
StarCraft as a Testbed for Engineering Complex Distributed
Systems Using Cognitive Agent Technology

Extended Abstract

Vincent J. Koeman, Harm J. Griffioen, Danny C. Plenge, Koen V. Hindriks
Delft University of Technology, The Netherlands

{v.j.koeman,h.j.griffioen,p.c.plenge,k.v.hindriks}@tudelft.nl

ABSTRACT
It has been argued that the evaluation of cognitive agent systems
requires richer benchmark problems. We think that real-time strat-
egy (RTS) games can offer such a testbed, as AI for RTS requires the
design of complicated strategies for coordinating hundreds of units
that need to solve a range of challenges. Therefore, in this paper,
we report on the design and development of the first multi-agent
connector that provides full access to StarCraft (Brood War). We
provide a new interface that is dedicated to a multi-agent approach
by connecting each unit in the game to a cognitive agent. Two main
challenges are addressed in this work. First, we decide on the right
level of abstraction for unit control by means of agents, designing
for instance the percepts that are available to units. Second, a suf-
ficient level of performance needs to be ensured in order to allow
a large variety of multi-agent implementations to be successful at
tackling challenges of RTS AI. The resulting open-source connec-
tor readily supports the hundreds of agents that can come and go
during the game. Based on the development of the connector and
its initial use by over 200 students, we gained valuable insights.

ACM Reference Format:
Vincent J. Koeman, Harm J. Griffioen, Danny C. Plenge, Koen V. Hindriks.
2018. StarCraft as a Testbed for Engineering Complex Distributed Sys-
tems Using Cognitive Agent Technology. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
RTS games that deploy large numbers of units can provide an ideal
testbed for cognitive agent technologies [3, 14]. The basic idea is
that by controlling each unit with a cognitive agent, a program
that derives its choice of action from its cognitive state of beliefs
and goals represented using some KR technology such as Prolog,
we obtain an agent system that needs to address the complicated
challenges of coordination and responsiveness. The idea is that a
one-to-one mapping between game units and cognitive agents pro-
vides a set-up that is ideal for benchmarking and putting cognitive
agent systems to the test. Based on this idea, and in accordance with
Google (DeepMind) and many other AI researchers [11, 13, 14], we
believe that StarCraft is the most suitable RTS game to target as a
testbed. Moreover, the several popular competitions for StarCraft
AI can serve as a benchmark for implementations [13].

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Our work thus aims to provide opportunities for demonstrating
the added value of and drawing new lessons about our cognitive
agent technologies by designing and implementing the first connec-
tor for cognitive agents that provides full access to StarCraft (Brood
War). Such a connector will bring the aforementioned challenges
of RTS games to the field of AOP whilst conversely also opening
up a new strategy space for developers of AI for RTS games. From
the perspective of cognitive agent technologies, we believe that
by facilitating cognitive agents to effectively interface with the
prototypical RTS game of StarCraft through our connector, we sig-
nificantly ‘raise the bar’ in terms of scalability and related issues.
Moreover, we believe that StarCraft provides a very challenging
environment to demonstrate the potential and promise of cognitive
agent technology for engineering complex distributed systems that
simultaneously need to address many AI challenges [6, 12].

Our focus is on the design of a connector that enables and facili-
tates the use of cognitive agent technology for engineering strate-
gies for StarCraft based on a one-to-one unit-agent mapping. The
basic requirement that such a connector should support this unit-
agent mapping introduces important challenges in itself:

(1) The connector should facilitate an agent system that operates
at a level of abstraction that is appropriate to cognitive agents.

(2) The connector should be sufficiently performant in order to
support a sufficient variety of viable implementations (i.e.,
both different approaches to implementing strategies as well
as the use of different agent platforms).

In other words, we do not aim to facilitate agent systems that
operate at the same level of detail as bots written for StarCraft in
C++ or Java, but such systems should in contrast also not consist
of a single action ‘win’ that will delegate the control to some other
subsystem instead. To make optimal use of the reasoning typically
employed by cognitive agents [1], low-level details should be left
to specific control layers whilst still allowing agents sufficiently
fine-grained control in their decision making.

2 RELATEDWORK
Connectors that support connecting cognitive agent technology
to games have been made available for other games [2]. So far,
however, most connectors have remained rather simple. The most
complex multi-agent connectors that have been made available so
far, are connectors for Unreal Tournament [7]. The design of such
a connector involves similar issues related to the facilitated level of
abstraction and the resulting performance as in this work. However,
the resulting implementation as reported on in [7] does not support
running more than 10 agents, whereas for a StarCraft interface
we need to connect hundreds of cognitive agents to control the

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1983



hundreds of units in game. Moreover, corresponding agent systems
for Unreal Tournament generally offer only a very restricted set of
actions that agents can perform , limiting the complexity of decision
making that is required compared to StarCraft.

An API for StarCraft (BroodWar) has been thoroughly developed
for several years: BWAPI [5]. BWAPI reveals the visible parts of
the game state to AI implementations, facilitating the development
of competitive (non-cheating) bots. Several dozens of such bots
have been created with this API, mostly written in C++ or Java,
aimed at participating in one of the tournaments that are being
held for StarCraft AI implementations. However, none of this work
facilitates employing cognitive agent technologies.

A first attempt at a cognitive agent interface for StarCraft by
using BWAPI was performed by Jensen et al. [8]. In this work,
a working proof-of-concept that ties in-game units to cognitive
agents was introduced. However, it does not address the major
challenges such an implementation faces concerning the level of
abstraction and corresponding performance, as we do in this work.

3 DESIGN AND IMPLEMENTATION
The core of a connector for cognitive agents exists of three compo-
nents: (i) the entities that are provided for agents to connect to (i.e.,
units in StarCraft), (ii) the outputs that are generated by each entity
(and thus which percepts a corresponding agent receives), and (iii)
the inputs that are available for each entity (and thus which actions
an agent controlling the entity can perform).

As our approach is to provide an entity (i.e., to which an agent
can connect) for each unit, and the available actions for each unit
are mainly defined by the (interface to) the game itself, the main
challenge when balancing the level of abstraction with the resulting
performance is in determining the percepts that are available. Com-
bining the (finite set of) information that is available through the
BWAPI interface with a developed set of guidelines lead to a set of
about 25 percepts1. By default, each entity will receive percepts that
are relevant to the state of the corresponding StarCraft unit. Such
percepts include status information (e.g., the unit’s position and its
remaining health) and, depending on the type of unit, specific situ-
ational information (e.g., the units that are loaded into the current
unit if it is loadable). This facilitates decentralized reasoning to be
employed by agents about their own state.

Because of the tight performance requirements on StarCraft AI,
we have found it useful to provide specific mechanisms to a de-
veloper to fine-tune the delivery of percepts containing general
information about the match to specific agents. Therefore, through
the connector’s initialization settings, a list of desired ‘global infor-
mation’ (i.e., names of percepts) can be given (“subscribed to”) for
each unit type. In addition, for a complex game as StarCraft, devel-
opers of cognitive solutions will need more advanced support to
structure their agents. To this end, we have designed our connector
to support special kind of entities, ‘managers’, that do not match
with unique in-game units but but do have the ability to receive
desired percepts through the aforementioned global percepts. Such
managers are especially useful to reason about groups of units.

1For the full set of percepts and actions available in the environment, see https://github.
com/eishub/Starcraft/blob/master/doc/Resources/StarCraftEnvironmentManual.pdf.

4 EVALUATION
In the evaluation of our connector, we have focused first on the
performance, as high performance is critical for any MAS approach
that uses many agents to deal with the challenges of AI for RTS.
We also evaluated our requirement that the connector should not
restrict the strategy space in any essential way by looking at a
considerable set of implementations that make use of our connector.
In three iterations, the connector was refined to its current state.
Initially, a pilot was held with around 100 masters students that
worked in groups on creating a StarCraft bot using this connector.
This helped us track down and resolve initial issues that were
present in the connector prototype. More recently, over 200 first
year bachelors students did the same with an improved version of
the connector, being the largest StarCraft AI project so far. Students
successfully created full-fledged bots within just 8 weeks, of which
some even joined the Student StarCraft AI Tournament (SSCAIT)
[4]. In addition, a masters student has developed a StarCraft AI
implementation using this connector that is ranked in SSCAIT at
around the 30th place of 90 active bots (which are mostly written
in C++ or Java) at the time of writing.

5 CONCLUSIONS AND FUTUREWORK
Our cognitive agent connector for StarCraft readily supports the
hundreds of agents that can come and go during the game, each
of which has to deal with major challenges such as uncertainty
and long-term collaborative goals. The unit-to-agent approach of
our connector is different from most StarCraft AI implementations.
Its viability is demonstrated by multiple large-scale practical uses
of the connector, resulting in a varied set of competitive AIs. We
believe that our connector provides opportunities to the agent
community to show the potential of cognitive agent technologies
for addressing the challenges such environments provide. Ensuring
a sufficient level of performance of the connector was a significant
challenge that had to be addressed in particular in order to ensure
a unit-agent mapping approach is viable. In our evaluations, we
determined the baseline performance of the connector in a worst-
case scenario, which shows that on average there remains sufficient
CPU time for strategic reasoning in the cognitive agents. Even
though the performance of an agent system depends largely on the
used cognitive technology itself, we believe that our connector can
be effectively used in practice.

Although this work is focused on StarCraft BroodWar, the brand
new ‘raw API’ of StarCraft 2 is reported to be similar to BWPAI in
Vinyals et al. [15], and the work in this paper should therefore be rel-
atively straightforwardly applicable and/or portable to StarCraft 2
(and possibly other RTS games) in future work.

Finally, a challenge that was not addressed is the fact that de-
bugging (cf. Koeman et al. [10]) becomes increasingly difficult with
increasing numbers of agents. As debugging concurrent programs
is a hard problem in general, more work is required in this area. In
addition, in order to better support automated testing (cf. Koeman
et al. [9]), it may be beneficial to develop a mechanism that auto-
matically saves the state of an agent system when a save game is
created in StarCraft. This can be used to immediately initialize the
system to the desired state when executing a test with a specific
save game (i.e., representing a scenario).

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1984

https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraft Environment Manual.pdf
https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraft Environment Manual.pdf


REFERENCES
[1] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni.

2009. Multi-Agent Programming. Springer.
[2] Frank Dignum. 2012. Agents for games and simulations. Autonomous Agents and

Multi-Agent Systems 24, 2 (March 2012), 217–220.
[3] Frank Dignum, Joost Westra, Willem A van Doesburg, and Maaike Harbers. 2009.

Games and agents: Designing intelligent gameplay. International Journal of
Computer Games Technology 2009 (2009).

[4] Michal Čertický, Paul Paradies, Marek Šuppa, Björn Persson Mattsson, Tomáš
Vajda, Rafał Poniatowski, and Sören Klett. 2011. Student StarCraft AI Tournament.
https://sscaitournament.com. (2011). Accessed: 2017-11-14.

[5] Adam Heinermann. 2008. Brood War API. https://github.com/bwapi/bwapi.
(2008). Accessed: 2017-11-14.

[6] Koen V. Hindriks. 2014. The Shaping of the Agent-Oriented Mindset. Springer
International Publishing, 1–14.

[7] Koen V. Hindriks, Birna van Riemsdijk, Tristan Behrens, Rien Korstanje, Nick
Kraayenbrink, Wouter Pasman, and Lennard de Rijk. 2011. Unreal GOAL Bots.
In Agents for Games and Simulations II: Trends in Techniques, Concepts and Design,
Frank Dignum (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–18.

[8] Andreas Schmidt Jensen, Christian Kaysø-Rørdam, and Jørgen Villadsen. 2015.
Interfacing Agents to Real-Time Strategy Games. In SCAI. 68–77.

[9] Vincent J. Koeman, Koen V. Hindriks, and Catholijn M. Jonker. 2016. Automating
Failure Detection in Cognitive Agent Programs. In Proceedings of the 2016 Inter-
national Conference on Autonomous Agents &#38; Multiagent Systems (AAMAS
’16). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1237–1246.

[10] Vincent J. Koeman, Koen V. Hindriks, and Catholijn M. Jonker. 2017. Designing
a source-level debugger for cognitive agent programs. Autonomous Agents and
Multi-Agent Systems 31, 5 (Sept. 2017), 941–970.

[11] R. Lara-Cabrera, C. Cotta, and A.J. Fernández-Leiva. 2013. A review of compu-
tational intelligence in RTS games. In 2013 IEEE Symposium on Foundations of
Computational Intelligence (FOCI). 114–121.

[12] Brian Logan. 2015. A Future for Agent Programming. Springer International
Publishing, Cham, 3–17.

[13] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss.
2013. A Survey of Real-Time Strategy Game AI Research and Competition in
StarCraft. IEEE Transactions on Computational Intelligence and AI in Games 5, 4
(Dec. 2013), 293–311.

[14] Glen Robertson and Ian Watson. 2014. A review of real-time strategy game AI.
AI Magazine 35, 4 (2014), 75–104.

[15] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. 2017. StarCraft II: A New Challenge for Reinforcement
Learning. arXiv preprint arXiv:1708.04782 (Aug. 2017).

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1985

https://sscaitournament.com
https://github.com/bwapi/bwapi

	Abstract
	1 Introduction
	2 Related Work
	3 Design and Implementation
	4 Evaluation
	5 Conclusions and Future Work
	References



