Main Track Extended Abstract

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

Link-based Parameterized Micro-tolling Scheme for Optimal
Traffic Management
Extended Abstract

Hamid Mirzaei
University of California, Irvine
Irvine, CA
mirzaeib@uci.edu

Tony Givargis
University of California, Irvine
Irvine, CA
givarigs@uci.edu

ABSTRACT

In the micro-tolling paradigm, different toll values are assigned to
different links within a congestible traffic network. Self-interested
agents then select minimal cost routes, where cost is a function of
the travel time and tolls paid. A centralized system manager sets
toll values with the objective of inducing a user equilibrium that
maximizes the total utility over all agents. A recently proposed
algorithm for computing such tolls, denoted A-tolling, was shown
to yield up to 32% reduction in total travel time in simulated traffic
scenarios compared to when there are no tolls. A-tolling includes
two global parameters: f which is a proportionality parameter, and
R which influences the rate of change of toll values across all links.
This paper introduces a generalization of A-tolling which accounts
for different § and R values on each link in the network. While
this enhanced A-tolling algorithm requires setting significantly
more parameters, we show that they can be tuned effectively via
policy gradient reinforcement learning. Experimental results from
several traffic scenarios indicate that Enhanced A-tolling reduces
total travel time by up to 28% compared to the original A-tolling
algorithm, and by up to 45% compared to not tolling.
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1 INTRODUCTION

Recent advances in connected vehicle technology enable new traffic
management paradigms. For example, the notion of Micro-tolling,
which has been the focus of some recently proposed tolling mech-
anisms [9-11], is that tolls can be assigned to all links in a given
traffic network and changed depending on the traffic conditions in

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10-15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Guni Sharon
University of Texas at Austin
Austin, TX
gunisharon@gmail.com

2013

Stephen Boyles
University of Texas at Austin
Austin, TX
sboyles@mail.utexas.edu

Peter Stone
University of Texas at Austin
Austin, TX
pstone@cs.utexas.edu

real-time. Many methods have been proposed in the past to set toll
values in order to achieve the optimal traffic flow. However, most
of these methods are based on specific assumptions that might not
hold in real life.

In contrast, A-tolling is a recently proposed scheme [10, 11] that
makes no assumption on the underlying traffic model, e.g. fixed or
known demand, link capacity, user value of time (VOT) or specific
traffic formulation. In A-tolling, tolls are set proportional to the
difference between the current travel time and the free flow travel
time (denoted be A). The proportionality factor is denoted by S.
Furthermore, the rate of change in toll values between successive
time steps is regularized by another parameter R. While being
simple to calculate and model free, A-tolling was shown to optimize
the system’s performance[12].

In this paper, we propose to generalize A-tolling by assigning
different § and R parameters to each link of the network. This gen-
eralization comes with the cost of increased number of f and R
parameters that should be tuned. Therefore, we also propose a tun-
ing algorithm based on policy gradient reinforcement learning (RL).
Our empirical studies show that the generalized algorithm consid-
erably improves the performance of the tolling scheme compared
to the original A-tolling.

2 PROBLEM DEFINITION AND
BACKGROUND

This paper considers a scenario where there is a set of agents that
should be routed across a traffic network. Agents are assumed to be
self-interested, i.e., they choose the path with minimum cost. The
cost of a path is the path’s latency plus the tolls paid on that path.
Since toll values might change over time, agents are continually
looking for the optimal route and may change en route.

The system manager should assign tolls such that the total travel
time is minimized while each agent maximizes its own self-interest.
Formally, the micro-tolling assignment problem is defined as fol-
lows.

Given: link latencies measured at current time step i.

Output: the toll values for each link that should be applied at the
next time step.

Objective: Minimize total system travel time.

Assumption: Agents are self-interested. This means that each



Main Track Extended Abstract

agent chooses the route that is at its best interest (minimal travel
time).

The methods presented in this paper are based on two exist-
ing algorithms: A-tolling, and policy gradient RL. In the following
subsections, each of these algorithms are described briefly.

2.1 Delta-tolling

It has been previously proven that charging each agent the mar-
ginal cost, i.e. the cost it inflicts on other agents, leads to optimal
system performance [8]. However, calculating marginal cost in real-
world scenarios is not feasible. In [10, 11], a model-free method, i.e.
A-tolling is proposed to approximate marginal cost. In A-tolling a
toll is calculated for each link at any time step by multiplying the
difference of current travel time and the free-flow travel time (A)
by a constant parameter . The actual toll applied on each link is
smoothed by another parameter R to remove transient toll value
spikes, according to the following equation:

1 = R(BA) + (1 - R)T%, (1)

where 7! is assigned toll at time step i.

2.2 Policy gradient RL

A well-known approach to learn a parameterized policy based on
on-line data is to use general purpose Policy gradient RL method.
There are multiple different methods to estimate the policy gradient
[7]. We have chosen Finite Difference Policy Gradient RL (FD-PGRL)
[4]. Unlike other methods that need within-episode rewards or the
agent should learn the policy with no domain knowledge, FD-PGRL
can leverage an existing policy with a reasonable performance while
making small changes to the policy parameters in order to proceed
towards the optimal policy and it only uses finite differences to
estimate the policy gradient.

3 ENHANCED DELTA-TOLLING

In this section we present the Enhanced A-tolling (EA-tolling) which
is an extensions to A-tolling approach introduced in 2.1. The original
A-tolling has two global parameters R and f for the whole network.
EA-tolling extends the parameter set by assigning different values
of R, f or both for each link. Therefore, the number of parameters
in EA-tolling can be up to 2|E| where |E| is the number of links.
The increased number of parameters requires a feasible tuning
algorithm since the tuning cannot be done in a brute-force way. We
have used FD-PGRL introduced in 2.2. To use FD-PGRL, EA-tolling
is defined as a parameterized policy. The policy parameters are f3,
R or both assigned for each link of the network.

While it is suggested in [11] that there is a correlation between
the R and f parameters, no conclusion was provided regarding this
correlation. Therefore, we consider three variants of EA-tolling:

e EA-tollingp - this variant uses a global R parameter and
link specific f§ parameters (|E| + 1 parameters in total).

e EA-tollingp - this variant uses a global f parameter and
link specific R parameters (|E| + 1 parameters in total).

e EA-tollingg g - this variant uses link specific § and R pa-
rameters (2|E| parameters in total).
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Figure 1: Total Travel Time and Total Generalized Cost for
different tolling schemes and scenarios.

Sioux Falls | Austin | San Antonio
Latency (hr) 11,859 21,590 26,362
cost ($) 353,169 | 637,086 780,739

Table 1: Average total latency and total generalized cost
when applying no tolls.

4 EMPIRICAL STUDY AND RESULTS

In all the experiments, traffic is modeled using the cell transmission
model (CTM) [2, 3]. The DTA simulator [1] was used to run CTM
and the simulation settings are the same as reported in [11]. Three
traffic scenarios were used: Sioux Falls [5], Downtown Austin [6]
and Uptown San Antonio which are available at: https://goo.gl/
SyvV5m. The FD-PGRL parameters, i.e., step size, perturbation and
number of policy runs at each step were set to 0.4, 0.01 and 60
respectively.

Total latency over all trips and total travel cost over all agents
(social welfare) are presented in Figure 1. The values are normalized
with respect to the no-toll scenario. No-toll scenario performance
is summarized in Table 1.

The results suggest that tuning R parameter per link while having
a global f leads to the best system performance in most cases.
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