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ABSTRACT
Interpretable decision making frameworks allow us to easily en-
dow agents with specific goals, risk tolerances, and understanding.
Existing decision making systems either forgo interpretability, or
pay for it with severely reduced efficiency and large memory re-
quirements. In this paper, we outline DeepID, a neural network
approximation of Influence Diagrams, that avoids both pitfalls.
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1 INTRODUCTION
In most decision making frameworks, there is a trade-off between
interpretability, i.e. the ability to clearly identify the relationships
between the key elements, and computational efficiency. There are
many decision making settings, in particular, those involving fi-
nancial or regulatory decisions, where interpretability often takes
precedence over efficiency.

Influence Diagrams (IDs) [4] were one of the earliest quantita-
tive approaches for decisionmakingwith a single agent. An ID con-
sists of sets of chance nodesC , decision nodes D, and utility nodes
U , connected by directed arcs representing the conditional inde-
pendence relations. The ID reduces to a Bayesian network once a
strategy is chosen at each of the decision nodes, thus inheriting the
conditional dependence structure of the Bayesian network. This
allows for the relationships between key elements impacting the
decision problem to be defined in a clearly interpretable manner.
Although IDs facilitate interpretable decision analysis, IDs are not
able to efficiently represent and integrate over distributions asso-
ciated with the chance and decision nodes.

2 DEEPID: DEEP INFLUENCE DIAGRAMS
In the DeepID framework, each chance node, decision and utility
node of an ID is replaced by a type of Differentiable Generator Net-
work (DGN), i.e. a function дθ̄c (π (c),ϵ), where π (c) denotes the
outputs at the direct parents of the node c in the ID representation,
the fixed parameter θ̄c is learned by matching conditional distribu-
tions, and ϵ are samples from a given fixed distribution. In contrast,
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at a decision d , the strategy is represented by the DGN дθd (π (d),ϵ)
where the parameter θd is chosen to maximize the average utility.

The DeepID is thus formed by connecting (according to a topo-
logical sorting of the nodes of the ID) the DGNs that correspond to
each ID node to form a neural network. In the resulting network,
the chance and utility nodes can be trained apriori as GANs [2, 9]
since they approximate conditional distributions; whereas the deci-
sion nodes are collectively trained as feedforward neural networks
to optimize the sample mean using gradient descent methods.

Some distributions (such as those in the location-scale family)
can be easily implemented using DGNs. For example, suppose that
the distribution f (x|y) = N(µ+Cy,RR⊤) is a multivariate Gauss-
ian distribution with mean µ + Cy and covariance RR⊤. This dis-
tribution can be generated by the DGN дθ (y,ϵ) = µ + Cy + Rϵ ,
where ϵ ∼ N(0, I), which is a simple linear layer with an offset.
We can use this “reparameterization trick” [6] to create simple but
exact chance (where parameters are trained or set apriori) or deci-
sion (where parameters are free to be trained during joint learning
of the full DeepID DGN) nodes. The Concrete distribution [5, 7]
can be similarly employed to facilitate gradient based training of
discrete nodes.

Clearly, the DeepID framework is of interest only if one can
guarantee that the optimal strategy can be represented by the as-
sociated network of DGNs. It is easy to show that a large class of
IDs can be arbitrarily closely approximated by DeepIDs, with opti-
mal solutions that correspond to one another. Consider an ID with
chance nodesC , decision nodesD and utility nodesU . Suppose the
outputs of all nodes i ∈ C ∪ D take values in a compact set, the in-
verse conditional CDF F−1i (xi |π (i)} is continuous for all i ∈ C ∪D,
and the utility functions are differentiable and bounded. Then we
have the following:

(a) Let σ̄ = {σ̄d }d ∈D denote any strategy profile across all decision
nodes D in the ID, and let Pσ̄ denote the corresponding joint
distribution over actions, chance and utility node outcomes.
Then there exists a sequence of DGNs д(n) and parameter vec-
tors θ (n) such that the corresponding joint distribution over

actions, chance, and utility outcomes Pдn
θ (n)

D→ Pσ̄ .
(b) Let σ ∗ denote the optimal strategy for the ID, with expected

utility E[u(σ ∗)]. Then there exists a sequence of DGNs дn with
input size m such that E[u(дn

θ (n)
max

(X ))] → E[u(σ ∗)], for X ∼
Uniform[0, 1]m , where the components of the parameter vec-
tor θmax corresponding to the chance and utility nodes are de-
fined by matching conditional distributions apriori, and the pa-
rameters corresponding the decision nodes are computed by
the maximization of the expected utility.
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Figure 1: Reactor problem DeepID and modifications (LHS) and internal DGN of RC (RHS).

3 THE ROBUST REACTOR
To demonstrate the concepts of this paper, we introduce (see Figure
1) a variation of the Reactor problem [11] that involves an agent
conducting a test of an advanced reactor design, and then choosing
between a conventional or the advanced reactor depending upon
the test results. The performance of both the conventional and ad-
vanced reactors are uncertain; however, the performance of the ad-
vanced reactor is less certain (but with higher payoff if successful).
The LHS of Figure 1 shows the macro-level of the DeepID, which
corresponds exactly to the original standard ID of the problem (the
shaded and boxed sub-graphs will be addressed in Section 4). On
the RHS of Figure 1, we show the internal DGN representation
of the Reactor Choice node (where αRC are the parameters to be
learned and λ is the temperature of the Concrete approximation).

4 INTERPRETABLE ROBUSTNESS
Decision problems typically involve a complex set of interacting
elements, some more uncertain than others. Thus, it is beneficial
for decision making frameworks to be flexible enough to allow
for targeted introduction of robustness. In this section, we show
DeepIDs allow for targeted robustness to be introduced in an in-
terpretable manner. In a DeepID, the “purpose” of each compo-
nent DGN (to approximate the corresponding ID node) is retained;
therefore, one can separately control the robustness of each com-
ponent network. Introducing such targeted robustness is nearly
impossible in a standard deep network where we have relatively
limited understanding of the function of particular nodes or sub-
networks. MDPs [1, 3] also do not easily accommodate targeted
robustness since the definition of state, and corresponding transi-
tions, often obscure the underlying independence relations [8, 10].
We use the DeepID Reactor problem to demonstrate some of the in-
terpretably robust adjustments that can be made to DeepIDs. Note
that all these modifications to a DeepID are equivalent to adding
new chance, decision or utility nodes, changing the objective of
the training algorithm. Consequently, such modifications do not
increase the complexity class of the problem.

Distributional uncertainty for specific chance and decision nodes:
For a chance node c ∈ C with the DGN дθ̄c (π (c),ϵ) we can modify
the parameters θ̄c or the exogenous samples ϵ to model distribu-
tional uncertainty. For example, we can introduce uncertainty to

the accuracy of the advanced reactor test result (TR node) by re-
placing constants in the TR distribution parameters with hyperpa-
rameters of some distribution. This type of change can be repre-
sented graphically by adding a new chance node c ′, adding a di-
rected arc (c ′, c), and updating дθ̄c (π (c),ϵ) accordingly. Similarly,
for an agents decision node d with DGN дθd (π (d),ϵ), we can add
noise at any level – to θd , to ϵ , or the output of d – to encourage
gradient descent to compute a stable decision strategy. We can in-
terpret this as encoding that decision execution isn’t exact, with
the agent sometimes making mistakes.

Regularization for specific decisions: Consider an agents decision
node d with the DGN дθd (π (d),ϵ), we can regularize the parame-
ters θd to encourage certain properties at node d . A particularly
noteworthy application of decision level regularizers is to encour-
age particular discrete decisions to have pure or mixed strategies.
This can be achieved by adding a utility node u (MST in the Re-
actor problem) with дθ̄u (дθd (π (d),ϵ),ϵ

′) a p-norm regularization
penalty on θd (e.g. to encourage a pure strategy for choosing a
reactor).

Custom risk-tolerances: We canmodify the networkдθu (π (u),ϵ)
at a utility node u by adding a new layer that represents an agents’
risk-reward tolerance, i.e. setting the output toдθu′ (дθu (π (u),ϵ),ϵ

′).
This is represented by introducing a new node u ′ and adding an
arc (u,u ′). Conditional Value at Risk (CVaR) is an example of a
common-risk measure used in financial decision problems; we can
easily incorporate CVaR into the Reactor problem by feeding Stan-
dard Utility samples into a new utility node CU and calculating the
sample-wise CVaR.

5 CONCLUSION AND FUTUREWORK
In this work, we sketched the method of the DeepID approach. We
showed how it maintains the macro-level interpretability of the ID
and how this facilitiates robust modifications. We argued that by
approximating (arbitrarily well) each node with a DGN, we can
then employ the well-developed tools of deep-learning and gra-
dient based methods to facilitate scalability. We did not present
formal guarantees of convergence or convergence rates, and so de-
veloping such formal guarantees is an important area of future re-
search. We similarly seek to demonstrate the performance of the
DeepID at very large scales.
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