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ABSTRACT
We investigate fairness issues in distributed resource allocation of

indivisible goods. More specifically, we study envy-freeness in a

setting where the observations of agents only result from encoun-

ters with other agents. Agents thus have a partial and uncertain

view of the entire allocation, that they maintain throughout the

process, and which allows them to have different estimates of their

envy. We provide a fully distributed protocol allowing to guarantee

termination despite the limited knowledge of agents.
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1 INTRODUCTION
Fairly allocating indivisible resources is an ubiquitous problem, with

applications ranging from course allocation, divorce settlement, or

cloud computing [3, 5, 12]. In many contexts though, agents may

not perceive the entire system (or even if they could, they often

don’t have the cognitive or computational ability to do so). This

motivated several recent works to reconsider the classical notions of

fairness, like for instance proportionality or envy, in settings where

the knowledge of agents is partial [1, 2, 6, 7]; for instance only the

resources held by neighbours in a network can be observed.

In this work we depart from these previous studies by investigat-

ing distributed protocols in a setting where agents have local but

also time-stamped views of the current allocation within the system.

Indeed, we consider that the visibility graph of agents is not fixed

but results instead from an endogeneous dynamics of the system:

agents meet each other (in a pairwise manner) to perform (mutually

beneficial) local deals [9, 14]. When they do so they observe the cur-

rent bundle held by the other agent. As a result, the view of agents

is not only incomplete, but also uncertain, as an agent observations

may become obsolete after a while. Our experimental results (not

reported here for lack of space) compare different heuristics that

agents may use to select their encounter, in particular in terms of

the fairness of outcomes and the number of messages induced.

2 OUR MODEL
We consider a setN = {1, ...,n} of agents and a set R = {r1, ..., rm }
of indivisible resources. Each agent holds initially a fixed number
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of resources. To make the presentation easier, we shall take this

number to bek for all agents (thusm = k ·n). However, our approach
generalizes to agents holding different (but fixed throughout the

process) number of resources.

An allocation A is a partition of the resources to the agents. Ai
denotes the set of resources held by agent i in the allocation A.
Each agent i has a utility function ui : R → R

+
mapping bundles

of resources to reals. We adopt the commonly used framework of

additive utility functions to represent preferences over the resources

[11, 13]. The utility of the agent i for an allocationA is thus defined

as the sum of the utilities over the resources forming Ai .

System dynamics. Agents start from an initial allocation, and

modify it incrementally by exchanging resources [14]. Deals con-

sist in (bilateral) swaps [8], by which two agents exchange one

resource against another resource. We focus on rational agents

which only accept to perform individually rational deals, albeit in

a cooperative way [9]. The dynamics of our system is guided by

the agents themselves, and is best described at two levels: (1) at

the global level, agents decide to contact another agent ; and (2)

at the local level –once a bilateral contact has been established–

the agents try to exchange resources. The system is stable when
no more swap is possible among any agents. Convergence is easily

guaranteed because the number of deals is finite, and each deal

must strictly improve the utility of one of the agents [9, 14]. Hence,

it would be sufficient to enforce at the global level a protocol which

makes sure that each pairwise encounter is checked at some point.

However, this approach is unsatisfactory in our setting. First, this

contradicts the fact that our dynamics is endogenous. Secondly, this

may be very inefficient in practice. An important issue is thus to

design an efficient distributed technique allowing to detect conver-

gence. Indeed, since the resource allocation process is distributed,

we would like each agent to detect on his-own that the system has

converged to a stable allocation.

Incomplete and incorrect knowledge. The observations of the

agents are updated upon encounters: agents become aware of their

respective bundles when they meet, but have no way of know-

ing how the allocation evolves beyond this. The principle that we

shall use is the following: unless proven otherwise, agents assume
resources are still held where they were last observed. Hence their
views may not only be incomplete, but also incorrect.

Let us denote byO
j
i the up-to-date set of resources that i assigns

to agent j. The update process is captured by two rules:

(1) upon encountering an agent j , an agent i observes thek items

{r1, . . . rk } that agent j currently holds, and thus updates

O
j
i ← {r1, . . . rk }
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(2) if an item rl is observed by i upon encountering j while it

was supposed to be held by j ′ (rl ∈ O
j′
i ), then the observation

set of i is updated: O
j′
i ← O

j′
i \ {rl }

Now denote Oi = R \ ∪j ∈NO
j
i , the set of items that agent i does

not know where to allocate.

Example 1. We picture a scenario involving four agents, and three
time-steps (t ′′ > t ′ > t ). We take the point of view of agent 1. Edges
represent encounters between the agents.

1

{r1, r2 }

2

{r3, r4 }
O2

1
: {r3, r4 }

3

{r5, r6 }
O3

1
: {?, ?}

4

{r7, r8 }
O4

1
: {?, ?}

1

{r1, r2 }

2

{r5, r4 }
O2

1
: {r3, r4 }

3

{r3, r6 }
O3

1
: {?, ?}

4

{r7, r8 }
O4

1
: {?, ?}

1

{r1, r2 }

2

{r5, r4 }
O2

1
: {?, r4 }

3

{r3, r6 }
O3

1
: {r3, r6 }

4

{r7, r8 }
O4

1
: {?, ?}

t t ′ t ′′

At time t , agent 1 updates his observation set for agent 2. At time
t ′, an encounter takes place between agent 2 and agent 3, but agent
1 is not aware of this. Hence, out of the two items that agent 1 can
assign to someone in his observation set, only one is correct. Finally,
at time t ′′, agent 1 encounters agent 3 and updates his observation
sets for agent 3, but also for agent 2.

Fairness based on observations. We adapt the notion of envy [4, 10,
15] to uncertain and incomplete knowledge. The basic envy notion

that we shall use is the pairwise degree of envy [11], but relative to

a given set of observations, i.e. ei j = max(0,ui (O
j
i ) − ui (A))

We call this notion evidence-based envy. A system is evidence-
based envy-free (EBEF) when no agent is envious, based on his

observations only. Because of the possible incorrectness of knowl-

edge, it is easy to see that “actual” envy-freeness (as would be

evaluated by an omniscient agent observing the true and complete

allocation) does not imply evidence-based envy, nor vice-versa.

As agents hold a fixed number of resources, it is natural to con-

sider different ways to complete the observations an agent may

have regarding another agent in order to estimate the envy. De-

note by avд(O ) the average value of items in O . Let Oi↑[q] (resp.

Oi↓[q]) be the top-q (resp. last-q) elements of Oi , that is, the items

not allocated with the q highest (resp. lowest) utility for agent i .

• optimistic envy of agent j, obtained by completing the miss-

ing items by the least valuable ones:

eOPT
i j = max(0,ui (O

j
i ∪Oi↓[k − |O

j
i |]) − ui (A))

• pessimistic envy of agent j , obtained by completing the miss-

ing items by the most valuable ones:

ePESi j = max(0,ui (O
j
i ∪Oi↑[k − |O

j
i |]) − ui (A))

• average envy of agent j , obtained by completing the missing

items by the average value of the set Oi :

eAVi j = max(0, (ui (O
j
i ) + (k − |O

j
i |) · avд(Oi )) − ui (A))

Clearly, for any j, it is the case that eOPT
i j ≤ eAVi j ≤ ePESi j , and

all notions coincide with classical envy when the observation set

of an agent is complete and correct.

Example 2. Consider again Ex. 1 with the following preferences:

r1 r2 r3 r4 r5 r6 r7 r8
aд. 1 5 5 8 3 4 1 7 7

Let us consider agent 1. At time t , upon meeting agent 2, he becomes
envious of agent 2 (as agent 2 holds {r3, r4}, a bundle he values 11).
Now at time t ′′ (recall that an exchange took place between agents 2
and 3 in the meantime), agent 1 meets agent 3. Agent 1 is not EBEF of
agent 2. In fact, he is not even pessimistically envious of agent 2, since
the value of items in the observation set for agent 2 is only 3, and the
highest valued item inO1 (O1↑[1]) has utility 7. Interestingly, agent 1
is (even optimistically) envious of agent 4. In fact, agent 4 must either
hold r7 and r8 together, or only one of these resources together with
r5. To put it differently, O1 = {r5, r7, r8}. As agent 4 must hold two
resources, he holds a bundle of value at least 11.

3 DISTRIBUTED TERMINATION DETECTION
The agents try to agree on bilateral swap deals as long as some

deals are still possible. Since each agent has limited observability of

the system and does not know the preferences of the other agents,

detecting the end of the exchanges in a distributed way is not

easy. We propose a distributed approach for termination detection

where each agent i maintains an interest information set about the
resources of the system. In this set, each resource rk is labeled as:

• unattractive (UN), meaning that resource rk is not of interest

ie. ∀rl ∈ Ai , ui (rl ) > ui (rk ).

For the other (attractive) resources, two further labels are used:

• to-try (TT) , meaning that the agent may try to obtain rk ;
• wait-for-new-resources (WR), meaning that the agent has

already tried to obtain rk , and that the exchange failed. The

agent must thus acquire new resources in order to propose

(potentially) better exchanges to the agent holding rk .

Initially, each agent distinguishes resources he may try to obtain

-TT - from uninteresting resources -UN -. Each time an agent i en-
counters another agent j and no exchange of resources takes place,

labels on the resources of the other agent are turned toWR. If the
encounter has lead to an exchange, some resources may now not be

of interest for the agent. The information set is then re-initialized.

Each agent alternates between two execution modes: the active
modewhere the agent contacts the other agents and try to exchange
resources and the standby mode where the agent waits for some

contact requests from the other agents. Initially, each agent starts

in the active mode. When an agent has no more resource labeled as

TT , he moves to the standby mode. If another agent contacts him

and at least one resource turns to TT , the agent comes out of the

standby mode.

Proposition 1. When all agents are in the standby mode, there
is no more possible rational exchange of resources.
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