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1 INTRODUCTION
Learning from a target has been tackled in the reinforcement learn-

ing (RL) setting [1, 7] as imitation learning, either through behaviour
cloning or inverse RL. In the former, the agent regresses directly

onto the policy of a target [5], while in the latter, the agent infers a

reward function from the behaviour of other agents and optimizes

this function [6]. Extending upon these notions, observational learn-
ing was recently introduced in RL as the ability for an agent to

modify its behavior or to acquire information as an effect of ob-

serving another agent sharing its environment [3]. In this work, we

study the observational learning problem under the bandit setting.

More specifically, we consider a learner (agent) that has access to

actions performed by a target policy in the same environment. The

agent only observes the target’s actions, but not their associated

rewards. Note that the target actions can in fact be performed by

several other agents. This should not be confused with cooperative

bandits [4], where several agents share knowledge with each other

regarding the actions and obtained rewards.

For this purpose, we introduce an algorithm based on the vanilla

Upper Confidence Bound (UCB) algorithm [2], which we call Target-

UCB. The core idea involves an action selection process influenced

by the popularity of each action according to the target. We provide

a theoretical bound on the performance of Target-UCB given the

quality of the target (in terms of convergence rates and probability

of selecting the optimal action). The obtained results in several

bandit problems suggest that using this data can lead to much

faster learning. More specifically, we show that unless the target

is 100% wrong, Target-UCB will manage to cumulate logarithmic

regret. They also point to some interesting behaviors in settings in

which the target comes form multiple agents.

2 PROBLEM SETTING
We consider a bandit problem where A denotes the set of possible

actions andA := |A| is the number of actions. Each action a ∈ A is

associated with an unknown expected payoff µa . On each episode

t ⩾ 1, the agent selects an action at ∈ A and observes reward
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rt ∼ ν (µat ), where ν (µ) denotes a probability distribution of mean µ.
Let ⋆ := argmaxa∈A µa denote the optimal action. The goal of the
agent is to minimize the cumulative pseudo-regret afterT episodes:

R(T ) :=
T−1∑
t=1

(µ⋆ − µat ). (1)

From now on, the term “regret” will refer to “pseudo-regret”.

In observational learning bandits, the agent has access to the

actions performed by an unknown target policy, but does not ob-
serve the associated rewards. Since the target is not aware that it

is watched by the learner and is not meant to teach, it does not

need to be a single entity. The so-called target can correspond to a

policy describing the general behaviour of several other agents, or

neighbours.

3 ALGORITHM
Let Na,t and Ña,t denote number of times that action a was played

up to time t (exclusively) by the player and by the target policy,

respectively. Also letma,t denote the empirical average given re-

wards obtained by playing action a up to time t (exclusively). Note
thatma,t is computed on the rewards obtained by the player, not
by the target policy. Formally,

Na,t :=

t−1∑
s=1
I{as = a} and ma,t :=

1

Na,t

t−1∑
s=1
I{as = a}rs .

We introduce Target-UCB, a UCB-like algorithm that adjusts

its optimism with respect to a specific action given how much

attention this action has received from the target policy. The idea

is to be optimistic for actions that the agent running Target-UCB

has played less than the target policy. Algorithm 1 provides the

Target-UCB routine for rewards in [0, 1] (e.g., Bernoulli rewards).

Under the following assumption, Theorem 3.1 provides a bound on

the expected cumulative pseudo-regret given the performance of

the target policy.

Assumption 1 (Optimal plays by the target policy.). The
target policy plays such that there exists some constants α ∈ (0, 1]

and c∆ for which, ∀a ∈ A,a , ⋆,∀t ⩾ c∆,

Ñ⋆,t ⩾

(
C

C − 3/2

)
6 ln t

∆2

a
and Ñ⋆,t ⩾

α

1 − α
Ña,t .

Remark 1. The constant c∆ depends on the sub-optimality gap
and the target policy, but not on t .

Theorem 3.1. Consider A = {⋆,a} and rewards in [0, 1], and
assume that the target policy satisfies Assumption 1. Then, for α ∈

1
Recall that a ∨ b and a ∧ b respectively denote taking the maximum and minimum

value between a and b .
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Algorithm 1 Target-UCB for rewards in [0, 1].

Parameters: constant C > 3/2.

Initialization: play each action once, s.t. Na,A = 1 ∀a ∈ A.

for all t ⩾ A + 1 do
play action defined as

1
:

at = argmax

a∈A
ma,t +

√
C ln t

Na,t︸   ︷︷   ︸
estimation

optimism

√
Ña,t − Na,t

Ña,t
∨ 0︸                  ︷︷                  ︸

target

optimism

obtain reward rt
update empirical meanmat ,t and count Nat ,t
update count Ñat ,t∀a ∈ A based on target plays

end for

(0, 1], the expected cumulative regret (Eq. 1) of Target-UCB (Alg. 1)
with C > 3/2 is bounded by

E[R(T )] ⩽ ∆a (c∆ + π
2/3) +

(
C

2

)
4 lnT

∆a

if Ña,T <
(
C
2

)
4 lnT
∆2

a
; it is bounded by

E[R(T )] ⩽ ∆aE[Ña,T ] ∧ ∆a (c∆ + π
2/3) +

(
C

2

)
12 lnT

∆a

if Ña,T ⩽
(
C
2

)
12 lnT
∆2

a
or α ⩾ 1

2
; otherwise it is bounded by

E[R(T )] ⩽∆aE[Ña,T ] ∧

∆a (c∆ + π
2/3) +

(
C

2

) (
1 +

√
2 +

√
1−α
α

)
2

lnT

∆a
.

This result is comparable to the cumulative regret upper-bound

of UCB [2]. More specifically, UCB has the term 8 lnT /∆a . There-
fore, we would expect a Target-UCB to outperform UCB when

the target policy is good enough. This intuition is supported by

empirical results.

4 NUMERICAL EXPERIMENTS
The following experiments evaluate the potential of Target-UCB

(C = 2) in various settings. Bernoulli reward distributions are used

in all experiments. All the results are obtained by averaging over

2000 independent runs.

Figure 1 shows the cumulative regret for an α-optimal target

which plays the optimal action with probability α , a greedy follower
which always selects the action chosen most often so far by the

target, and Target-UCB, for different values of α . We observe that

the convergence of Target-UCB is influenced by the quality of the

target policy – it converges much faster for a larger α . However,
note that Target-UCB still converges even for a bad target (low α ),
which is not the case for the greedy follower that blindly follows

the target. This is due to the properties of Target-UCB, according to

which the influence of the target’s optimism necessarily decreases

as more actions are played by the learner. As long as the target is

not 100% wrong (α = 0), Target-UCB is able to learn something.

This is important as we may not be able to guarantee a learning

0 5000 10000 15000

Episodes

0

500

1000

1500

C
u
m

u
la

ti
v
e

re
g
re

t

Teacher Greedy Target-UCB

α = 0.001

α = 0.5

α = 0.9

Figure 1: Target-UCB vs Greedy with an α-optimal target on
a 2-actions setting (µ⋆ = 0.9, ∆a = 0.1). Standard deviation of
UCB and greedy are omitted for clarity.
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Figure 2: Single UCB vs Target-UCB graphs of 20 agents on
randomly generated 10-actions settings.

rate for every agent encompassed under the target function, for

example in a multi-agent setting.

We then evaluate the potential of improvement in multi-agent

settings, where all agents in a graph follow the Target-UCB policy

and use the empirical average of the actions taken by their neigh-

bours as the target policy. Note that the greedy follower baseline is

not available anymore, as it requires its own target. Figure 2 shows

that Target-UCB graphs consistently achieve a much lower regret

than a single UCB agent. Recall that there is no explicit information

sharing between the Target-UCB agents. These results thus show

the potential of a fully decentralized multi-agent system.

5 FUTUREWORKS
This work studies the benefits and tradeoffs of using observational

data in the exploration-exploitation dilemma highlighted by the

bandit setting. It is especially interesting from the perspective of

considering humans as targets in a human-robot interaction setting,

where it is not easy to precisely quantify the human behaviour in

terms of regret convergence. An important point that has not been

addressed here is the explicit ability to detect when following the

target is not efficient. Indeed, learning from a bad target can lead

to larger regret (even though still logarithmic) than using a vanilla

UCB. Being able to characterize the quality of the target as a target

could help in avoiding this situation.
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