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1 INTRODUCTION
Planning under uncertainty has exploited human (domain) exper-
tise in several different directions [1–6, 9, 10, 13–15]. One key re-
search thrust in this direction is that of specifying preferences as
advice to the planner in order to reduce the search over the space of
plans. While successful, most of these approaches require that the
advice be specified before planning. However, humans tend to give
the most obvious advice and more importantly, this advice may not
directly benefit the planner. We propose a framework in which the
planner actively solicits preferences as needed. More specifically,
our proposed planning approach computes the uncertainty in the
plan explicitly and then queries the human expert for advice. This
approach not only removes the burden on the human expert to pro-
vide all the advice upfront but also allows the learning algorithm
to focus on the most uncertain regions of the plan space and query
accordingly.

We present an algorithm for active preference elicitation in plan-
ning called the preference-guided planner (PGPlanner) to denote
that the agent treats the human advice as soft preferences and solic-
its these preferences as needed. We consider a Hierarchical Task
Network (HTN) planner [8] for this task as it allows for seamless
natural interaction with humans who solve problems by decompos-
ing them into smaller problems. Hence, HTN planners can facilitate
humans in providing knowledge at varying levels of generality. We
evaluate our algorithm on several standard domains and a novel
Blocks-World domain where we compare against several baselines.
Our results show that this collaborative approach allows for more
efficient and effective problem solving compared to the standard
planning as well as providing all the preferences in advance. It
must be mentioned that our framework treats the human input
as soft preferences and allows to trade-off between potentially a
sub-optimal expert and a complex plan space1.

1For a longer version of the paper, please refer to “https://arxiv.org/abs/1804.07404”
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Figure 1: Preference-guided search in Blocks-World. Rectangular nodes are
tasks. Admissible methods for decomposing task τ1, arem1,m2,m3 & an ex-
tra one later,m4. Block configurations indicate current state. Green and red
shaded areas denote preferred and non-preferred decompositions.

Algorithm 1 Preference-Guided Planner (PGPlanner)
1: Intialize Frontier= Goal , {P}, Current Plan pl = ∅
2: Node n = (sn, τn, Mτn ) ← Pop(Frontier)
3: Policy π (Mτn ), Uncertainty µ(π ) ← EvaluateNode(n,{P})
4: IF µ(π ) > AcceptableUncertainty: P(n) ←Query(sn ,τn )

Update policy π ← EvaluateNode(n,{P} ∪P(n))
5: Choose best methodm∗ ← argmaxm π : Decompose(τn,m∗)
6: IF τn primitive: Update(pl, a) ◃ if action a feasible in sn
7: Repeat 2 to 6 IF Frontier , ∅, ELSE return pl

2 PREFERENCE-GUIDED PLANNING
Preference-Guided planning employs preferences to guide the search
through the space of possible task decompositions (methods) in an
HTN. It actively acquires such preferences in the regions it is most
uncertain about, thus, minimizing the set of preferences needed
upfront. Preferences are similar to IF-THEN rules, formally defined
as, a tuple P = (∧fi , τj ,M+τj ,M

−
τj ), where ∧fi encodes applicability

condition(s) of preference in the current state, τj is the task, M+τj is
the user’s preferred set of methods andM−τj , the non-preferred ones.
Preferences may be defined over any level of generality, given by
the conditions ∧fi . Figure 1 illustrates the effect of preferences in
a Blocks-World scenario. Moving blocks to table is preferred here
(P = (Space(Table), Clear (B), {PutOnTable}, {StackonE})) since
it makes constructing arbitrary towers easier as the blocks can be
positioned quickly. It may apply to multiple levels. Preferences are
used to increase P(M+) and decrease P(M−) (method probabilities).
We demonstrate empirically that such a preference is more useful
when solicited than when provided before planning.

While we assume experts’ availability throughout the planning
process, we aim to rely on him/her only when necessary. PGPlan-
ner, decides when it needs help the most and queries the expert,
similar in spirit to stream-based active learning [7]. A query gen-
erated by PGPlanner (wrt. HTN node n - abstract container com-
prising current state sn , task τn and admissible methodsMτn ) is the
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Figure 2: Efficiency (% problems solved in 10 mins) Figure 3: Performance (ratio of avg. plan lengths to longest avg.)

tuple qn = (sn ,τn ). An expert’s response to a query is a preference
P(n). HTN hierarchy allows preferences over any region of the state
space that contains sn , i.e. at any level of generality. In a factored
space, this involves choosing the variables in description of sn .
Problem Setup: Given - An HTN problem defining the initial
state/goal task(s), access to an expert and query budget. Objective -
Generate best plan, one that minimizes the total expected cost J (π )
of generating a plan by finding the most suitable policy π , a distri-
bution over the methods for task τn of each HTN node n. Formally,
the objective is:

[
argminπ

(
J (π ) = TEn∼dπCπ (n)

) ]
, where π is a

distribution over methods, dπ a distribution of HTN nodes reached,
T the decomposition depth and Cπ (n) the expected cost at node
n. Cπ (n) = Em∼πnC(n,m) where C(n,m) is the immediate cost of
selectingm at node n. The cost is generic and if the planner aims
to find the shortest plan, the immediate cost C is the number of
primitive actions added to the current plan.
The algorithm: PGPlanner (Alg 1) proceeds via best-first search
(with backtracking) through the space of decompositions (methods)
to reach a valid plan, maintaining a Frontier of HTN nodes and a set
of preferences {P} which may be empty. Each node n in the HTN
with task τn could potentially decompose in several ways according
to the admissible methods (Mτn ). The cost of selecting a method
m ∈ Mτn (Cπ (n) for π (n) =m) is estimated by rolling out (simulat-
ing) decompositions till a predefined depth r and then approximat-
ing the utility as the sum of current plan length Lm and distance to
goal Dm (post roll-out). The methods are also scored according to
the current set of preferences, Am = N+m ({P}) − N

−
m ({P}), where

N+m is the number of rules which prefer method m while N−m is
the number which non-prefer it). The overall cost estimate (Ĉ(m))
is a combination of this preference score and the estimated cost
function, Ĉ(m) = Lm + Dm + inverse(Am ). The inverse allows for
minimizing cost while maximizing the preference score. Ĉ(m) is con-
verted into a probability distribution (π ) over the methodsMτn via
Boltzmann softmax, π = eĈ(m)/

∑
m′∈Mτn

eĈ(m
′) (EvaluateNode,

line 3). If the level of uncertainty (entropy in our case µ(π )) of this
distribution is high, i.e. above AcceptableUncertainty, the expert
is queried. The expert may respond to query with a preferenceP(n)
which is added to {P} and the methods are evaluated again (line
4). Subsequently, or if the uncertainty was acceptable previously, the
method with the highest probability (m∗) is chosen to decompose
task τn (line 5) and new HTN nodes are added to Frontier. Note, if
τn is primitive, corresponding action a is added to the current plan
and the state sn is changed if it satisfies the preconditions of a (line
6). Backtracking at unfeasible tasks and subsequently choosing
the “next best” decomposition method, ensures completeness. It
is achieved via simple recursion and the details are excluded for
brevity. Essentially, PGPlanner transforms the plan search into

a sequential decision making problem where the agent can either
query or choose among the available options (methods) and use
preference obtained in response to query for policy revision.
3 EXPERIMENTAL EVALUATION
We aim to investigate if PGPlanner generates efficient plans and
analyze its efficiency. To this effect, we compare PGPlanner against
- (1) Upfront Preferences - all preferences specified apriori [12], (2)
Random Query, and (3) No Preferences. PGPlanner is developed
by extending JSHOP [11], an HTN planner, for (1) roll-out, (2) ac-
tive elicitation of preferences, and (3) guided search. We also built
an interface that facilitates seamless human-agent interaction. We
consider 11 standard planning domains and a novel Blocks-World
domain, that employs an apparatus to detect physical block config-
urations via sensors creating a surrogate real-world environment,
for evaluation. The domains were of varying complexity based on
number of objects, relations, actions and methods. Most domains,
had 20 problems each except a few which had 10.
Results: All experiments were performed with consistent settings
(AcceptableUncertainty/entropy= 0.5 & time constraint = 10
mins, accommodating the limited time and attention of the expert).
Figure 2 shows PGPlanner outperforming all baselines in terms
of efficiency, when we compare the percentage of problems solved
given the time constraint. Clearly, active elicitation guides the plan-
ner to solutions more efficiently. Also, planning with preferences is
almost always better than without them, however, random query-
ing is not an effective elicitation strategy. We investigate the quality
of generated plans via the ratio of average plan length of each plan-
ning method compared to the longest (No Pref ). In every domain,
we have only used those problems which were solved/completed by
all approaches in the given time constraint. We observe (Figure 3)
that PGPlanner has the lowest average across all domains thus
demonstrating the effectiveness and efficiency.
4 CONCLUSION
Our proposed PGPlanner queries the expert only as needed and re-
duces the burden on the expert to understand the planning process
to suggest useful advice. We empirically validate the efficiency and
effectiveness of PGPlanner across several domains and demon-
strate that it outperforms the baselines even with fewer preferences.
Currently, our planner does not validate the preferences, but rather
assumes the user is an expert. We will extend to the planner to
recommend improvements to the set of preferences. We will inves-
tigate other avenues to obtain preferences including from crowds,
transferring across subtasks as well as other domains.
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