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ABSTRACT
The establishment of interpersonal ties is a pivotal problem in the

structural analysis of social networks. In particular, link recommen-

dation problem asks for valuable future links to establish by an

individual. Existing methods for this problem rely on link predic-

tion that evaluates the likelihood of successful tie creation between

two individuals. Such methods do not consider the social capital

gained by agents, nor do they concern with the required cost of

this process. In light of this limitation, we propose a utility-based

network building problem, with an aim to strike a balance between

the gained social capital – in the form of closeness centrality – and

the cost of establishing ties. We propose algorithms to solve this

problem over networks whose nodes may or may not be labelled

with attributes, and test their performance on a range of synthe-

sized and real-world social networks. By having multiple agents

adopting utility-based network building strategies, we propose a

suite of models of network formation and demonstrate empirically

that the they capture important structural properties. In particu-

lar, we investigate the emergence of a core/periphery structure

as a joint result of preferential attachment and network building

strategies.
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1 INTRODUCTION
Social positions play a fundamental role in our daily lives as they

enable us to define who we are and what we ought to do. The cre-

ation of interpersonal ties thus takes a pivotal role in social network

analysis. Studies revolve around two interrelated questions. The

first is link prediction, which amounts to evaluating the likelihood

of creating new ties between two individuals; the second is net-

work formation, which concerns with how ties emerge and affect

network topology. By occupying an advantageous position in a

social network, an individual may gain control over information

flow and achieve higher influence and status. On the other hand,

establishing and managing social relations costs efforts, time and

resources. A natural challenge lies in striking a balance between

the costs and gains of establishing interpersonal ties.

We take up this challenge by bringing gain and cost into the

same picture and propose strategies for individuals to build rela-

tions in the hope to arrive at an advantageous position. As online

social networks (OSNs) such as Facebook, Google+ and Twitter

increasingly dominate our social activities, there is a prominent

need for advanced decision supports that help users to navigate

the interpersonal web and enhance their social surroundings. In

particular, a link recommender system evaluates links in the likely

future and recommend top-ranked links to users. As an example,

the “People You May Know” function in LinkedIn suggests to users

new contacts to improve their career prospects [38].

Social capital refers to the intangible good brought to an indi-

vidual from interpersonal interactions, either through being in a

tightly connected clique that are bonded by kinship, support and

trusts, or through accessing information flow [1]. An important

form of social capital is information brokerage, i.e., network posi-

tions that bridge multiple closed groups of individuals and reach

diverse population, which as argued by Uzzi and Dunlap in [41],

bring private information, wide opportunities and power. The cel-

ebrated theory of R. Dunbar stipulates a cognitive upper bound

on the amount of social contacts an individual may have [11]. A

similar observation was made in management studies where every
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person is bounded by “limited managerial attention”, i.e., a finite

capacity to exercise direct control of others [14]. Base on these

theories, it is reasonable to assume that each individual has a finite

budget which may be distributed among their social connections.

The costs reflect the levels of difficulty or uncertainty involved in

tie creation, and would certainly vary among different ties.

Undoubtedly gains and costs are two crucial factors that shape a

person’s decisions to form relations. Yet so far, very few existing

works on link recommendation take these factors into account. A

majority of existing works view link recommendation almost syn-

onymously with link prediction [25]: Given a snapshot of the social

network at a specific time, a link predictor attempts to approximate

subsequent edge distribution as the network evolves [2, 15]. The

highest predicted edges will then be recommended to the user.

Closeness centrality is widely-used for measuring the relative

importance of nodes within a graph. It has been used to capture

nodal importance since 1950s by Bevelas and Sabidussi, e.g., to

identify central metabolites of a metabolic network [30] , to capture

researcher impacts in co-authorship network [46], to analyze per-

formance of business leaders [39], etc. Closeness is important also

to game-theoretical models of multiagent systems, e.g., Branzei and

Larson used it to study team formation [20].

Main contributions. (1) The primary contribution of the work

lies in proposing the utility-based network building problem, which

departs from existing schemes of link prediction and recommen-

dation. By creating a tie, an individual gains in terms of centrality,

but at the same time pays a cost that depends on link prediction:

Higher probability of tie emergence means lower costs/uncertainty

to establish this tie. (2) To solve this problem, we propose network

building strategies for an individual and analyze their performance.

These solutions also work on networks where agents are labeled

with attributes. Empirically evaluations are performed on random

network models and real-world social networks. (3) A further con-

tribution is in the proposal of novel models of network formation.

An enduring quest in complex networks seeks simple yet convinc-

ing formation models that give rise to real-life structures. Notable

breakthroughs, e.g., Barabàsi-Albert scale-free and Watts-Strogatz

small-world models, remain to have limitations. Here, through al-

lowing all agents to practice network building strategies, we intro-

duce a suite of new models, and show that their collective outcomes

satisfy many desirable properties: power-law degree distribution,

high clustering coefficient. In particular, we investigate the emer-

gence of a core/periphery structure as a joint result of preferential

attachment and network building strategies, thus filling a needed

gap in the simulation of complex networks.

2 RELATEDWORK
Common methods for link prediction exploit shared neighborhoods

between nodes, and derives similarity e.g. common neighbors, Jac-

card’s coefficient, Adamic/Adar and resource allocation [24, 28]. A

severe limitation exists in that node pairs with no common neighbor

will be assigned zero probability. Random walk-based approaches,

e.g., personalized PageRank, tackle this limitation and evaluate

structural proximity between nodes [40]. We remark that a differ-

ent notion of “utility-based link recommender” has been proposed

in [23]. Contrary to our work, there utility is defined for the recom-

mender, disregarding agents’ costs and gains, and thus costs only

occurs when a recommended link fails to form.

Social capital, proposed by J. Coleman [7], is widely believed

to arise from the structure of interpersonal relations [26, 27]. In

particular, distance measures how easy two nodes are reachable

from each other via edges and constitutes a crucial indicator of

social capital. Moskvina and Liu study a number of network inte-

gration problems that are NP-hard [31, 32]. Another natural idea

is to maximize closeness centrality of a target node, where Yan et

al. experiments on dynamic networks [44]. Crescenzi et. al. proves

NP-hardness of the problem of maximizing centrality with ≤ k
links [8]. Fink and Spoerhase study maximizing the collective be-

tweenness centrality [13]. However, none of these works takes into

account costs of establishing links. Leskovec et al. considers costs of

monitoring nodes in a social network for spreading of information

[21]. There, costs denote resources needed to watch over activities

at particular nodes, but not on edges. To our knowledge, this cur-

rent work is the first that correlates link cost negatively with nodal

relatedness.

A range of random graph models exist to capture realistic net-

work distributions, aiming to match such desirable properties as

scale-freeness (power-law degree distribution), small-world prop-

erty, community structure, etc. The classical Erdös-Rèny (ER) ran-

dom graph model builds edges as independent Bernoulli random

variables and results in a Poisson binomial degree distribution, with

low clustering coefficient in general [12]. The most popular model

for scale-free networks is Barabàsi-Albert (BA) model: The model

creates edge in a preferential attachment scheme, where nodes with

higher degree are more likely to be linked by new edges; These

networks have in general low clustering coefficient [3]. Another

well-used model is Watts-Strogatz (WS) model: The model starts

from a regular ring lattice and randomly rewires edges with proba-

bility p. As edges are rewired, the network swings from a regular

graph towards an ER random graph.Whenp ∈ [0.01, 0.1], the graph
typically exhibits high clustering coefficient, demonstrating a small

world property. The model, however, fails to deliver power-law

degree distribution [43]. Different to the stochastic models above,

an economics-based paradigm views the individuals’ behaviors in

link formation as driven by utility; this approach offers insights

into the cause of social and economical networks [4, 17].

Core/periphery structure is an important meso-level network

property that is characterized by a highly connected core sur-

rounded by a sparse periphery [16, 36, 45]. The property, firstly

studied in a sociology [37], arises prevalently in collaboration net-

works [6, 42], financial networks [34], protein interaction networks

[29], etc. Focus has been on detections of core/periphery structures

[5] and numerous models have emerged, e.g., bow-tie, rich-club,

and onion networks [9]. However, a general model that not only

fits the structural metrics but also provides insight as to how this

property emerges is still lacking. Through proposing utility-based

network building strategies, we introduce models of network for-

mation and show that they may give core/periphery structure if

combined with preferential attachment.
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3 UTILITY-BASED NETWORK BUILDING
PROBLEM (U-NB)

3.1 Problem Setup
A social network is viewed as an undirected graph G = (V ,E) with
no multiple edge nor self-loop. V is the set of nodes (or agents)
in the social network and edges in E represent interpersonal ties.

Two nodes connected by an edge {u,v} is called adjacent; N (v)
denotes the set of all adjacent nodes to v and N [v] B N (v) ∪ {v}.
A path is a sequence of nodes v1, . . . ,vℓ where {vi ,vi+1} ∈ E for

all i = 1, . . . , ℓ − 1. The distance distG (u,v) is the shortest length
of a path between u and v if it exists, and is∞ otherwise.

Utility. Social capital quantitatively evaluates structural advantage,
which can be represented by centrality, i.e., how accessible a node is

reachable from others. In particular, closeness centrality is affected

by distance from a node to all other nodes, i.e., treating 1/∞ = 0,

for any v ∈ V , let

clG (v) B
∑
{distG (u,v)

−1 | u , v}. (1)

We view a node as an agent who aims to maximize its centrality

through building relations with other nodes. Let G = (V ,E) be a
graph, S ⊆ V and v ∈ V be a node. ByG ⊕S v we denote the graph

(V ,E ∪ {{u,v} | u ∈ S}) obtained by v establishing ties with all

nodes in S .

Definition 3.1. Let G = (V ,E) be a graph and v ∈ V be a target.
The utility of a node u ∈V for the target v , UG (v,u), is defined as

the improvement on the closeness centrality of v after creating

edge {u,v}, i.e., UG (v,u) B clG⊕{u}v (v) − clG (v). The utility of a

set S is therefore

UG (v, S) B clG⊕Sv (v) − clG (v). (2)

Cost. Assume u,v ∈ V are not already linked by an edge. Estab-

lishing a tie between u and v will clearly require less effort as u
and v share more similar traits or social connections. Thus the

cost is naturally affected by how likely a tie would emerge due to

nodal similarity. Link prediction provides a way to approximate

this cost. More formally, a link prediction algorithm outputs a func-

tion score : {(v,u) | {v,u} < E,u , v} → R where score({v,u})
denotes the estimated likelihood that the edge {v,u} will emerge

in G.

Definition 3.2. For v,u ∈ V where {v,u} < E, we define the link
cost CG (v,u) between v and u as

CG (v,u) = φ−1(score({v,u})) (3)

where φ : R→ R is a non-decreasing function. For S ⊆ V , define
CG (v, S) =

∑
u ∈S CG (v,u).

The function φ is a parameter controlling the distribution of

link costs and depends on the output score(v,u). In this work,

we evaluate score(v,u) using personalized PageRank index, a well-
established metric predicting likelihood of edges between any pairs

of nodes [33]. The metric is an adaptation of PageRank: Given a

starting node s , assign a score to every node u that captures the

likelihood of a random walk from s (with restart) that reaches u
[40]. More formally, let ®au be the column vector in the adjacency

matrix of G corresponding to node u. The personalized PageRank

vector ®pr is defined by

pru = (1 − α)ru + α ( ®pr · ®au/|N (u)|) (4)

where α ∈ (0, 1) is a restart probability, and ru = 1 if u = s and
ru = 0 otherwise. pru is used as the link prediction score between

s and u. Comparing to well-known link prediction methods such as

those based on similarity indices, personalized PageRank is more

suitable in our context as it gives a non-zero score for any reachable

pairs of nodes, extending beyond pairs with nonempty overlapped

neighborhoods. A limitation of this method is that a non-zero score

is only given two pairs of nodes that are in the same connected

components. If u, s are not connected by a path, pru is evaluated

to 0, making the link cost between them infinite. To alleviate this

problem, we introduce another parameter χ > 0 and amend the cost

function to the following smoothed cost function when the graph is

not connected:

CG (v,u) = (χ + φ(score({v,u}))
−1. (5)

Finally, we normalize CG (v,u) so that the maximum cost for (v,u)
in the same connected component is 0.

Having defined the utility of agents and the costs of potential

links, we formulate the utility-based network building problem (U-
NB) as follows: The input to the problem consists of a network

G = (V ,E), target v ∈ V and a budget B ∈ R. The output of the
problem is a set S ⊆ V such that v obtains the highest centrality in

the networkG ⊕S v whileCv,S (G) ≤ B. More formally, the problem

is defined as

maximize UG (v, S), (6)

subject to CG (v, S) ≤ B. (7)

3.2 Attributed Networks
So far we have been focusing on social networks with only struc-

tural information. Our next goal is to extend the U-NB problem so

that it applies also to attributed networks. An attributed network

stores not only the interpersonal ties between agents, but also unary

properties of agents. An example is an online social network where

users has features such as age, gender, hobbies, professions, etc.

Attribute information impacts significantly the likelihood of a tie

establishing between individuals, and in general people with more

common attributes would be more likely to be linked. Through in-

corporating personal attributes, a link predictor may provide more

realistic output. For simplicity, we assume that all nodal attributes

have discrete domain and thus the set of possible attributes is finite.

Definition 3.3. Let x1,x2, . . . ,xk be unary discrete features with

finite domains X1,X2, . . . ,Xk , respectively. Let X =
⋃k
i=1 Xi . An

attributed network (with value setX ) is a tuple (V ,E,w)where (V ,E)

is a network and w : V →
∏k

i=1 Xi is an attribute function; w(v)
describes agent v ∈ V wherew(v)[i] ∈ Xi is the ith feature of v .

A simple method to bring attributed network into the same

framework as attribute-free network is through social attribute

network [47]. The model augments a social network with attribute

nodes. A social attribute network (SAN) contains two types of edges,
the first being usual social ties between users and the second being

ties between a user and an attribute. Weights on the edges control
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the importance between attribute information and social ties. Gong

then uses SAN to perform link prediction, emphasizing that the

set of attributes should be pairwise distinct and attributes have

different significance and obtain superior results than other link

prediction methods over attributed networks [15].

Definition 3.4. For an attributed network (V ,E,w)with attributes
x1, . . . ,xk , the corresponding SAN is an edge-weighted graph (V ∪
X ,E ∪ E ′,д) such that the edge set E ′ = {{v,w(v)[i]} | v ∈ V , 1 ≤
i ≤ k}, and the edge weight function д(e) = 1 − λ for e ∈ E and

д(e) = λ for e ∈ E ′, where λ ∈ [0, 1] is an edge weight index.

Here we adopt SAN when evaluating link costs in attributed

networks. The adjacency matrix of an SAN has |V ∪ X | rows and
columns and entry-(i, j) is 1 if {i, j} ∈ E, λ if {i, j} ∈ E ′ and 0

otherwise. The link prediction score score(v,u) from v to u is de-

fined as v’s personalized PageRank pru in the corresponding SAN.

This allows all notions in U-NB naturally carry over to attributed

networks.

4 NETWORK BUILDING STRATEGIES
4.1 Three Heuristics
Our next goal is to design algorithms for U-NB for a given target v .
We list some properties of the utility function UG .

Theorem 4.1. The utility UG satisfies the following:

(a) UG (v,∅) = 0.
(b) UG (v, S) ≤ UG (v,T ) for all S ⊆ T ⊆ V .
(c) The function is submodular, i.e., for any S ⊆ T ⊆ V andu such

thatu < T ,UG (v, S∪{u})−UG (S) ≥ UG (v,T ∪{u})−UG (T ).

Proof. (a) is clear. For (b), suppose S ⊆ T ⊆ V . For any node

u ∈ V , distG⊕Sv (u,v) ≥ distG⊕Tv (u,v). Thus

clG⊕S (v) =
∑

distG (u,v)<∞

1

distG⊕Sv (u,v)

≤
∑

distG (u,v)<∞

1

distG⊕Tv (u,v)
= clG⊕T (v),

implying that UG (v, S) ≤ UG (v,T ).
For (c), consider nodes s , v . Suppose the last edge of a shortest

path from s to v in G ⊕T∪{u } v is {u,v} or belongs to {{x ,v} |
x ∈ S}. Then, distG⊕T∪{u}v (s,v) = distG⊕S∪{u}v (s,v). Let S1 ⊆ V

be the set of all such s , and let S2 = V \(S1 ∪ {v}). The last edge
of any shortest path from s ∈ S2 to v in G ⊕T∪{u } v belongs to

{{x ,v} | x ∈ T\S}. In this case, distG⊕T∪{u}v (s,v) = distG⊕Tv (s,v).

Now we have

UG (v,T ∪ {u}) −UG (v,T )

=
∑
s ∈S1

(
1

distG⊕T∪{u}v (s,v)
−

1

distG⊕Tv (s,v)

)
+

∑
s ∈S2

(
1

distG⊕T∪{u}v (s,v)
−

1

distG⊕Tv (s,v)

)
=

∑
s ∈S1

(
1

distG⊕T∪{u}v (s,v)
−

1

distG⊕Tv (s,v)

)
=

∑
s ∈S1

(
1

distG⊕S∪{u}v (s,v)
−

1

distG⊕Tv (s,v)

)
≤

∑
s,v

(
1

distG⊕S∪{u}v (s,v)
−

1

distG⊕Sv (s,v)

)
=UG (v, S ∪ {u}) −UG (v, S)

Thus the function UG is submodular.

�

Submodularity captures a “diminishing return” effect in many

network-related processes such as information diffusion [18] and

outbreak detection [21]. In general, finding optimal solutions with

submodular objective function is NP-hard [19]. We thus focus on

efficient heuristics to approximate optimal solutions of U-NB. we
propose three greedy heuristics:

The first heuristic, Utility Strategy (SCLS), focuses on utility,

i.e., it iteratively links v with argmax{clG (u) | u ∈ V \S}. This
simulates agents who prefer to build relations with those who have

high status, disregarding cost. A downside of this strategy is that

as costs of each link may be high, fewer number of ties will be

established.

The second heuristic, Cost Strategy (SPP), builds ties that incur

minimum costs, i.e., the strategy iteratively linksv with argmin{CG (v,u) |
u ∈ V \S}. This is the standard link prediction-based method where

agents connect with those who are easy to establish ties with, ig-

noring utility.

The third heuristic, Unified Strategy (SUN), strikes a balance

between utility and cost, iteratively building edges for v that maxi-

mize utility/cost ratio. The algorithm is presented in Alg. 1. Using

a similar proof as in [19], one may obtain a performance guarantee

of this strategy; see Thm. 4.2.

Theorem 4.2. [19] The UnifiedStrategy in Alg. 1 achieves an ap-
proximation factor of 1

2
× (1 − 1

e ) for the U-NB problem.

4.2 Experiments on Network Building
Strategies

We conduct experiments comparing the three network building

strategies for the U-NB problem over both (attribute-free) synthetic

networks and (attributed) real-world networks.

Data sets.We use random graph models, ER, BA, WS, as described

in Sec. 2 and generate for each model graphs with 100, 200, and

500 nodes. We set parameters so that the average degree of each

generated network is 4, as it occurs commonly in social networks.
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Algorithm 1 UnifiedStrategy

Input: A graph G = (V ,E), target v , budget B
Output: set of nodes S ⊆ V \N [v] such that Cv,S (G) ≤ B
1: Compute cost and utility for each node not adjacent to v
2: T ← ∅
3: while CG (v,T ) ≤ B do
4: umax B argmaxu {UG (v,T ∪ {u}) −UG (v,T )}
5: T B T ∪ {umax}

6: S B ∅
7: while CG (v, S) ≤ B do
8: umaxB argmaxu{(UG (v, S ∪ {u})−UG (v, S))/CG (v,u)}
9: S B S ∪ {umax}

10: return S ifUG (v, S) > UG (v,T ); T otherwise.

E.g around 30 social networks on KONECT database have average

degrees from 2 to 6. Also [43] uses an example with average degree

4 to introduce their model. We take DBLP data which contains

co-authorship network of 2723 authors, captured from the DBLP

Bibliography data. Each author has 43 distinct categorical attributes,

denoting the number of the published researches. As the data set

contains nine timestamps, we treat them as nine separate attributed

networks [10].

Parameter calibration.We need to calibrate the following param-

eters: function φ and value χ in computing link costs, variables α , λ
in the SAN model, and the total budget B.
- φ and χ : The pr function typically give a score between 0 and 0.1,

with mean sitting at a much lower value than 0.1, and the standard

deviation is less than 0.02. We would ideally have cost distribution

with a higher standard deviation to differentiate link costs among

different pairs of agents. Empirical evidence show that φ(x) = x1/3

as an optimal setup. No method exists that quantifies the link cost

between two disjoint networks. We set χ = 0.2 to give link costs

between agents in different networks a cost of 5.

- α and λ: Following the settings in [47], we set the parameter λ to

0.6 and the restart factor α to 0.9.

- B: We set B as a percentage of network size n to see how it influ-

ences performance. For synthetic networks, we vary B from 0.1n to

0.5n for robustness of our empirical findings. For DBLP networks,

we vary B from 0.05n to 0.25n.

Experiment setup. Each trial involves (a) deriving utility and cost

by computing centrality and personalized PageRank, (b) picking

up a random target v and (c) applying heuristics above to seek for

a set S for v to build edges with.

We also perform a benchmark method and compare its perfor-

mance with our heuristics for the U-NB. Prior to this work, link

recommendation is usually done through link prediction. our goal

is to test how link recommendation is affected once we take utility

and costs into consideration. For the benchmark method, we pick

a well-established link prediction algorithm, namely, the resource
allocation (RA) index, which stands out as a superior similarity-

based link predictor compared to many other alternatives [28]. The

method is motivated by the resource allocation dynamics on com-

plex networks. Assuming an agent x tries to send resources to y,
who’s not adjacent to x , the common neighbors of x and y play a

role of transmitting the resource equally. The RA index of x and y
is sRAxy =

∑
z∈N (x )

⋂
N (y) 1/|N (z)|.

The performance of a method is then evaluated based on utility

of the resulting sets. To ensure robustness of results, we randomly

select 50 agents as target v in each experiment and analyze average

utility gained by the selected agents.

We first conduct experiments on networks generated by ER, BA

andWS model with 100 nodes each. As the networks are connected,

we use cost as in (3). Then for these models again, as well as for all

DBLP networks, we apply the heuristics with the smoothed cost

in (5). Comparison of results should illustrate consistency between

the two different cost formulas.

Experiment 1 (Connected networks). As shown in Fig. 1, all

three heuristics significantly outperforms the RA based benchmark.

The plot shows utility UG as a function of the budget B. The three
heuristics SPP, SCLS, SUN are shown in green, yellow and red

curves, respectively. Orange curves represent benchmark method

(RA), and blue curves show average starting centrality. This color

scheme will be used throughout all experiments. Clearly, all four

methods give increased centrality, but RA performs poorest with

an increase of around 1.34 times. SPP, SCLS and SUN achieve signif-

icantly better results. The difference between RA and other three

heuristics increases as B increase. Note also that SUN and SCLS

outperforms SPP by at least 10.3% and the difference among these

three strategies increases as the budget grows, which indicates that

SUN and SCLS have superior utility-maximizing ability than the

link prediction-based method.

Figure 1: Performance in connected networks.

Experiment 2 (Smoothed cost). Fig. 2 shows the results for the
ER, BA and WS networks over smoothed cost function. Results

on networks are consistent with Exp. 1. For example, in network

WS-500, setting B = 0.5n, RA improves average utility of the target

from 0.118 to 0.216, while SPP, SCLS, SUN have utility 0.277, 0.294,

and 0.368, resp. Our three heuristics improve the centrality of the

target by at least 2.344 times, while RA only improves it by 1.824

times. Unsurprisingly, in Figure. 2 SUN and SCLS, which are based

on the utility of a potential link and the closeness centrality of a

node, outperforms SPP by at least 10.2% and at most 12.59%.

Experiment 3 (DBLP networks). Fig. 3 shows the results on

DBLP networks utilizing SAN model. The results are consistent

with the one on generated non-attributed networks. RA can in-

crease the centrality of a target node for about 4.389 times, while

SPP can enhance for about 5.336 times, SCLS 5.868 times and SUN

7.605 times with same budget, shown in the DBLP_t2 network when
we set the budget to be 5% of the node number. In every budget,

SPP, SCLS and SUN clearly outperform the benchmark method, and

the improve by SUN is far more than SPP by at most 12.76%.
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Figure 2: Performance in connected networks with
smoothed costs

Figure 3: Performance in DBLP networks.

5 UTILITY-BASED NETWORK FORMATION
MODELS

Our next goal is to propose network formation models that rely on

network building strategies. The behavior of a social system is char-

acterized by the collective actions of self-interested autonomous

agents. In views of strategic network formation, links are estab-

lished as each agent aims to maximize gain through building re-

lations. A network structure takes shape as we allocate budgets

amongst agents allowing them to establish links. To derive a model

that is as lean and simple as possible, we assume: (1) No edge will

be severed, so that focus is solely placed on tie creation. This is

consistent with the classical BA model of scale-free networks; and

(2) All agents are given the same budget B, and decide edges that

they would form based on the current network structure.

Our network formation is defined as follows: Let S be a network

building strategy for an agent. Given an initial network G = (V ,E),
every agent v ∈ V applies S and computes a set Sv ⊆ V of nodes

to establish links with. The resulting network is then

G ′ = (V ,E ∪ {{v,u} | v ∈ V ,u ∈ Sv }) (8)

Core/periphery structure.A core/periphery structure, informally

speaking, is formed by a bipartition between a dense core and a

comparatively sparse periphery, and that the graph cannot be de-

composed further into several loosely connected dense clusters [9].

In this sense, a core/periphery structure can be viewed as being

in the other end of a spectrum opposite to a community structure,

which consists of several dense subgraphs but no core. The core

must sit at the center of the network; This is a stronger property

than scale-freeness, as e.g., a network with power-law degree dis-

tribution may easily contain a dense subgraph, however, the dense

subgraph may not occupy a very central position relative to others

and thus the network is not considered a core/periphery structure.

Here, we would like to test the existence of core/periphery struc-

ture in bothG and the outcomeG ′. To this end, we recall an impor-

tant definition: Given a network G = (V ,E), a k-core is a maximal

subgraph with the minimum degree k [35]. The core number κ(G)
of G is the largest k such thatG contains a k-core. For any subset

S ⊆ V , use clG (S) to denote the closeness centrality of S , i.e.,

clG (S) =
|S | · (n − 1)∑

v ∈S
∑
u ∈V \{v } distG (v,u)

. (9)

LetVcore(G) denote the κ(G)-core with maximum closeness central-

ity. The following presents a Holme’s well-accepted indicator of a

core/periphery structure [16]:

Definition 5.1. Given G = (V ,E), G(G) denotes the collection of

all graphs with the same degree sequence as G. The core/periphery
coefficient of a graph G = (V ,E) is given by

ccp(G) =
clG (Vcore(G))
clG (V (G))

−

〈
clH (Vcore(H ))
clH (V (H ))

〉
H ∈G(G)

(10)

where ⟨·⟩ denotes the averaging operation.

Intuitively, G has high core/periphery coefficient if its most cen-

tral κ(G)-core has predominantly higher closeness centrality than

the central κ(H )-core in a null model. If ccp(G) > 0, we can consider

thatG exhibit core/periphery structure, with the property becomes

more evident as ccp(G) increases. None of ER, BA and WS models
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produce graphs with positive ccp(G). Several notable examples of

networks with core/periphery structure include rich-club networks

(whose ccp(G) is typically around 0.1) and onion networks (whose

ccp(G) is around 0.2); See [9] for an introduction.

Experiment 4 (Regular graph). Naturally, the network G ′ de-
pends on (a) the network building strategy S and (b) the initial

network G. For S, we may apply any of the strategies SCLS, SPP

and SUN studied above. For G, we assume that upon initialization,

the agents form a regular network where all agents have exactly 3

adjacent edges; this makes initial edges evenly distributed withinG ,
and eliminates any prior distribution affecting the outcome. For this

experiments, we generate regular graphs of size 1000 and run the

models when S ∈ { SCLS, SPP, SUN}. Empirically we would like

to investigate structural properties of the network G ′. Particular
focus will be put on the following desirable properties [48]:

• Scale-freeness: Power-law degree distribution P(k) ∼ k−γ for

degree k ∈ N, with γ around 2 or 3.

• Small-world property: Small shortest path length (typically

< 6), and High clustering coefficient (above 0.1).

• Core/periphery structure: A positive core/periphery coeffi-

cient (> 0.1).

See Fig. 4 for the resulting networks. Table 1 contains detailed

indices for the initial networkG as well as three resulting networks

G ′:

Figure 4: The result of the network formation model start-
ing from a 3-regular graph and applying SCLS, SPP and SUN
strategies. (top left) Initial 3-regular network; (top right) G ′

with SCLS; (bottom left)G ′ with SPP ; (bottom right)G ′ with
SUN.

The three resulting networks exhibit very similar patterns: Each

network contains roughly 900-1000 new edges. The network all

show clear power-law distribution (with γ ∈ [2.6, 3.1]), verifying
that they shift from regular graph towards scale-free networks. This

is reasonable as by adopting network building strategy, the agents

engage in an essentially a more sophisticated form of “preferential

attachment” that prefers more central nodes in the network. Among

the strategies, SUN results in the highest γ indicating largest in-

equality among degree frequencies. There are significant increase

on clustering coefficient and decrease in average path length, thus

Table 1: Key indices for the initial regular graph G and the
result G ′ of the network formation model with SCLS, SPP
and SUN strategies. Goodness of fit indicates howwell linear
regression fits the log-log degree distribution.

G SCLS SPP SUN

Avg. deg 3.0 4.802 4.956 4.944

Avg. cluster. coef. 0.002 0.299 0.277 0.277

Avg. path. len. 8.077 5.981 5.870 5.880

Core/peri. coef. -0.027 -0.019 -0.020 -0.020

γ 0 2.638 2.940 3.073

Goodness of fit - 0.89 0.98 0.98

showing small-world property. The core/periphery coefficient re-

mains very low, showing that none of the resulting networks have

a core/periphery structure.

Experiment 5 (BA networks). We now augment our model by

changing the initial graphG . In particular, we setG as a BA network

produced by 1000 agents using preferential attachment. Similar to

Experiment 4, we apply the three network building strategies to G.
The resulting networks are shown in Fig. 5 with degree distributions

displayed in Fig. 6. Key indices are listed in Table 2.

As shown in the results, each network contains roughly 700-900

new edges; this is smaller than the previous case where regular

graph is chosen as more agents tend to choose the same edges to

build due to unbalance of the initial network. All three resulting

networks demonstrate clear power-law degree distribution and

a hugely increased clustering coefficient (from 0.025 to over 0.5).

Consistent with Experiment 4, neither of the SCLS and SUN strate-

gies give rise to high core/periphery coefficient. For SPP, however,

the core/periphery coefficient increases from −0.101 to 0.233, giv-

ing strong indication that a core/periphery structure emerges. An

intuitive explanation to this phenomenon is this: as in SPP each

agent creates ties that are predicted to be the easiest to establish for

themselves, central nodes will tend to form links with other central

nodes, while periphery nodes tend to connect to periphery nodes,

amplifying the differences between these two levels.

Table 2: Key indices for the initial BA network G and the
result G ′ of the network formation model with SCLS, SPP
and SUN strategies. Goodness of fit indicates howwell linear
regression fits the log-log degree distribution.

G SCLS SPP SUN

Avg. deg 3.992 5.544 5.766 5.73

Avg. cluster. coef. 0.025 0.564 0.567 0.574

Avg. path. len. 4.113 3.514 3.555 3.396

Core/peri. coef. -0.101 -0.056 0.233 -0.024

γ 1.454 1.206 1.224 1.104

Goodness of fit 0.845 0.799 0.793 0.763

6 CONCLUSION AND FUTUREWORK
We integrate costs and gains in the process of link creation. Gains to

agents are measured in the form of improved closeness centrality;
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Figure 5: The result of the network formation model start-
ing from a BA network and applying SCLS, SPP and SUN
strategies. (top left) Initial network; (top right)G ′with SCLS;
(bottom left) G ′ with SPP ; (bottom right) G ′ with SUN.

Figure 6: Degree distribution ofG ′ with SCLS (left), SPP (cen-
ter) and SUN (right) strategies.

costs of establishing ties are inversely correlated to link prediction

scores. The two strategies that we propose, SCLS and SUN, result

in superior performance compared to other strategies. In partic-

ular, exploiting submodularity of the utility function, SUN has a

guaranteed approximation ratio of
1

2
×

(
1 − 1

e

)
. We then extend the

problem from individual agents to simulating network formation

over a set of utility-driven agents. We show:

(1) When starting from a regular graph, the agents would achieve

both a power-law degree distribution and small-world property.

Core/periphery structure, an important meso-level network prop-

erty, is not present in this scenario.

(2) When starting from a scale-free network resulted from pref-

erential attachment, the agents would also achieve the properties

above.What’s remarkable is that a core/periphery structure appears

as the agents choose the cost-driven strategy SPP; such structure

does not emerge for the other utility-driven strategies.

Ideas and methods proposed in this paper represent a novel

research initiative. There are several potential directions for future

work. A rather straightforward extension is to study utility-driven

network building over dynamic networks. One may extend the

current network formation model to a dynamic network model as

follows: The process involves several rounds of evolution. With

every round, the agents are assigned a certain amount of budget,

and act by establishing links with others while keeping their costs

within budget. Once a round is over, the agents are then assigned

new budget, and start another round. This corresponds intuitively

to an effect where agent may “reload” resources to create further

links as time progresses. An interesting question to examine is to

see whether core/periphery structure may emerge as the network

evolves for multiple rounds.

A further extension is to also allow tie severance. Another po-

tential future work is to choose alternative definitions of gains and

costs. Rather than maximizing closeness centrality, an agent may

have other desired outcomes such as increasing in influence. Apart

from personalized PageRank, a different cost function may involve

machine learning that computes easiness to create ties between

individuals [22].

A long and fruitful research direction investigates network for-

mation from a game-theoretical point of view. For example, Myer-

son’s linking game assumes each agent as a rational player who

is able to choose as strategies to link with others. Contrary to our

framework, a link is only established if both players on its end-

points choose to build ties with each other. The advantage of this

formulation is to allow the discussion of equilibria, i.e., stable states

emerged as outcomes of the game. We speculate that our definition

of utility may give rise to interesting network formation games.
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