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ABSTRACT
Dynamic coverage - the problem of covering an area evenly and
continuously in order to visit all areas of interest - is an important
procedure to optimise for any autonomous surveillance system.
This work introduces a novel solution to the multi-agent version of
this problem in that it achieves high performance in a completely
decentralised manner with no reliance on GPS. It does so by using
NEAT [12] to optimise agent neural controllers. The controllers are
first realised via simulation and then transferred to Micro-Aerial Ve-
hicles (MAVs). The MAVs are modified to include a Ultra-wideband
Frequency (UWB) chip which use radio waves to communicate
inter drone distances to one another.
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1 INTRODUCTION
There exists a wide array of potential applications that a multi-
agent robotic solution for surveillance could help solve. Examples
include: the protection of safety critical technical infrastructures,
the safeguarding of country borders, and the monitoring of high-
risk regions and danger zones which cannot be entered by humans
in the case of a nuclear incident, a biohazard or a military conflict. A
multi-agent system also has the additional benefits of being, robust
to individual failure, scalable to different sized environments and
can solve the problem in parallel, thereby greatly reducing the time
it takes to carry out the procedure.

There are a number of problems associated with deploying a
robotic swarm in hazardous environments: the potential for com-
munication links to be disrupted or severed, and that GPS may not
always be available, which would be the case for robots working
in radiation proof environments or areas where natural disasters
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have recently occurred. It is therefore important that a solution is
completely decentralised and that the system is not reliant on GPS.

In the area of dynamic coverage, previous works [1, 9] take a
centralised approach in order to achieve excellent results in sim-
ulated environments. Furthermore, in [6], NEAT is also used to
evolve the controllers for aquatic robots performing area coverage;
this system is full decentralised however it requires the use of GPS
on the real robotic system. Biologically inspired systems have also
been considered [2, 3, 7, 11, 13] which take inspiration from the
way ants attract other members of the swarm to the location of
food sources by creating paths of pheromones. By using simulated
pheromone trails in order to deter other individuals from areas that
have already been explored, efficient dynamic coverage algorithms
can be designed. Even though these algorithms achieve impressive
results, the mechanisms of pheromone secretion and evaporation
is very hard to achieve on real robots, especially MAVs.

Given that each of the works discussed so far, individually, do not
adhere to the constraints of uncertain and hazardous environments
that have been outlined, we propose the following: a decentralised,
multi-agent system to perform dynamic coverage; the system has
no reliance on GPS and can be implemented on a real swarm of
MAVs.

2 METHOD
A neural network is used to control the agent which is trained via
a genetic algorithm. In particular, the algorithm NEAT [12] is used
whereby neural controllers with different topologies can be evolved,
due to this the controllers are often smaller and more efficient than
fixed topology networks. For an in depth description of the NEAT
algorithm, we refer the reader to [12].

The NEAT neural controllers are first evolved in the ARGoS
simulation environment [10]. A model of a generic mini quadcopter
was modified to be an accurate representation of the robot that
will be used in reality - the Crazyflie 2.0. The decision was made to
restrict the agents to the same altitude as each other due to the fact
that a powerful down wind known as ‘prop wash’ can cause MAVs
caught in it to destabilise and crash. This greatly simplifies the
procedure without restricting much of the functionality if coverage
performance is measured over a 2D plane.

The neural controllers have 3 inputs: a bias input which is always
1, the distance to the closest drone and the distance to the closest
wall. The two outputs of the network are left and right ‘wheel
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Figure 1: Heatmaps showing the number of ticks that each cell was occupied. Left: This heat map represents 2 real Crazflies
performing coverage over a 4.5m by 3m sized arena for 120 seconds. Right: This heat map represents a 3 agent run in a 5m by
5m sized simulated arena for 300 seconds.

speeds’ which are then mapped down to speeds in the x and y
directions.

The Crazyflie models were evaluated in a 5m by 5m square arena
each containing 3 agents (with a copy of the same network) for 300
simulated seconds. This arena was split into 100 cells (0.5m by 0.5m
each) which were used as a measurement tool to evaluate how well
coverage was achieved. Each agent was placed near the centre such
that all the agents started out in a circle; each agent was initiated
with a random orientation for each evolutionary run. Each network
is evaluated 5 times and the lowest score of those 5 trials is taken
as the fitness for that organism. The GA is ran for 50 generations
and after that time the best performing individual over all of the
generations is reevaluated and observed. A mutation rate of 10%, a
population size of 100 and a mutation power of 1.8 were used for
NEAT hyperparameters (a full list of parameters are available on
request). The fitness function designed for area monitoring in [6]
was used in order reward behaviour that lead to each cell being
visited frequently.

In order to evolve a controller for use on the real Crazyflies, the
arena size used during evolution was reduced to 4.5m by 3m (the
size of the arena in the lab) and the amount of time in simulation
was reduced from 300 seconds to 120 due to the limited battery life
on the Crazyflies. The real robotic platform used in the experiments
is the Crazyflie 2.0. The quadcopter controller is imported from the
best performing individual from 50 generations of the NEAT GA.
The distance to the closest Crazyflie is retrieved from the UWB chip
and the distance to the closest wall is calculated using the current
pose of the Crazyflie provided by a motion capture system.

3 RESULTS & CONCLUSIONS
NEAT successfully evolved coverage behaviour on 3 drones that
avoided crashes in all 5 tests. The controller was tested with 3
drones in an arena size of 5m by 5m. Figure 1 (Right) is a heat
map representing one of these runs where each cell has a value
which represents the number of ticks that the cell is occupied. This
simulation was ran for 300 seconds at a rate of 10 ticks per second.
It is apparent from this image that the drones performed well at

coverage given that there is a relatively similar shade of red across
most of the map. This implies that most of the cells were occupied
during the run and that they were all occupied for a similar amount
of time. 90% of the cells have been visited for at least 1 tick (this is
not including the outer border of cells as the agents often avoid this
area in order to not crash into the walls) for this run. In order to
evaluate the average performance of the individual, the controller
was tested for 1000 runs with the same metric as above being taken
for each run and averaged over all the performances. This results in
a sample mean of: 76.9% and a sample standard deviation of: 10.0%.

In order to demonstrate the scalability of the solution, the same
controller was evaluated using 6 drones in a 7m by 7m arena. Eval-
uating the same controller that was evolved on the 5m by 5m arena
leads to a sample mean of: 77.2% and a sample standard deviation
of: 7.0% of the cells being visited at least once. Finally, to test the
robustness of the solution with respect to individual failure, the
experiment was repeated with 5 drones on an arena size of 7m
by 7m in order to simulate the loss of one agent. This experiment
resulted in a sample mean of: 73.8% and a sample standard devi-
ation of: 7.3% over 1000 runs. A video showing an individual run
and respective heat map of all these experiments is available at:
https://www.youtube.com/watch?v=ifTKCkG98Z0

The best controller from 50 generations of the more realistic
simulation was transferred to the real Crazyflie and then tested
for a singular run whilst recording the performance in the form
of a heat map - the recorded heat map is shown in Figure 1 (Left).
The real Crazyflies performed coverage very well, according to the
metric used so far, 100% coverage was achieved. Moreover, a very
even spread of coverage was achieved leading to a similar shade of
red across the entire map. A video of the realistic simulation and
the real Crazyflie experiment can be found at:
https://www.youtube.com/watch?v=sEs6doz_LYM&t=7s

To conclude, this paper introduces a method to evolve a neural
controller that performs dynamic coverage in simulation and then
transfers this optimised controller to a real swarm of MAVs. In con-
trast to previous works, the system was fully decentralised and had
no reliance on GPS. In future work, we will consider using Optical
Flow techniques [4, 5, 8] to detect objects in the environment.
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