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ABSTRACT

The problem of optimally scheduling the charging demand of elec-
tric vehicles within the constraints of the electricity infrastructure
is called the charge scheduling problem. The models of the charging
speed, horizon, and charging demand determine the computational
complexity of the charge scheduling problem. For about 20 variants
the problem is either in P or weakly NP-hard and dynamic programs
exist to compute optimal solutions. About 10 other variants of the
problem are strongly NP-hard, presenting a potentially significant
obstacle to their use in practical situations of scale.
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1 INTRODUCTION

The problem of deciding when to charge electric vehicles [8] under
a shared network constraint gives rise to a new class of scheduling
problems. The defining difference from the traditional scheduling
literature [5, 15] is that such charging jobs are more flexible: not
only can they be shifted in time, but the charging speed can also be
controlled. Additionally, the charging resources (“the machines” in
ordinary scheduling) may vary over time [6, 14]. Further, providers
that control flexible demand will need to solve such scheduling
problems repeatedly. Therefore, it is important to understand when
such problems can be solved optimally within the time limits re-
quired, and what aspects of the model make the problem intractable.
We refer to this class of problems as the charge scheduling problem.

While the existing scheduling literature is extensive [5, 9, 15],
the unique setting of charge scheduling gives rise to a number
of novel variants of the general scheduling problem. The charge
scheduling problem can be seen as a special case of the so-called
resource-constrained project scheduling problem (RCPSP) [9] if
additionally the problem is extended to deal with continuously
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divisible resources [3, Ch.12.3], a varying availability of resources
with time [10], and the possibility to schedule subactivities of the
same activity in parallel, called fast tracking [17]. An initial investi-
gation shows that minimizing the make-span for this extension, but
for one resource and without preemption is strongly NP-hard even
if there are only three processors available [4]. This NP-hardness
result, however, does not apply to the charge scheduling problem,
because of the difference in the objective and because in charge
scheduling preemption is allowed. However, there are some directly
applicable results for fixed supply: then the charge scheduling prob-
lem is equivalent to a multi-machine problem where all agents
have an identical charging speed and the supply is a multiple of
the charging speed. From this we immediately obtain a dynamic
program and that this variant is weakly NP-hard [12, 13]. However,
when supply (i.e., the number of machines) varies over time, or
when charging speed limits (i.e., the maximum number of machines
allowed for a single job) differ per agent, the existing literature
does not readily provide an answer to the question of the charge
scheduling problem complexity.

We identify over 30 variants, and in our full (JCAI-ECAI-18)
publication their computational complexity is proven, and for the
easy problems a polynomial dynamic programming algorithm is
provided [7].

2 THE CHARGE SCHEDULING PROBLEM

The availability of the supply at time ¢ is represented by a value
m; € R, modeling for example remaining network capacity at a
congestion point. This supply is allocated to a set of n agents, and the
allocation to agent i is denoted by a function a; : T — R. The value
of an agent i for such an allocation is denoted by v; : [T — R] — R.
This value function for an allocation can represent both dynamic
prices of charging in certain time slots as well as user preferences for
when their vehicle is charged. In this paper, we focus on problems
where the valuation function of agent i can be represented by triples
of a value v; i, a deadline d; ; and a resource demand w; x, such
that the value v; i is obtained if and only if the demand w; . is
met by the deadline d; ;. This allows the agent (app) to represent
user preferences such as: “I value being able to go to work at $100,
I must leave for work at 8am, and it requires 25 kWh to complete
the trip.” By adding a second deadline, the user could express: “I
may suddenly fall ill, so I value having at least the option to take
my car to urgent hospital care at 10pm at $20, and it would require
10 kWh to complete that trip.
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single deadline

gaps fixed charging speed unbounded charging speed
[T demand demand demand demand demand demand
demand demand demand
constant  polyno- un- constant  polyno- un-
. constant  polyno- un- .
mial bounded mial bounded mial bounded
o(1) P P weak 2 ounce P P weak
P P weak
NP-c NP-c
¢ NP-c
O(n€) | strong strong strong 5 5 > P P weak
? ? ? NP-c
NP-c NP-c NP-c NP-c
multiple deadlines
o(1) P P weak P P weak P P weak
NP-c NP-c NP-c
O (n°) strong strong strong strong strong strong strong strong strong
NP-c NP-c NP-c NP-c NP-c NP-c NP-c NP-c NP-c

Table 1: Problem complexity of variants with a single deadline per agent (top) and multiple deadlines (bottom), where ? NP-¢’
means that the problem variant is NP-complete, but it is an open problem whether this is strong or weak.

To be able to express such a valuation function concisely, we
denote the total amount of resources allocated to an agent i up to
and including interval ¢ by a; (¢) = Zi’:l a;j (t"). We then write

vk ifa;(dig) =2 wik
vi(@i, vy g di g Wi k) = 4 ( " ) 2w
0 otherwise
and v;(ai) = Xgek(i) vi(ai, Vi k- di k> Wi, k), where |[K(i)| is the
number of deadlines for i.

We aim to find an allocation that maximizes social welfare subject

to the resource constraints, i.e.,

max > vilai)

subjectto  Y; a;(¢) < my for every ¢

We then consider the following dimensions:

e Each agent i has a maximum charging speed s; and for all
t and i, a;j(t) < s;. We consider three variants of such a
constraint: fixed means that the maximum charging speed
is the same at all times, unbounded means that there is no
bound on the charging speed for each individual agent, and
gaps means that the maximum charging speed may be 0 for
some time steps and unbounded for others.

e The number of periods T is constant (denoted by O(1)) when
there is an a-priori known number of periods for all instances
of the problem, while we say it is polynomially bounded
(O (n€)) when the number of periods may be large, but is
bounded by a polynomial function of the input size.

o The model of the demand d; i is constant when d; j < D for
all i, k and this D is an a-priori known constant, it is polyno-
mial when each d; i is bounded by a polynomial function of
the input size, and it is unbounded when there is no bound
on the demand size.

e We can have either a single deadline per agent, k = 1, or
multiple deadlines where there may be more than one value-
demand-deadline triple.

The overview of the the complexity of the charge scheduling prob-
lem along these dimensions can be found in Table 1.

3 DISCUSSION AND FUTURE WORK

These complexity results provide an important step towards practi-
cal applicability. However, a number of questions are still open.

First, the hardness results for instances with three deadlines
extend to any constant number of deadlines at least three, and we
have separate results for most of the single-deadline cases. However,
it is open exactly what happens with two deadlines (except that it
is at least as hard as with one deadline).

Second, if the number of time periods is constant but too large,
the dynamic programs we use to prove weak NP-hardness do not
scale to realistic problem instances [7]. Therefore, a relevant direc-
tion for future work is to develop fast heuristic algorithms.

Third, the results presented are realistic if good predictions for
future supply and demand are available (such as based on weather
predictions and historical charging patterns, which can be quite
accurate for larger groups). If these predictions are only somewhat
good, it becomes important to explicitly think about charge sched-
uling as an online problem [1], where we will want to re-solve
the offline problem at each point in time. Although our hardness
results still apply, this opens new questions, such as the competi-
tive performance of on-line algorithms (compared to off-line). For
deterministic algorithms we can conclude from [2] that if realized
charging speeds needs to be either the maximum or 0, no constant
competitive algorithm exists. However, algorithms exist for other
variants, e.g., without the supply constraint [16] or with a weak
supply constraint [18], and there exist randomized algorithms for
other variants of on-line scheduling [11]. It remains an open ques-
tion which of these can be effectively applied to an on-line variant
of the charge scheduling problem and how they would perform
against simpler heuristics.
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