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1 INTRODUCTION
Markov Decision Process (mdp) [6] is the standard model for deci-
sion planning under uncertainty and its goal is to find a policy that
minimizes the expected cumulative cost. Although this optimiza-
tion criterion fits well for many problems, they do not guarantee a
low cost variance. Thus, in situations where the optimal policy is
expected to be executed only few times, it is unacceptable to have
a result with too high cost. Risk-Sensitive mdps (rs-mdp) [4, 7] can
be used to deal with such situations.

A Risk-Sensitive mdp (rs-mdp) [7] is a tuple ⟨S, sI ,A,T ,C, Sд ,θu ⟩
where: (i) S is a finite state set; (ii) sI ∈ S is the Initial state; (iii) A
is a finite action set; (iv) T : S ×A × S → [0, 1] is a state transition
function; (v) C: S ×A → R+ is a cost function; (vi) Sд ⊆ S is a set
of absorbing goal states; and (vii) θu ∈ Θ is the user-defined cost
threshold, where Θ is the set of remaining budgets obtained during
the process (i.e., each state reached in the process has associated a
budget θ ∈ Θ).

The objective of an rs-mdp is to find a policy that maximizes the
probability of histories h(π ) starting in s with budget θ and ending
in s ∈ Sд , whose cumulative cost does not exceed θ , that is:

P∗(s,θ ) = max

[ ∑
h(π ):c(h(π ),s)≤θ

Pr (h(π ), s,θ )
]
, (1)

where c(h(π ), s) is the cumulative cost following the history h(π )
from state s and Pr (h(π ), s,θ ) is the probability of the history h(π )
from state s and budget θ to happen. The probability P∗(s,θ ) is
called cost-threshold probability.

Previous work has proven that optimal policies of rs-mdps, π∗:
S ×Θ → A, are stationary and deterministic [4]. The space given by
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the pairs (s,θ ) is called augmented state space. Thus, the optimal
cost-threshold probability can be recursively defined as:

P∗(s,θ ) =

max
a∈A

∑
s ′∈S

{
0 if C(s,a) > θ

T (s ′ |s,a) ∗ P∗(s ′,θ −C(s,a)) if C(s,a) ≤ θ
(2)

Hou et.al (2014) proposed an algorithm for rs-mdps based on
the Topological Value Iteration (tvi) [2] (which uses the Tarjan’s
algorithm to find Strongly Connected Components of S), called
tvi-dp, that computes the optimal cost-threshold probability for θ
varying from 0 to θu , with an increment of 1. The main limitation of
tvi-dp is to compute P∗(s,θ ) for the whole augmented state space.

An extension of tvi-dp, called Improved tvi-dp (itvi-dp) [5], pro-
posed two major improvements: (i) an early termination based on
the convergence behavior theorem of tvi-dp with growing threshold
budgets; and (ii) to prune augmented states generated during the
forward search of the Tarjan’s algorithm by only generating states
belonging to trajectories that end in a goal state. The convergence
behavior theorem states that the optimal cost-threshold probability
function converges when P(s,θ ) = P(s,θ − cmax ),∀s ∈ S , where
cmax is the rs-mdp largest cost [5].

In this work, we address the computational scalability problem
of existing rs-mdp algorithms by proposing the first Symbolic Dy-
namic Programming (sdp) algorithm for risk-sensitive mdps. We
first define a factored rs-mdp that allows real action cost values and
propose a new, sound and complete sdp algorithm, called rs-spudd.

2 FACTORED RS-MDP
We define a factored rs-mdp, where the set of states S is a vector
of n state variables ®X = (X1, ...,Xn ) and s ∈ S is represented by
the state vector ®x = (x1, ...,xn ), where xi ∈ {0, 1} is the value of
variable Xi . We have the initial state ®xI ∈ S and Sд is a finite set
of state vectors ®д ∈ {0, 1}n . Each vector ®д represents an absorbing
goal state.

The definition of actions a ∈ A and the user-defined cost thresh-
old θu are the same for rs-mdps. The cost function is C(®x ,a) and
the transition probabilities are encoded using Dynamic Bayesian

Networks (dbns) [3].
In factored rs-mdps, augmented states are represented by (®x ,θ ),

where ®x ∈ {0, 1}n andθ ∈ R. The optimal cost-threshold probability
(Equation 2) for a factored rs-mdp is:

P∗(®x ,θ ) =

max
a∈A

∑
®x ′∈S

{
0 if C(®x ,a) > θ

T (®x ′ | ®x ,a) ∗ P∗(®x ′,θ −C(®x ,a)) if C(®x ,a) ≤ θ .
(3)
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Equation 3 can be used to iteratively approximate the optimal so-
lution, i.e. P∗(®x ,θ ), and can be efficiently computed using Algebraic
Decision Diagrams (adds) [1]. An add compactly represents func-
tions parameterized by boolean variables and the main operations
for adds are multiplication (⊗), sum (⊕), subtraction (⊖), minimiza-
tion (min(·, ·)), maximization (max(·, ·)) and sum-out (

∑(·)).

2.1 RS-SPUDD
rs-spudd uses adds to represent: (i) the cost function for each
action a, denoted byCDD (·,a); (ii) the cost-threshold probability at
iteration i for each θ , denoted by P iDD (·,θ ); and (iii) the transition
function for a pair (Xi ,a), denoted by TDD . rs-spudd updates all
states iteratively by applying the following set of equations:

P i+1DD (®x ,θ ) = max
a∈A

Qi
DD (®x ,a,θ ),where (4)

Qi
DD (®x ,a,θ ) =

∑
®x ′

n⊗
j=1

TDD (x ′j |paa (X
′
j ),a) ⊗W i

DD (®x ,a,θ , ®x
′)

(5)
and

W i
DD =


0 if CDD (®x ,a) > θ

P∗DD (®x
′,θ −CDD (®x ,a)) if ®x ′ < Sд , 0 < CDD (®x ,a) ≤ θ

P iDD (®x ,θ ) if ®x ′ < Sд ,CDD (®x ,a) = 0
1 if ®x ′ ∈ Sд ,CDD (®x ,a) ≤ θ .

(6)
The main difficulty to compute Equation 6 with add opera-

tions comes from the 2nd case: the cost function CDD (®x ,a) of
the current state and action is a parameter of the optimal cost-
threshold probability of the next state ®x ′. Thus, the computation
of P∗DD (®x

′,θ −CDD (®x ,a)) depends on multiples P∗DD (·,θ
′), one for

each previously computed (valid) value of θ ′ = θ −CDD (®x ,a).
To access the previously computed values of P∗DD (·,θ

′) for all
successors states, rs-spudd merges them into a single add, called
W i
DD (®x ,a,θ , ®x

′) (Equation 6), which can be efficiently constructed
using the following indicator functions: (i) GoalDD that takes the
value 1 for goal states and 0 otherwise; and (ii) a set of indicator
functions Ac,aDD for each different possible cost c not greater than
the current budget θ , which take the value 1 for states with cost
c and 0 otherwise. Giving those indicator function we compute
W i
DD (®x ,a,θ , ®x

′) by performing the following operations:

W i
DD (®x ,a,θ , ®x

′) =
∑

AcDD :c≤θ
P∗DD (®x ,θ − c)′ ⊗ Ac,aDD (®x),

where P∗DD (·,θ )
′ is the add P∗DD (·,θ ) with all the variables

primed to represent the optimal cost-threshold probability of the
next state.

GivenW i
DD (·,a,θ , ·), now we can efficiently compute the value

Qi
DD (·,a,θ ) (Equation 5) by eliminating variable by variable (ap-

plying the sum-out operation in ADDs). Once we have computed
Qi
DD (·,a,θ ) for each action, we can compute the probability P i+1DD (·,θ )

by applying the maximization operator of adds over the functions
Qi
DD (·,a,θ ) (Equation 4).

Furthermore, we can find the set Θr of all valid budget values
from 0 up to θu of an rs-mdp, by solving the following constraint
satisfaction problem (csp):

d1 ∗ c1 + d2 ∗ c2 + ... + dm ∗ cm ≤ θu , (7)

where each ci , 1 ≤ i ≤ m, is a possible value in the cost function
of the rs-mdp; and di ∈ N, represents the number of times that we
can apply an action with cost ci . So, this expression represents all
possible combinations of remaining budget, given an rs-mdp. Our
proposed algorithm, rs-spudd, also includes the early termination
condition proposed by itvi-dp and considers values of θ belonging
to Θr (in crescent order).

3 EMPIRICAL RESULTS
Algorithms tvi-dp, itvi-dp (considering budgets from Eq. 7) and rs-
spudd, were applied in two well-known planning domains: SysAd-
min, proposed by Guestrin et al. (2003) and Navigation, from the
International Planning Competition, where problems were modi-
fied by adding a user-defined threshold θu . We set θu = 500 and
the residual error as ϵ = 0.01 (convergence error). For all the ex-
periments, we used a virtual machine running with 4 processors at
3.50 GHz and 8 GB of memory.

We tested the algorithms with grid size up to 512x512 in the
Navigation domain and up to 12 computers connected in a ring
configuration of the SysAdmin domain. The results show that the
original tvi-dp fails to give solutions quite quickly, solving prob-
lems up to 16x16 in the Navigation domain and up to 7 computers
in the SysAdmin domain. The itvi-dp shows an improvement in
convergence time in both domains and an improvement in terms
of scalability only for the Navigation domain, being able to solve
instances with grid size up to 128x128. However, our proposed
algorithm (rs-spudd) shows a great improvement for both do-
mains when comparing convergence time and scalability (solving
instances with grid size up to 512x512 and up to 12 computers).
Also, rs-spudd was up to 26.2 times faster and was able to solve
instances up to 103 times larger when compared with the original
tvi-dp.

4 CONCLUSIONS
In this work, we tackle the scalability problem of existing algorithms
for rs-mdps by proposing the first Symbolic Dynamic Programming
algorithm for risk-sensitive mdps to explore the conditional inde-
pendence of the transition structure over the augmented state space.
Different from the original sdp algorithm, called spudd, our pro-
posed algorithm rs-spudd: includes add operations to deal with
continuous value budgets; optimizes cost-threshold probabilities
over the augmented state space; and adds a pruning technique that
solves an scp to only consider valid budgets. Empirical results show
that rs-spudd can outperform the previous approaches and solve
problems up to 103 times larger.
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