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ABSTRACT
In this paper, we develop a novel MO-DCOP algorithm based on

dynamic programming techniques which guarantees to find the

complete Pareto front. We also propose a bounded version which

reduces the size of the messages using an adjustable parameter.
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1 INTRODUCTION
A Distributed Constraint Optimization Problem (DCOP) [2, 6, 8] is

a fundamental problem that can formalize various applications

related to multi-agent cooperation. Multi-Objective DCOP (MO-

DCOP) [1, 5] was proposed as an extension of DCOP with multiple

objectives. In this problem, since trade-offs exist among objectives,

the goal is to find the Pareto front which is the set of cost vectors

obtained by Pareto optimal solutions.

Compared to DCOPs, there exist few algorithms for solving

MO-DCOPs. MO-ADOPT [5] generalizes the ADOPT algorithm [6]

to the multi-objective case and is the state-of-the-art complete

algorithm. The Bounded Multi-Objective Max-Sum (B-MOMS) [1]

extends the Bounded Max-Sum algorithm [10] and is the state-of-

the-art approximation algorithm.

In this paper, we develop a novel complete algorithm for MO-

DCOPs called Multi-Objective Distributed Pseudo-tree Optimization
Procedure (MO-DPOP). This algorithm extends DPOP, the represen-

tative dynamic programming algorithm for DCOPs.We also provide

an incomplete version of our algorithm that uses a bounding func-

tion to reduce the size of the messages exchanged between the

agents, reducing the memory complexity while still guaranteeing

to find a subset of the Pareto front.

2 PRELIMINARIES
2.1 Multi-objective Distributed Constraint

Optimization Problem
Definition 1 (Multi-Objective DCOP). AMulti-Objective Distributed

Constraint Optimization Problem (MO-DCOP) [1, 5] with m ob-

jectives is defined as a tuple MO-DCOP = (X ,V ,D,F ) where
X = {x1, . . . ,xn } is a set of agents, V = {v1, . . . ,vn } is a set

of variables, D = {D1, . . . ,Dn } is a set of domains, and F =
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{ f1, . . . , fc } is a set of multi-objective cost functions. The scope

of function fk , denoted var (fk ) ⊆ V is the set of arguments of

fk , indicating that the variables in var (fk ) share a constraint re-
lation. A multi-objective cost function fk ∈ F is then defined as

fk :

>
∀vi ∈var (fk ) Di → R

m
. These functions produce cost vectors

of the form (u1, . . . ,um ) where ul is the cost of objective l .
The assignment of a variable vi ∈ V with the value di ∈ Di is

denoted vi ← di . An assignment A = {vi ← di , . . . ,vj ← dj } is a
set of assignments to different variables and we denote the set of

variables included in an assignment var (A). A is said to be partial
if var (A) ⊂ V and complete if var (A) = V . The cost vector of a

complete assignment is calculated by the objective function F (A) =∑
fk ∈F

fk (A), where the sum of vectors is the usual component-by-

component sum. �

Optimal solutions of a MO-DCOP are characterized using the

concept of Pareto optimality.

Definition 2 (Pareto Dominance). Given two vectors

u = (u1, . . . ,um ) and w = (w1, . . . ,wm ), we say that u domi-

nates w, denoted by u ≺ w, iff it holds ul ≤ wl for all objectives l ,
and there exists at least one objective l ′, such that ul ′ < wl ′ . �

Definition 3 (Pareto optimal solution). For a MO-DCOP, a com-

plete assignment A is a Pareto optimal solution iff there does not

exist another complete assignmentA′, such that F (A′) ≺ F (A). �

Solving a MO-DCOP consists in finding the set of cost vectors

obtained by Pareto optimal solutions PF (called Pareto front), and

for each vector u ∈ PF at least one complete assignment A such

that F (A) = u.
AnMO-DCOP can be represented using a constraint graphwhich

has a node for each variable and where an edge connects any two

nodes whose variables appear in the scope of the same function.

Considering this graph,

the corresponding pseudo-tree structure[12] is a rooted tree with
the same nodes as the constraint graph (corresponding to agents)

and with the property that nodes adjacent in the graph must be-

long to the same branch of the pseudo-tree. Such structure can be

obtained using a depth-first traversal of the constraint graph.

After such structure is generated, each agent xi is aware of its
parent Pi , its set of children CH i , and its set of pseudo-parents PPi .
An agent x j is a pseudo-parent of xi if and only if it is an ancestor of
Pi in the pseudo-tree and a neighbor of xi in the constraint graph.

An important concept of pseudo-trees for the algorithm pre-

sented in this paper is the separator of an agent.

Definition 4 (Separator). In a pseudo-tree, the separator Sepi of

a node xi is the set of all ancestors of xi which are pseudo-parents

of either xi or one of its descendants:
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Sepi = Ancestorsi ∩ ({Pi } ∪ PPi ∪ (
⋃

x j ∈Descendantsi
PPj )) �

3 MO-DPOP
In this section, we present the Multi-Objective Distributed Pseudo-

tree Optimization Algorithm (MO-DPOP). This algorithm is based

on DPOP [8] and we only present here how we modify the UTIL

and VALUE phases of DPOP.

3.1 UTIL propagation
Starting from the leaf agents. UTIL messages carrying the best cost

vectors of each agent’s subproblem are sent up the pseudo-tree.

Definition 5 (UTIL message). A message UTIL
j
i sent from agent

xi to agent x j is a multi-dimensional matrix with one dimension for

each variable in Sepi and we denotevar (UTIL
j
i ) the set of variables

considered by the message.

For an assignmentA,var (A) ⊆ var (UTIL
j
i ), UTIL

j
i [A] is a matrix

of dimension var (UTIL
j
i ) \var (A) such that:

UTIL
j
i [A] =

⋃
∀A′,var (A′)=var (UTILji )\var (A)

UTIL
j
i [A ∪A

′] �

A message UTIL
j
i expresses the best cost vectors that can be

obtained by the sub-tree rooted at xi based on the values taken by

the variables in the separator Sepi .UTILmessages are built from cost

functions and we assume that a function fk :

>
∀vi ∈var (fk ) Di →

Rm is represented as a matrix of dimensionvar (fk ). When the root

agent xr computes the messageUTILnullr , it contains the best cost

vectors that can be obtained by the whole tree, corresponding to

the Pareto front of the problem.

To compute the UTIL message it will send to its parent, an agent

xi has to join all messages received from its children as well as the

cost functions it shares with its parent and pseudo-parents:{ fk ∈
F |var (fk ) ⊆ {Pi } ∪ PPi ∪ {vi },vi ∈ var (fk )}.

Definition 6 (Join Operator in MO-DPOP). Joining two matrices

M andM ′, writtenM ⊕ M ′, produces a new matrix M ′′ such that

var (M ′′) = var (M) ∪var (M ′) and:
∀A,var (A) = var (M ′′),
M ′′[A] = {u + u′ |u ∈ M[A], u′ ∈ M ′[A]} �

Before sending an UTILmessage, an agent xi projects variablevi
out of the matrix, reducing its dimension by one and merging the

content of some cells, which are filtered using Pareto dominance.

For simplicity, we consider a function which takes a set of vectors

U and returns the corresponding set of non-dominated vectors:

ND(U) = {u ∈ U|@u′ ∈ U s .t . u′ ≺ u}.

Definition 7 (Projection Operator in MO-DPOP). Projecting vari-
able vi out of matrixM , writtenM⊥vi and requiring vi ∈ var (M),
is the projection of the matrixM along the vi dimension such that

∀A,var (A) = var (M) \ {vi },M⊥vi [A] = ND(M[A]) �

The root agent xr receives from each of its children an UTIL
message of dimension {vr } which, when joined, provide the Pareto

front of the problem.

3.2 Limiting the Size of Messages
UTIL messages being of exponential space complexity, we propose

a technique to limit their size using a bounding function Bb which
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Figure 1: Runtime varying the number of variables

takes a set of vectors U and returns a setW ⊆ U, s .t .|W| ≤ b.
This guarantees an upper bound for the size of the messages and,

depending on the function used, can still guarantee to find Pareto

optimal solution with our algorithm.

Property 1 (Maximum Bounded Message Size). If the subset
U yielded by B is bounded in size (|U| ≤ b), the maximum message
size becomes bounded by the maximum separator size |Sepmax | with
a space complexity in O(bm × |Dmax |

|Sepmax |).

For example, bounding functions based on weighted-sums [4]

or lexicographic orderings [3] guarantee to still find some Pareto

optimal solutions when bouding the messages of MO-DPOP.

4 EXPERIMENTS
To evaluate MO-DPOP and its extension with bounded messages,

we conducted experiments on the extended graph-coloring prob-

lem [1]. We compared MO-DPOP with the existing algorithms

MO-ADOPT [5], and B-MOMS [1].

Algorithms were implemented in Java and experiments were

carried on a 4.2 GHz 8 cores CPU, measuring the average simulated

runtime [13] over 40 random instances.

Figure 1 shows the simulated runtime when varying the number

of variables with problems of low density (0.01).We observe that our

algorithm provides a significant improvement over the previous

complete algorithm, allowing us to solve instances of up to 70

variables within 10s whereas MO-ADOPT cannot solve problems

of 25 variables within that time.

5 CONCLUSION
In this paper, we developed a new complete algorithm for MO-

DCOP and provided a technique to reduce the size of its messages.

In our experiments, we showed that our complete algorithm out-

performs the state-of-the-art complete MO-DCOP algorithm.

In future works, we will study additional ways to reduce the

complexity of our algorithm by considering techniques such as the

Mini-Bucket Elimination [11] or the Memory-Bounded DPOP [9]

and p-reduced graph technique [7].
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