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1 INTRODUCTION
The two most popular flocking models for self-propelled agents

are the Vicsek model [14] and the Cucker-Smale model [3]. They

are fundamental models of alignment of the velocities of individual

agents. The velocity of each agent is typically adjusted according to

the average velocity of its topological or metric neighbourhood. For

a flock to be stable, if a single agent abruptly changes its velocity,

the interaction rule will keep the remainder of the flock to largely

maintain its current velocity due to the law of averaging. However,

analysis of observations of dunlin flocks by Potts [13] indicated that

a sudden change in flight path could be initiated by one or a few

birds, with the rest of the birds following in a coordinated move-

ment. This change initially propagates through the flock slowly but

subsequently accelerates to a high speed. Potts hypothesis is that

the birds perceive the motion of the oncoming "manoeuvre wave"

and time their own turn to match it. This has become known as the

"chorus-line hypothesis". This ability for flocks to react quickly to

sudden manoeuvres is important. It allows them to respond to the

movements of a potential predator [10].

There have been some attempts in modelling this kind of phe-

nomenon. Recent experimental data collected using high-speed

camera have validated what these models have shown us by com-

puter simulation [1]. Using a computational model called StarDis-

play, the underlying wave speed for starling flocks could be stud-

ied [7, 8]. These studies concluded that only short range interactions

are needed to generate such underlying waves. In [2], the propa-

gation of density waves was derived with a pseudo-Hamiltonian

based on the Vicsek model. While these models are useful for study-

ing the propagating wave of movements, they cannot be translated

into mathematical rules that the agents use to adjust their velocity,

similar to those of Vicsek and Cucker-Smale models.

In this paper, we propose a way to incorporate the chorus-line

effect into a standard Cucker-Smale model. Through computer
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simulations, we analyse the time it takes for the flock to realign

to a sudden change in direction by one of the agents in the flock.

Furthermore, we apply finite-time control to our proposed model

to determine if additional gain could be obtained.

2 CUCKER-SMALE MODEL WITH
CHORUS-LINE EFFECT

Consider a group of five agents which are moving in a straight line

with a velocity of v̄ as shown in Figure 1. The agents are numbered

from 1 to 5 from left to right. In this state, the agents are flocking.

They continue to observe the movement of their neighbours within

a certain distance, where the relative velocity is monitored. Now

1 2 3 4 N
v̄ v̄ v̄ v̄ v̄

v1(t) v2(t) v3(t) v4(t) vN (t)

Figure 1: Realignment with chorus-line effect

assume that agent 1 abruptly changes its velocity to v1(t) and
maintains this new velocity. The chorus line effect dictates that

agent 2 changes its velocity upon observing the change in agent

1. To be able to change the velocity to be the same as agent 1 in a

time τ , an acceleration of (v2 −v1)/τ would be needed. τ is known

as the relaxation time which is the time required for an agent to

return to the realignment velocity. In [6, 9], a social steering force

is used to cause agents to slow down (e.g. to avoid collision) or to

speed up (e.g. to catch up). This steering force is given by

fspeedi =
1

τ
(v0 −vi )exi (1)

where the τ represents the relaxation time, v0 is cruise speed and

vi is the velocity of agent i , and exi indicates its forward direction.

The velocity of agent 3 will also change, not only because of agent

2 but also because it observed the change in agent 1, assuming it is

within its monitoring distance. Thus its acceleration will be a sum

of that caused by agent 1 as well as agent 2. This means that the

acceleration of agent 3 will be larger than that of agent 2. Similarly,

agent 4 accelerates due to the changes in velocities in agents 1, 2

and 3. In order to describe the relationship and movement of these

agents, the agents are drawn in a line in Figure 1. In reality, they

do not need to be in a line when they are flocking.
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Figure 2: Realignment time for different number of agents

The standard Cucker-Smale alignment model is given by
Ûpi = vi

Ûvi = 1

N

N∑
j=1

ψ (∥pj − pi ∥)(vj −vi )
(2)

where pi , vi represent the position and velocity of agent i respec-
tively.ψ is known as the communication rate function which is a

positive decreasing function of the Euclidean distance between two

agents.

The chorus-line effect can be incorporated into (2) by adding an

additional term to Ûvi , resulting in

Ûvi =
1

N

N∑
j=1

ψ (∥pj − pi ∥)(vj −vi ) +
N∑
j=1

1

τj
(vj −vi ) (3)

We shall now compare the time it takes for a flock to realign

after an abrupt change in direction for the standard Cucker-Smale

model and our proposed model by computer simulation. In these

simulations, a group of agent is moving in one direction in a 2-

dimensional space at the same speed v , the constant speed is 0.3.

When one agent abruptly changes its heading by an angle of θ and

maintain its movement in this new direction. The time it takes the

rest of the flock to be realigned in this new direction is referred to

as the realignment time. The relaxation time is assumed to be the

same for all agents since the flock is assumed to be homogeneous

and is set to 0.05. The system is considered to be in a flocking state

when the average velocity va ≥ 0.99 [12].

Simulation results for θ = π/3 is shown in Figure 2 for flock

sizes N of 5, 10, 15 and 20. These show that the realignment time

for the our new proposed system is reduced comparing with stan-

dard Cucker-Smale model. Further simulations show that the re-

alignment time increases significantly with the absolute amount of

heading change. Results also seem to indicate that for larger flocks,

the realignment time is less dependent on the relaxation time.

3 APPLYING FINITE-TIME CONTROL
Previous researches showed that flocking time can be reduced if

finite-time control is used for the agents in a Cucker-Smale sys-

tem [5, 11, 15]. To help us understand how efficient the Cucker-

Smale system with chorus line effect is in terms of achieving re-

alignment, finite-time control is applied to it to see if a shorter

realignment time could be achieved. The finite-time controlled new
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Figure 3: Computed and simulated realignment times

model is given by replacing all instances of (vj−vi ) by sgn(vj−vi )γ
where sgn(x)γ = sgn(x)|x |γ with the finite-time control parameter

0 < γ < 1 [4]. Since we have two alignment terms in Cucker-

Smale model with chorus line, we allow for two different control

parameters θ and α .
In [5, 11, 15], an upper bound of the realignment time for the

finite-time controlled Cucker-Smale system has been derived. A

similar bound for the finite-time Cucker-Smale model with chorus

line is established as the theorem in [11].

Theorem 3.1. The velocities of the autonomous agents in finite-
time controlled Cucker-Smale system with chorus line converges to
the same velocity in a finite amount of time with an upper bound Tf
given by Tf ≤ max{T1,T2}. where

T1 = C1N
− θ+1

2 ,C1 =
2V (0)

1−θ
2

ψ ∗√
2

θ+1(1 − θ )

T2 = C2N
− 1+α

2 ,C2 =
2V (0)

1−α
2

M
√

2(1 − α)

V (0) =
N∑
i=1

∥vi (0)∥2

(4)

We shall now compare the realignment time given by Theo-

rem 3.1 with that obtained by computer simulation. The parameters

used in these simulations are θ = 1/2,α = 1/2, ψ ∗ = 1, and M

depends on the relaxation time from

N∑
i=1

1

τj ≥ M . The remaining

parameters are the same as those in the previous Section.

Computed and simulated results for flock sizes of 5, 10, 15 and 20

agents are shown in Figure 3. The upper curve shows the realign-

ment time computed according to 3.1. In order to make comparisons

with the simulated results, the time is converted to the equivalent

number of time steps used in the simulations. The rest of the curves

show the realignment times with the standard finite-time Cucker-

Smale model, and finite-time to our proposed model. The graph

shows that the upper bound of the realignment time is correct. It

also shows that applying finite-time control to the Cucker-Smale

model with chorus-line effect produces the best results. But the

advantage provided by chorus-line effect is relatively small.
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