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ABSTRACT
Learning from interactions between agents is a key component for
inference in multiagent systems. Depending on the downstream
task, there could be multiple criteria for evaluating the general-
ization performance of learning. In this work, we propose a novel
framework for evaluating generalization in multiagent systems
based on agent-interaction graphs. An agent-interaction graph mod-
els agents as nodes and interactions as hyper-edges between partic-
ipating agents. Using this abstract data structure, we define three
notions of generalization for principled evaluation of learning in
multiagent systems.
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1 INTRODUCTION
A multiagent system consists of a set of two or more agents that
interact with each other in an environment through a sequence
of actions [2, 5, 8]. Such a system allows us to model a wide vari-
ety of scenarios involving both natural and artificial agents and
study different agent policies and environment dynamics. In prac-
tice however, we rarely have access to analytical representations of
the dynamics and/or policies for complex environments that are
amenable for direct, downstream probabilistic inference. Therefore
to enable reasoning over multiagent systems, we need algorithms
that can learn from interaction data and generalize to unseen sce-
narios at test-time.

Throughout this paper, we will consider a running example of
a competitive environment involving multiple agents interacting
with each other in a tournament setting. Interactions involve two
agents participating in one or more match episodes, with each
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match resulting in a win or loss. As discuss later, our proposed
framework extends to more general multiagent systems as well.

Learning from interaction data can enable various kinds of down-
stream tasks. For instance, we can use interaction data to cluster
agents as per their style of play (aggressive/defensive). For labeled
data, we can further predict the win or loss outcomes of a match
between two agents. The above tasks assume a set of pre-defined
agent policies. The policy of a playing agent can also be learned
in an online manner through interactions with other agents, using
standard reinforcement learning algorithms.

Good generalization is a desirable property for any learning
framework. In the typical setting of supervised learning, generaliza-
tion is defined with respect to the performance of the framework
on the train and test splits of a given dataset. The train and test
splits are chosen randomly under the implicit assumption that the
datapoints are sampled independently and identically from an un-
derlying data distribution (i.i.d.). Accordingly, a learned framework
generalizes well if it attains a similar train and test performance.

The above procedure can be restrictive for evaluating gener-
alization in multiagent systems. The limitations arise due to the
simple observation that agents and their interaction episodes in
a multiagent system are tightly coupled and thereby, information
can explicitly propagate from one interaction episode to another.
For instance, if an agent Alice consistently outperforms another
agent Bob, and Bob in turn outperforms Charlie, then we can ex-
pect the learned model to have a good prior regarding the relative
performance of Alice & Charlie. On the other hand, if we only have
interaction episodes between agents Alice & Bob and Charlie &
Davis, then inferring win or loss outcomes for episodes between
Alice & Charlie at test time could be challenging. Put differently,
there can exist different notions of generalization for a learning
framework within a multiagent system.

In this work, we propose a hierarchy of notions of generalization
in multiagent systems defined with respect to an agent-interaction
graph. Graphs are a powerful abstraction for modeling relational
information. Here, we propose to represent a multiagent system as
an agent-interaction graph with agents as nodes and interaction
episodes as hyper-edges between participating agents. Using this
abstract data structure, we consider three levels of generalizations
in increasing order of difficulty. These notions, presented formally
in the next section, differ from each other in how the empirical
train and test distributions of interactions are defined.
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Figure 1: An example agent-interaction graph for evaluating generalization in a multiagent system: (a) training, (b) weak
generalization, (c) intermediate generalization, and (d) strong generalization. Black edges denote interaction episodes observed
during training and other colored edges denote interaction episodes observed at test-time.

2 GENERALIZATION FRAMEWORK
Let P define a set of agent-policies and I define a set of interac-
tion episodes between the agents. Under the framework of Markov
Games [4], an interaction episode is simply a sequence of obser-
vation, action pairs involving the participating agents. The graph
describing the relationship between the agents is termed as the
agent-interaction graph,G = (P , I ) for the mutliagent system.1 Note
that the edges in the graph can be directed or undirected depending
on whether the interactions exhibit symmetry.

To take a concrete example, consider the undirected graph in
Figure 1a. The nodes of the graph represent the policies of individual
agents present in the environment and the black edges correspond
to the set of interaction episodes between these agents observed
during training. No restrictions are otherwise implied on these
interactions, which could be competitive or cooperative. Concretely
this implies that during training Alice interacts with Emily, Bob
interacts withGimli, Emily interacts withGimli and Faramir,Gimli
interacts with Bob, Emily and Faramir while Faramir interacts with
Emily and Gimli.

2.1 Weak generalization
Intuitively, one of the basic forms of generalization we can expect
from such a setup is over successive episodic interactions between
training agents. For example, since Alice has already interacted
with Emily in the training phase, we expect a good model to make
accurate inferences about any future episode (brown edge in Fig-
ure 1b) involving Alice and Emily in an interaction between them
at test time. This corresponds to the setting where the typical i.i.d.
assumption is expected to hold, akin to generalization in classical
statistical learning [6].

2.2 Intermediate generalization
Now, consider the interaction between Alice and Bob at test time.
We represent this with a red edge in Figure 1c. Although Alice and
Bob did not interact with each other during training, there still
exists a transitive relationship between the two via other agents in
the graph such as Emily and Gimli. Therefore, we expect a good
model in this learning framework to generalize to new interactions
with unseen agents present in the training graph.

1More than two participating agents can be described in terms of a hypergraph.

2.3 Strong generalization
Consider the addition of Charlie andDavis to the graph in Figure 1d.
Their interaction episodes with Alice and Bob, respectively, are
represented by green edges. Akin to a few-shot learning problem [7],
we expect that the observation of few such episodes with existing
agents allows a learning framework to generalize to interactions
between Charlie and Davis, as represented by the blue edge.

3 DISCUSSION
The precise notion of generalization relevant for a downstream task
is largely an empirical question. In this work, we presented a unified
data structure for specifying the training and evaluation principles
for learning in multiagent systems. The proposed agent-interaction
graphs are oblivious to the nature of interactions between agents,
and hence can be applied more broadly to competitive, cooperative,
mixed interaction etc. scenarios.

In a recent work [3], we applied these notions of generalization
to learn a general-purpose representation function. The representa-
tion function maps interaction episodes involving an agent to real
vector-valued embeddings of the agent policies. These embeddings
are learned solely from interaction data, using principles from un-
supervised representation learning [1]. Since the representation
function is learned in a purely unsupervised fashion, we find the
embeddings output by this function to be applicable to several
downstream learning tasks in multiagent systems.

However, in order for these representations to be able to gener-
alize to unseen interaction episodes, we need to characterize the
interaction episodes observed by the model both during learning
and test-time inference. If we want the model to generalize to novel
interaction episodes between agents already present in the training
graph, the notions of weak and intermediate generalization seem
relevant. On the other hand, the notion of strong generalization is
more suited if we want the representation function to generalize to
interactions involving completely novel agents during test time.

An interesting direction of futurework is to learn agent-interaction
graphs. In our discussion so far, we have assumed a centralized
setting where a practitioner constructs a global agent-interaction
graph based on the historical interaction episodes of agents. Alter-
natively, agents could each construct ‘ego-graphs’ based on their
local interactions with other agents. The notions of generalization
proposed in this work should extend to learning in such decentral-
ized settings as well.
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