i, jv}

We define a Kripke model asM = (W, {Bi }i ∈N , {T
s
i, j }i, j ∈N , i )

with i : P → 2
W

an interpretation function. For each world

w ∈ W , for all ϕ,ψ ∈ LT ,B and for all p ∈ P:

(1) w |= ⊤
(2) w ̸ |= ⊥
(3) w |= p iffw ∈ i (p)
(4) w |= ¬ϕ iffw ̸ |= ϕ
(5) w |= ϕ ∨ψ iffw |= ϕ orw |= ψ
(6) w |= ϕ ∧ψ iffw |= ϕ andw |= ψ
(7) w |= ϕ ⇒ ψ iffw |= ¬ϕ orw |= ψ
(8) w |= Biϕ iff ∀v ∈ W : wBiv,v |= ϕ
(9) w |= T si, jϕ iff ∀v ∈ W : wT s

i, jv,v |= ϕ

Let us notice that Bi is a classical □ modality like [5, 10, 15].

Concerning the trust modality, we consider an accessibility relation

for each pair of agents (i, j ) ∈ N 2
. This binary relation translates

that an agent i trusts j for a property ϕ in a possible worldw ∈ W
if, and only if ϕ is true in each accessible world from w by the

relation T s
i, j .

Classicaly, ϕ is satisfiable inw iffw |= ϕ is true, and ϕ is valid in

a modelM (writtenM |= ϕ) iff, for each worldw ∈ W ,M,w |= ϕ.
A formula ϕ is valid in a frame C (written |=C ϕ or C |= ϕ) iff, for
each modelM based on the frame C,M |= ϕ.

Our Kripke frame C is such that for all i, j ∈ N :

(1) ∀w ∈ W,∃v ∈ W : wT s
i, jv

(2) ∀w,u,v ∈ W : wBiu ∧ uT
s
i, jv ⇒ wT s

i, jv

(3) ∀w,u,v ∈ W : wBiu ∧wT
s
i, jv ⇒ uT s

i, jv

(4) ∀w,u,v ∈ W : wBiu ∧ uBjv ⇒ wT s
i, jv

(5) Bi is serial, transitive and Euclidean.

When an agent trusts in the sincerity of another agent, it takes

the risk of being deceived. Thus, a way to be protected from decep-

tion is to not be able to trust in something and its opposite. Indeed,

an agent cannot trust another one which contradicts itself. A glar-

ing example of this connection between trust in the sincerity and

non-contradiction is very well illustrated by a police investigation

into a crime scene. The police officers trust in the sincerity of the

witnesses as long as they do not get contradictory information.

Therefore, a way to consider this principle is to say that there is

always an accessible world by T s
i, j from any world, which is given

by property (1).

An agent is also aware of the trust it grants to another agent.

The property (2) given in [7, 15] illustrates this constraint: if an

agent is trusted then the truster agent believes that it trusts the

trustee. Moreover, we add the property (3) which means that if an

agent does not trust another agent then the former agent believes

that it does not trust the latter agent.

The property (4) is associated with the notion of sincerity un-

derlying in honesty: a sincere agent communicates information it

believes true. Thus, when an agent trusts another one for ϕ then it

can deduce that it believes the other agent believes ϕ.
Finally, the last properties given in (5) are the usual properties

used to represent a doxastic modality [5, 10, 15].
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3.3 Axiomatic system
We consider the following axioms: propositional calculus tautolo-

gies, classical rules of inference in modal logics (K,Nec, Sub) and a
consistency axiom between trusts (D). Our logic of trust is therefore
a normal logic that satisfies the necessitation, substitution, modus

ponens and the Kripke’s axiom K. The necessitation means that

if a formula ϕ is a theorem (⊢ ϕ) then any agent i can trust any

other agent j about this theorem (⊢ T si, jϕ) and any agent i believes

ϕ (⊢ Biϕ) . The substitutionmeans that if we uniformly substitute

any formula for any propositional letter in a theorem, the resulting

formula is also a theorem. The modus ponens means that if a

proposition ⊢ ϕ is proved as a theorem and if it is also proved that

⊢ ϕ ⇒ ψ is a theorem then the formula ⊢ ψ is proved. Furthermore

we consider the definition of the derivation proof from the sets of

formulas with necessitation(s) restricted to theorems in order that

the deduction theorem follows easily.

Finally, our trust modality satisfies the axiom K: if an agent i
trusts an agent j on p:= "The financial situation of company X is

excellent." which implies q:="It is worthwhile to invest in company

X." then, if i trusts j for p then i also trusts j for q. Formally,

⊢ T si, j (p ⇒ q) ⇒ T si, jp ⇒ T si, jq (K )

Let us notice that Liau [15] does not consider the axiom K. In-

stead, he uses a minimal semantics. Indeed, according to Liau, when

considering T ri, jp ∧ T
r
i, j (p ⇒ q), T ri, jq must not be deduced: it is

not because i trusts the judgment of j for both propositions p and

(p ⇒ q) that i trusts j for q. Considering artificial systems, an agent

j that does not deduce ψ is an irrational agent. However, we can

reasonably assume that all agents, in an artificial agent system, are

rational. Thus, if i trusts in the judgement of j for both p and p ⇒ q
then i should trust j for q. In the context of sincerity, the same

argument holds.

3.4 Non-inconsistency of trust
We want to express the fact that if an agent i trusts j for a proposi-
tion, i cannot trust j for the opposite because of reasons of coherence
of the discourse: it is not possible to trust in the sincerity of an

agent that contradicts itself.

⊢ T si, jp ⇒ ¬T
s
i, j¬p (D)

This translates the fact that for instance if an agent i trusts in
the sincerity of j for p :="The work is done" then this agent i does
not trust in the sincerity of j for ¬p: a sincere agent must have a

consistent discourse. However, we cannot generalize this axiom

to any other agent k ∈ N , T si, jp ⇏ ¬T
s
i,k¬p. Indeed, if an agent i

trusts in the sincerity of j for p is true, that is T si, jp. Nothing tells

us and prevents us from having T si,k¬p for another agent k and

it is not an inconsistency situation. Indeed, since T si, j is trust in

the sincerity, two agents may have contradictory discourses and it

does not mean that they are not sincere. Moreover, if we assume

such a generalization, we would immediately deduce the theorem

T si, jp ∧T
s
i,k¬p ⇒ ¬T

s
i,k¬p ∧T

s
i,k¬p which is generally not true.

Let us recall that Liau’s BIT system does not allow to trust two

different and contradictory sources, whereas in our case it is quite

possible to trust them. On the contrary, Liau’s model can trust an

agent for something and its contrary whereas we cannot.

3.5 Link between trust and belief
Liau [15] has axiomatized a link between trust and belief. An agent

is self-aware about the trust it grants to another agent. For instance,

we consider that if an agent i trusts in the sincerity of j about the
proposition p :="The product is good", then the agent i believes
that i trusts in the sincerity of j on the proposition p:

⊢ T si, jp ⇒ BiT
s
i, jp (4T ,B )

However, instead of considering the reciprocal as Liau does, we

consider a kind of negative introspection.

⊢ ¬T si, jp ⇒ Bi¬T
s
i, jp (5T ,B )

Interestingly, we show in Section 5 that our system allows us to

deduce the reciprocals of both previous axioms.

Note that we do not consider an axiom of non-inconsistency

between trust and belief. In fact, if an agent believes that something

is true, it does not imply that it does not trust another agent that

announces the opposite of his belief, i.e. ∀i, j ∈ N ,Bip ⇏ ¬T
s
i, j¬p

is not true in general. Indeed, in trust in the sincerity, an agent can

believe p :="He is a good mechanic" and can trust in the sincerity

of another agent for its opposite ¬p at the same time.

Finally, a last important axiom is the axiom of sincerity associated
with our modality of trust in the sincerity. It expresses the fact that

if an agent i trusts in the sincerity of another agent j for p :="He

told me the truth" then i believes that j believes that p.

⊢ T si, jp ⇒ BiBjp (S )

We do not consider the reciprocal of the axiom of sincerity. Let

us recall the axiom deals with trust in the sincerity and not in the

sincerity in itself. As trust is a special kind of mental state, between

knowledge and belief where trust is weaker than knowledge, and

belief is weaker than trust, it is possible for external reasons that an

agent is wrong about its beliefs about the other agents. As it knows

that its beliefs are not necessarily true, then the agent is free to not

trust the others in order to protect itself.

Furthermore this property cannot be expressed in Liau’s system.

Indeed, even if it is not contradictory to write T ri, jp ∧ T
r
i, j¬p, by

considering T ri, jp ⇒ BiBjp we would have (T ri, jp ∧ T ri, j¬p) ⇒

(BiBjp∧BiBj¬p) whichmay be not true and so cannot be a theorem.

In our model, it may be considered as a theorem, because even

if BiBjp ∧ BiBj¬p is a contradiction, the false implies the false

is always verified. In the same way, we are able to deduce the

following theorem ⊢ T si, jp ∧ T
s
i,k¬p ⇒ (BiBjp ∧ BiBk¬p) which

is not a theorem in Liau’s BA system [15] because, in this model,

agents cannot trust the reliability of two different inconsistent

sources (⊢BA Bi (Ii, jϕ ∧ Ii,k¬p) ⇒ ¬(T
r
i, jp ∧T

r
i,k¬p)).

4 SOUNDNESS AND COMPLETENESS
Firstly, we prove the main validity results for our TB system, and

recall the standard validity properties, characterizing the properties

that must respect the accessibility relationships of our Kripke frame.

Then we prove that our axiomatic system TB is sound. Finally, we

demonstrate that the properties of those relationships completely

describe the axiomatic system we proposed.
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4.1 Valid formulas in our Kripke frame
We consider a frame C = (W, {Bi }i ∈N , {T

s
i, j }i, j ∈N ) on LT ,B . Let

us first prove the corresponding Kripke frame for the axiom (5T ,B )
⊢ ¬T si, jp ⇒ Bi¬T

s
i, jp.

Proposition 4.1. For all agents i, j ∈ N , C |= ¬T si, jp ⇒ Bi¬T
s
i, jp

if, and only if:

∀w,u,v ∈ W,wBiu ∧wT
s
i, jv ⇒ uT s

i, jv

Proof. Let i, j ∈ N be two agents,

(⇒) By contraposition, let us consider there existsw,u,v ∈ W :

wBiu ∧wT
s
i, jv ∧¬(uT

s
i, jv ) . Let us define a modelM where i (p) =

W\ {v}. Since i (p) =W\ {v} andwT s
i, jv we haveM,w |= ¬Ti, jp.

Furthermore ¬(uT s
i, jv ) and, thusM,u |= Ti, jp. Then sincewBiu,

we deduceM,w |= ¬Bi¬T
s
i, jp.

Consequently, there exists a modelM and a worldw ∈ W such

thatM,w |= ¬T si, jp ∧ ¬Bi¬T
s
i, jp i.e. C ̸|= ¬T si, jp ⇒ Bi¬T

s
i, jp

(⇐) By contraposition, there exists a modelM = (W, {Bi }i ∈N ,
{T s
i, j }i, j ∈N , i ) and a world w ∈ W such that M,w |= ¬T si, jp ∧

¬Bi¬T
s
i, jp. Thus, there exists v ∈ W ,wT s

i, jv such thatM,v |= ¬p

and there exists u ∈ W : wBiu such that M,u |= T si, jp. Since

v < i (p) and ∀u ′ ∈ W : uT s
i, ju
′,M,u ′ |= p, we deduce that

¬(uT s
i, jv ). □

We characterize the accessibility relation’s properties for the

axioms (4T ,B ) T
s
i, jp ⇒ BiT

s
i, jp, and (S ) T si, jp ⇒ BiBjp.

Proposition 4.2. For all i, j ∈ N and (□,R ) ∈ {(T si, j ,T
s
i, j ),(Bj ,Bj )},

C |= T si, jp ⇒ Bi□p if, and only if:

∀w,u,v ∈ W,wBiu ∧ uRv ⇒ wT s
i, jv

Proof. Let i, j ∈ N be two agents and (□,R ) ∈ {(T si, j ,T
s
i, j ),(Bj ,Bj )},

(⇒) By contraposition, let us suppose there existsw,u,v ∈ W :

wBiu ∧ uRv and ¬(wT s
i, jv ). Now let us define a modelM where

i (p) =W \ {v}. Since ¬(wT s
i, jv ) thenM,w |= T

s
i, jp. Furthermore,

as uRv and M,v |= ¬p, we deduce that M,u |= ¬□p and as

wBiu, then M,w |= ¬Bi□p. We have M,w |= T si, jp ∧ ¬Bi□p.

Consequently, ̸ |=C T
s
i, jp ⇒ Bi□p.

(⇐) By contraposition, ̸ |=C T
s
i, jp ⇒ Bi□p. Thus, there is a model

M = (W, {Bi }i ∈N , {T
s
i, j }i, j ∈N , i ) and a world w ∈ W such that

M,w |= T si, jp ∧ ¬Bi□p. Thus, for all v
′ ∈ W : wT s

i, jv
′
,M,v ′ |= p

and there is u ∈ W : wBiu,M,u |= ¬□p. Consequently, there
exists v ∈ W : uRv , M,v |= ¬p. However, for all v ′ ∈ W :

wT s
i, jv
′,M,v ′ |= p so ¬(wT s

i, jv ). We just have proved there are

w,u,v ∈ W such thatwBiu ∧ uRv and ¬(wT s
i, jv ).

Consequently, for all C |= T si, jp ⇒ Bi□p if, and only if:

∀w,u,v ∈ W,wBiu ∧ uRv ⇒ wT s
i, jv

□

We recall that the D axiom corresponds to the seriality property.

Proposition 4.3. For all agents i, j ∈ N , C |= T si, jp ⇒ ¬T
s
i, j¬p

if, and only if:
∀w ∈ W,∃v ∈ W : wT s

i, jv

Proof. This is a standard proof [2]. □

Finally, we also recall the properties for all KD45 systems.

Proposition 4.4. For all i ∈ N , all KD45 axioms for Bi are
verified in C iff C is serial, transitive and Euclidian for Bi .

Proof. It is also a standard proof [2]. □

4.2 Soundness
Theorem 4.5. The TB system is sound.

Proof. (Sketch) Since we shown in the previous section that

the properties of accessibility relationships in our frame preserve

the validity for a formula ϕ, we just need to prove that the substitu-
tion, modus ponens and necessitation inference rules preserve the

validity which are well-known theorems [2]. □

4.3 Completeness
In order to prove completeness, we define and recall firstly classical

propositional theorems about maximal consistent sets, and then

we define a canonical model for our axiomatic system. Finally, we

prove that our canonical model satisfies each required property to

preserve our axioms’ validity.

4.3.1 Maximal consistent sets. In this sub-section we recall fa-

mous results about maximal consistent sets [2]:

Definition 4.6 (LT ,B -inconsistency). A set Σ of formulas is LT ,B -
inconsistent iff ∃ψ1, ...,ψn ∈ Σ :⊢ ¬

∧n
i=1ψi . A set Σ of formulas is

LT ,B -consistent iff Σ is not LT ,B -inconsistent. A set of formulas Γ
is maximal LT ,B -consistent iff ∄Γ′ : Γ ⊊ Γ′ such that Γ′ is LT ,B -
consistent.

We recall Lindenbaum’s lemma that will allow us to demonstrate

our completeness theorem.

Lemma 4.7 (Lindenbaum’s lemma). For all sets Γ which areLT ,B -
consistent, there exists a set of formulas Γ′ such that Γ ⊆ Γ′ and Γ′

maximal LT ,B -consistent.

Finally, we recall some important properties about maximal

LT ,B -consistent sets.

Proposition 4.8. For all Γ maximal LT ,B -consistent and ϕ,ψ ∈
LT B two formulas.

(1) MCS1: Γ ⊢ ϕ =⇒ ϕ ∈ Γ
(2) MCS2: (ϕ ∈ Γ ∨ ¬ϕ ∈ Γ) ∧ ¬(ϕ ∈ Γ ∧ ¬ϕ ∈ Γ)
(3) MCS3: (ϕ ∨ψ ∈ Γ) ⇐⇒ ϕ ∈ Γ orψ ∈ Γ
(4) MCS3’: (ϕ ∧ψ ∈ Γ) ⇐⇒ ϕ ∈ Γ andψ ∈ Γ
(5) MCS4: [(ϕ ⇒ ψ ∈ Γ) ∧ (ϕ ∈ Γ)] =⇒ ψ ∈ Γ
(6) MCS5: ⊢ ϕ iff ∀Γ′ maximal LT ,B -consistent, ϕ ∈ Γ′

4.3.2 Canonical model. A canonical model allows to make the

direct correspondence between a theorem of our system and the

validity of a formula in this model. A modelMc
is a canonical model

of our system TB if it satisfies the following definition:

Definition 4.9 (Canonical model). Let Mc = (Wc , {Bci }i ∈N ,

{T c
i, j }i, j ∈N , i

c ) be a Kripke model on LT ,B such that:

• Wc
is a non-empty set of worlds where each world is a

maximal LT ,B -consistent set of formulas,
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• {Bci }i ∈N is a set of binary relations such that:

∀i ∈ N ,∀w ∈ W : wBci v iff Biϕ ∈ w ⇒ ϕ ∈ v

• {T c
i, j }i, j ∈N is a set of binary relations such that:

∀i, j ∈ N ,∀w ∈ Wc
: wT c

i, jv iff T si, jϕ ∈ w ⇒ ϕ ∈ v

• ic : P → 2
W

is an interpretation function such that:

∀p ∈ P,w ∈ ic (p) iff p ∈ w

We consider the following notations:

• ∀i, j ∈ N ,∀w ∈ Wc ,T ∗i, j (w ) := {ϕ ∈ LT ,B |T
s
i, jϕ ∈ w }

• ∀i ∈ N ,∀w ∈ Wc ,B∗i (w ) := {ϕ ∈ LT ,B |Biϕ ∈ w }

The relations T c
i, j and B

c
i become:

• ∀i, j ∈ N ,∀w,v ∈ Wc
: wT c

i, jv iff T ∗i, j (w ) ⊆ v

• ∀i ∈ N ,∀w,v ∈ Wc
: wBci v iff B∗i (w ) ⊆ v

4.3.3 Canonical model and axiomatic system. Let us consider
Mc = (Wc , {Bci }i ∈N , {T

c
i, j }i, j ∈N , i

c ) a canonical model of TB.

Lemma 4.10. Let i, j ∈ N and ϕ ∈ LT ,B ,
• ∀w ∈ Wc

: ¬T si, jϕ ∈ w ⇒ T
∗

i, j (w )∪{¬ϕ} isLT ,B -consistent.
• ∀w ∈ Wc

: ¬Biϕ ∈ w ⇒ B∗i (w ) ∪ {¬ϕ} is LT ,B -consistent.

Proof. Let w ∈ Wc
, i, j ∈ N , (□,R ) ∈ {(T si, j ,T

c
i, j ), (Bi ,B

c
i )}.

Let us assume by contraposition thatR∗ (w )∪{¬ϕ} isLT ,B -inconsistent.
Thus, there exists n ∈ N andψ1, . . . ,ψn ∈ R

∗ (w ) such that:

(1) ⊢ ¬(
∧n
k=1ψk ∧ ¬ϕ)

(2) ⊢ ¬
∧n
k=1ψk ∨ ¬¬ϕ

(3) ⊢
∧n
k=1ψk ⇒ ϕ

(4) ⊢ □(
∧n
k=1ψk ⇒ ϕ)

(5) ⊢ (□
∧n
k=1ψk ⇒ □ϕ)

(6) ⊢ (
∧n
k=1 □ψk ⇒ □ϕ)

(7) ⊢ ¬(
∧n
k=1 □ψk ∧ ¬□ϕ)

Consequently, {□ψ1, . . . ,□ψn ,¬□ϕ} is LT ,B -inconsistent. How-
ever, ∀k ∈ [|1, . . . ,n |],ψk ∈ R

∗ (w ) if, and only if, □ψk ∈ w andw is

maximal LT ,B -consistent. Thus,
∧n
k=1 □ψk ∈ w (MCS3’) and then

{□ψ1, . . . ,□ψn } is LT ,B -inconsistent. As {□ψ1, . . . ,□ψn } ∪ {¬□ϕ}
is LT ,B -inconsistent, ¬□ϕ does not belong to a maximal LT ,B -

consistent set. Consequently, ¬□ϕ < w1
.

Thus, we proved that if ¬□ϕ ∈ w , then R∗ (w ) ∪ {¬ϕ} is LT ,B -
consistent. □

We need a third lemma to demonstrate the completeness of our

system.

Lemma 4.11. Letw ∈ Wc and ϕ ∈ LT ,B ,

Mc ,w |= ϕ iff ϕ ∈ w

Proof. Let us demonstrate the lemma by induction on the de-

gree n ∈ N of a formula.

(Initialisation) If ϕ ∈ LT ,B is a 0-degree formula, there exists

p ∈ P,ϕ = p. By definition of the canonical model, we have ∀w ∈
Wc ,w ∈ i (p) iff p ∈ w .

(Heredity) For all formulas ϕ ∈ LT ,B of degree < n with n ∈ N
and for allw ∈ Wc

:Mc ,w |= ϕ iff ϕ ∈ w .

1
If we had ¬□ϕ ∈ w , we would also have

∧n
k=1 □ψk ∧ ¬□ϕ ∈ w (by MCS3’) and

then {□ψ1, . . . , □ψn, ¬□ϕ } would be LT ,B -consistent, which is a contradiction.

So for all ψ ,θ ∈ LT ,B such that ¬ψ , ψ ∨ θ , ψ ∧ θ and ψ ⇒ θ
are n-degree formulas for each w ∈ Wc

, we have (by heredity

hypothesis):Mc ,w |= ψ iffψ ∈ w andMc ,w |= θ iff θ ∈ w . It is

standard to show heredity holds for each formula [2].

Let (R,□) ∈ {(Bi ,Bi ), (T
s
i, j ,T

s
i, j )}, w ∈ W

c
and □ψ a n-degree

formula.

(⇒) By contraposition let us assume that □ψ < w and, as w
is maximal LT ,B -consistent, we have ¬□ψ ∈ w . By Lemma 4.10,

we deduce R∗ (w ) ∪ {¬ψ } is LT ,B -consistent. By Lemma 4.7, we

deduce there exists av ∈ Wc
: R∗ (w )∪{¬ψ } ⊆ v andv is maximal

LT ,B -consistent.

Thus, ¬ψ ∈ v and, by definition of Rc , we havewRcv andψ < v .
By the induction hypothesis, we have Mc ,v ̸ |= ψ . Since there

exists v ∈ Wc
: wRcv : v |= ¬ψ , we haveMc ,w |= ¬□ψ , i.e,

Mc ,w ̸ |= □ψ .
(⇐) By contraposition, let us assume that Mc ,w ̸ |= □ψ , i.e.

Mc ,w |= ¬□ψ . Thus, there exists v ∈ W : wRcv,Mc ,v |= ¬ψ .
Consequently,Mc ,v ̸ |= ϕ and, by the induction hypothesis, we

have ϕ < v . However, since ϕ < v , by definition of Rc , we deduce

that □ϕ < w .

(Conclusion)

∀ϕ ∈ LT ,B ,∀w ∈ W
c
:Mc ,w |= ϕ iff ϕ ∈ w

□

Now, let us prove the connection between our canonical model

and the formulas proved by our system.

Proposition 4.12. Let ϕ ∈ LT ,B ,

Mc |= ϕ iff ⊢ ϕ

Proof. (1) By definitionMc |= ϕ iff ∀w ∈ Wc
:Mc ,w |= ϕ

(2) By Lemma 4.11 ∀w ∈ Wc
:Mc ,w |= ϕ iff ∀w ∈ Wc ,ϕ ∈ w

(3) Finally by MCS5, ∀w ∈ Wc ,ϕ ∈ w iff ⊢ ϕ.
Consequently,Mc |= ϕ iff ⊢ ϕ. □

4.3.4 Completeness proof. Now that we have recalled main re-

sults about canonical models, we are able to prove the completeness.

Lemma 4.13. Let Mc = (Wc , {Bci }i ∈N , {T
c
i, j }i, j ∈N , i

c ) be a
canonical model for TB. We have:

(1) ∀i, j ∈ N ,T c
i, j is serial

(2) ∀i, j ∈ N ,∀w,u,v ∈ Wc ,wBci u ∧wT
c
i, jv ⇒ uT c

i, jv

(3) ∀i, j ∈ N ,∀w,u,v ∈ Wc ,wBci u ∧ uT
c
i, jv ⇒ wT c

i, jv

(4) ∀i, j ∈ N ,∀w,u,v ∈ Wc ,wBci u ∧ uB
c
j v ⇒ wT c

i, jv

(5) ∀i ∈ N ,Bci is serial, transitive and Euclidean

Proof. Let i, j ∈ N ,w ∈ Wc
and T si, jϕ ∈ w .

(1) This is a standard proof of KD completeness [2].

(2) Let i, j ∈ N . For all w,u,v ∈ Wc
: wBci u ∧ wT c

i, jv and

ϕ < v . By MCS2, ¬ϕ ∈ v and, since wT c
i, jv , we have ¬T

s
i, jϕ ∈ w .

However ⊢ ¬T si, jϕ ⇒ Bi¬T
s
i, jϕ. Thus by MCS5, we have ¬T si, jϕ ⇒

Bi¬T
s
i, jϕ ∈ w . Moreover by MCS4, we deduce that Bi¬T

s
i, jϕ ∈ w

and sincewBci u, we have ¬T
s
i, jϕ ∈ u. Then by MCS2, T si, jϕ < u. By

contraposition, we have T si, jϕ ∈ u ⇒ ϕ ∈ v , and thus uT c
i, jv .

(3) Let i, j ∈ N . For all w,u,v ∈ Wc
: wBci u ∧ uT c

i, jv and

T si, jϕ ∈ w . However, ⊢ T si, jϕ ⇒ BiT
s
i, jϕ. Thus by MCS5, T si, jϕ ⇒
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BiT
s
i, jϕ ∈ w and, by MCS4, BiT

s
i, jϕ ∈ w . Consequently T si, jϕ ∈ u,

and then ϕ ∈ v . Thus, by definition of T c
i, j , we havewT

c
i, jv .

(4) Let i, j ∈ N . For allw,u,v ∈ Wc
: wBci u∧uB

c
j v andT si, jϕ ∈

w . However, ⊢ T si, jϕ ⇒ BiBjϕ. Thus by MCS5 T si, jϕ ⇒ BiBjϕ ∈ w ,

and, by MCS4, BiBjϕ ∈ w . Consequently Bjϕ ∈ u, and then ϕ ∈ v .
Thus, by definition of T c

i, j , we havewT
c
i, jv , i.e. we shown that:

∀i, j ∈ N ,∀w,u,v ∈ Wc ,wBci u ∧ uB
c
j v ⇒ wT c

i, jv

(5) This is a standard proof of KD45 completeness [2]. □

Theorem 4.14. The TB system is complete.

Proof. By synthesis, we have:

(1) C |= ϕ =⇒Mc |= ϕ
(2) Mc |= ϕ ⇐⇒⊢ ϕ

Consequently, C |= ϕ =⇒⊢ ϕ. □

5 PROPERTIES
In this section, we show some interesting properties.

5.1 Trust in the sincerity is distributive
As we consider a normal logic, we have the following properties:

Proposition 5.1. Let i, j ∈ N .
(1) ⊢ T si, jϕ ∧T

s
i, jψ ≡ T

s
i, j (ϕ ∧ψ ) (∧T )

(2) ⊢ (T si, jϕ ∨T
s
i, jψ ) ⇒ T si, j (ϕ ∨ψ ) (∨T )

Proof. Since T si, j is a normal modality we immediately deduce

these properties [2]. □

Indeed, an agent i cannot trust an inconsistent discourse (the

set of propositions formulated by the agent j) because in our TB

system this would lead it to trust in any proposal from j.

5.2 Some belief-related properties
The reciprocals of axioms (4T ,B ) and (5T ,B ) hold.

Proposition 5.2. Let i, j ∈ N be two agents,
(1) ⊢ BiT

s
i, jp ⇒ T si, jp (C4T ,B )

(2) ⊢ Bi¬T
s
i, jp ⇒ ¬T

s
i, jp (C5T ,B )

Proof. Let i, j ∈ N be two agents. We prove the first property:

(1) ⊢ ¬T si, jp ⇒ Bi¬T
s
i, jp (5T ,B )

(2) ⊢ Bi¬T
s
i, jp ⇒ ¬BiT

s
i, jp (DB )

(3) ⊢ (¬T si, jp ⇒ (Bi¬T
s
i, jp ⇒ ¬BiT

s
i, jp))

(4) ⊢ (¬T si, jp ⇒ (Bi¬T
s
i, jp ⇒ ¬BiT

s
i, jp)) ⇒

((¬T si, jp ⇒ Bi¬T
s
i, jp) ⇒ (¬T si, jp ⇒ ¬BiT

s
i, jp))

(5) ⊢ ¬T si, jp ⇒ ¬BiT
s
i, jp

(6) ⊢ (¬T si, jp ⇒ ¬BiT
s
i, jp) ⇒ (BiT

s
i, jp ⇒ T si, jp)

(7) ⊢ BiT
s
i, jp ⇒ T si, jp

We prove the second property:

(1) ⊢ Bi¬T
s
i, jp ⇒ ¬BiTi, jp (DB )

(2) ⊢ T si, jp ⇒ BiT
s
i, jp (4T ,B )

(3) ⊢ (T si, jp ⇒ BiT
s
i, jp) ⇒ (¬BiT

s
i, jp ⇒ ¬T

s
i, jp)

(4) ⊢ ¬BiT
s
i, jp ⇒ ¬T

s
i, jp

(5) ⊢ (Bi¬T
s
i, jp ⇒ (¬BiT

s
i, jp ⇒ ¬Ti, jp)

(6) ⊢ (Bi¬T
s
i, jp ⇒ (¬BiT

s
i, jp ⇒ ¬Ti, jp) ⇒

((Bi¬T
s
i, jp) ⇒ (¬BiT

s
i, jp)) ⇒ ((Bi¬T

s
i, jp) ⇒ (¬Ti, jp))

(7) ⊢ Bi¬Ti, jp ⇒ ¬Ti, jp

□

Those properties highlights (1) when it is the case agents believe

they trust, then it is the case they trust; (2) when it is the case they

believe they do not trust, then it is the case they do not. Finally we

consider a last belief-related property.

Proposition 5.3. For all agents i, j ∈ N ,

⊢ BiBjϕ ⇒ ¬T
s
i, j¬ϕ

Proof. Let i, j ∈ N .

(1) ⊢ Bjϕ ⇒ ¬Bj¬ϕ
(2) ⊢ Bi (Bjϕ ⇒ ¬Bj¬ϕ)
(3) ⊢ Bi (Bjϕ ⇒ ¬Bj¬ϕ) ⇒ (BiBjϕ ⇒ Bi¬Bj¬ϕ)
(4) ⊢ BiBjϕ ⇒ Bi¬Bj¬ϕ
(5) ⊢ Bi¬Bj¬ϕ ⇒ ¬BiBj¬ϕ) ⇒ ¬BiBj¬ϕ
(6) ⊢ T si, j¬ϕ ⇒ BiBj¬ϕ

(7) ⊢ (T si, j¬ϕ ⇒ BiBj¬ϕ) ⇒ (¬BiBj¬ϕ ⇒ ¬T
s
i, j¬ϕ)

(8) ⊢ ¬BiBj¬ϕ ⇒ ¬T
s
i, j¬ϕ

(9) ⊢ (BiBjϕ ⇒ Bi¬Bj¬ϕ ⇒ ¬BiBj¬ϕ) ⇒
((BiBjϕ ⇒ Bi¬Bj¬ϕ) ⇒ (BiBjϕ ⇒ ¬BiBj¬ϕ))

(10) ⊢ (BiBjϕ ⇒ ¬BiBj¬ϕ ⇒ ¬T
s
i, j¬ϕ) ⇒

(((BiBjϕ ⇒ ¬BiBj¬ϕ) ⇒ (BiBjϕ ⇒ ¬T
s
i, j¬ϕ))

(11) ⊢ BiBjϕ ⇒ ¬T
s
i, j¬ϕ

□

5.3 Trust in the sincerity is not transitive
Some studies have already pointed out reasons why trust was not

transitive [3]. Trust in the sincerity is not transitive either. By

transitivity, wemean that we do not have an inference rule deducing

that if T si, jT
s
j,kϕ then T si,kϕ. Indeed, it is not because an agent i

trusts in the sincerity of an agent j when j states that it trusts in
the sincerity of another agent k that the agent i necessarily trusts

in the sincerity of k for this same proposition, as j may be sincere

and nevertheless be wrong. However, the following property may

be interesting as pseudo-transitivity:

Proposition 5.4. For all agents i, j,k ∈ N ,

⊢ T si, jT
s
j,kϕ ⇒ BiBjBkϕ

Proof. Let i, j,k ∈ N .

(1) ⊢ T si, jT
s
j,kϕ ⇒ BiBjT

s
j,kϕ

(2) ⊢ T sj,kϕ ⇒ BjBkϕ

(3) ⊢ BjT
s
j,kϕ ⇒ T sj,kϕ

(4) ⊢ Bi (BjT
s
j,kϕ ⇒ T sj,kϕ)

(5) ⊢ Bi (BjT
s
j,kϕ ⇒ T sj,kϕ) ⇒ BiBjT

s
j,kϕ ⇒ BiT

s
j,kϕ

(6) ⊢ BiBjT
s
j,kϕ ⇒ BiT

s
j,kϕ

(7) ⊢ T si, jT
s
j,kϕ ⇒ BiBjBkϕ

□
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5.4 Shared trust
We can extend our notion of trust to groups of agents in order to

express shared trust. Let us remark that we restrict ourselves to this

notion as a first approach. Other aspects of collective trust, such

as reciprocal trust or mutual trust, are interesting but are left for

future works.

5.4.1 Definition. To define shared trust, we rely on the definition
of Smith et al. [23]: a group of agents trusts another group of agents
if, and only if, all agents of the first group trust all agents of the

second group.

∀I , J ⊆ N : TcI, Jϕ
△
=
∧

(i, j )∈I×J

T si, jϕ

This is a consensus in the sense that all agents of I must trust

all agents of J with respect to the same statement. Moreover, we

consider a dual notion of shared trust, denoted byTc∗I, J , as follows:

∀I , J ⊆ N : Tc∗I, Jϕ
△
=
∨

(i, j )∈I×J

T si, jϕ

This predicate expresses that at least one agent of I trusts another
agent of J . Indeed, if no agent of I trusts the agents of J for ϕ then

¬Tc∗I, Jϕ. Let us remark that shared trust may be defined differently

in the literature. For instance, Herzig et al. [10] consider a reputation
predicate indicating that amajority of agents of I has a dispositional
trust towards the agents of J . For the sake of simplicity, we do not

introduce a notion of a majority and therefore we do not consider

this notion of reputation.

5.4.2 Shared trust behaves like a KD system. Shared trust has

the following properties:

Proposition 5.5. For all I , J ,K ⊆ N :
(1) ⊢ TcI, Jϕ ∧TcI, Jψ ≡ TcI, J (ϕ ∧ψ )
(2) ⊢ (TcI, Jϕ ∨TcI, Jψ ) ⇒ TcI, J (ϕ ∨ψ )
(3) ⊢ (TcI, Jϕ ∧TcI, J (ϕ ⇒ ψ )) ⇒ TcI, Jψ
(4) ⊢ TcI, Jϕ ⇒ ¬Tc

∗
I, J¬ϕ

(5) ⊢ TcI, Jϕ ⇒ ¬TcI, J¬ϕ

Proof. (Sketches) For all I , J ,K ⊆ N ,

(1) ⊢
∧

(i, j )∈I×J (T
s
i, jϕ ∧T

s
i, jψ ) ≡

∧
(i, j )∈I×J T

s
i, j (ϕ ∧ψ )

(2) ⊢
∧

(i, j )∈I×J (T
s
i, jϕ ∨T

s
i, jψ ) ⇒

∧
(i, j )∈I×J T

s
i, j (ϕ ∨ψ )

(3) is obtained by :

• {TcI, Jϕ ∧TcI, J (ϕ ⇒ ψ )} ⊢
∧

(i, j )∈I×J
(T si, jϕ ∧ (T si, j (ϕ ⇒ ψ )))

• {TcI, Jϕ ∧TcI, J (ϕ ⇒ ψ )} ⊢
∧

(i, j )∈I×J
T si, jψ

Consequently, ⊢ (TcI, Jϕ ∧TcI, J (ϕ ⇒ ψ )) ⇒ TcI, Jψ .
(4) is obtained by :

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
(T si, jϕ ∧ (T si, jϕ ⇒ ¬T

s
i, j¬ϕ))

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
¬T si, j¬ϕ

• {TcI, Jϕ} ⊢ ¬
∨

(i, j )∈I×J
T si, j¬ϕ

Consequently, ⊢ TcI, Jϕ ⇒ ¬Tc
∗
I, J¬ϕ.

(5) is obtained by :

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
(T si, jϕ ∧ (T si, jϕ ⇒ ¬T

s
i, j¬ϕ))

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
¬T si, j¬ϕ

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
¬T si, j¬ϕ ⇒

∨
(i, j )∈I×J

¬T si, j¬ϕ

• {TcI, Jϕ} ⊢
∨

(i, j )∈I×J
¬T si, j¬ϕ ⇒ ¬

∧
(i, j )∈I×J

T si, j¬ϕ

• {TcI, Jϕ} ⊢ ¬
∧

(i, j )∈I×J
T si, j¬ϕ

Consequently, ⊢ TcI, Jϕ ⇒ ¬TcI, J¬ϕ. □

Hence, shared trust behaves like a KD system: the trust in the

sincerity axiomatics is the same as the shared trust level.

5.4.3 Shared trust implies common beliefs.

Proposition 5.6. For all I , J ,K ⊆ N ,

(1) ⊢ TcI, Jϕ ⇒
∧

(i, j )∈I×J

BiBjϕ

(2) ⊢ TcI, JTc J ,Kϕ ⇒
∧

(i, j,k )∈I×J×K

BiBjBkϕ

Proof. (Sketches) For all I , J ,K ⊆ N
(1) is obtained by :

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
(T si, jϕ ∧ (T si, jϕ ⇒ BiBjϕ))

• {TcI, Jϕ} ⊢
∧

(i, j )∈I×J
BiBjϕ

Consequently, ⊢ TcI, Jϕ ⇒
∧

(i, j )∈I×J BiBjϕ.
(2) is obtained by :

• {TcI, JTc J ,Kϕ} ⊢
∧

(i, j )∈I×J
(T si, j

∧
k ∈K

Tj,kϕ

∧(T si, jT
s
j,kϕ ⇒ BiBjBkϕ))

• {TcI, JTc J ,Kϕ} ⊢
∧

(i, j,k )∈I×J×K
BiBjBkϕ

Consequently, ⊢ TcI, JTc J ,Kϕ ⇒
∧

(i, j,k )∈I×J×K BiBjBkϕ. □

Let us notice that those proofs work because of (∧T ) and∀k ∈ N ,

⊢ Bk (p ∧q) ≡ Bkp ∧Bkq. Thanks to those properties, we show that

if two groups trust in the sincerity of the other, it implies that each

agent of I believes that each other agent of J believes what it says.

6 CONCLUSION AND PERSPECTIVES
To conclude this article, we have proposed a normal modal logic al-

lowing to reason about the trust in the sincerity of an agent towards

another one. Considering a doxastic system, we have introduced a

normal modalityT si, jp meaning that an agent i trusts in the sincerity

of an agent j for a proposition p. This modality allows us to consider

the fact that an agent can tolerate that another is wrong since the

latter did not attempt to deceive the former about p. Indeed, a direct
application of this modality is to reason about trust when some

agent attempt to manipulate other agents. We showed our system

is sound and complete, and we exhibited some notable properties:

non-transitivity of trust, shared trust as a KD system for instance.

As future works, we intend to study the formal links that may exist

between the reliability modality introduced by Liau [15] and ours.

Furthermore, we noticed a strong connection between honesty and

norm compliance as shown by Demolombe [5]. Consequently, we

would like to combine our formalism with other modalities such as

a deontic modality for representing norms or an action modality

like those introduced by Lorini in a context of social influence [17].
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