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ABSTRACT
We introduce the problem of aggregating the individual goals of a

group of agents to find a collective decision. Goals are represented

by propositional formulas on a finite set of binary issues. We define

some rules for carrying out the aggregation of goals and we show

how to adapt axiomatic properties from the literature on Social

Choice Theory to this setting. The type of problems we are inter-

ested in studying for our rules are axiomatic characterizations, as

well as the computational complexity of computing the outcome.
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1 INTRODUCTION
Social choice theory can be used in contexts where agents need

to take collective decisions over a combinatorial space of alterna-

tives [3, 23, 24]. Thus, many researchers have introduced compact

languages for preference representation [5, 15, 22] to be used as

input for procedures finding a collective choice (see, e.g., the survey

by Lang and Xia [18]).

In particular, in judgment aggregation [9, 12] agents use an ag-

gregation procedure to take a decision over a set of binary issues,

based on their individual opinions. Numerous aggregators have

been proposed in the literature to tackle the problem of obtaining

a collective outcome that is consistent with a given integrity con-

straint (see, e.g., [10, 16, 20]). Applications of judgment aggregation

have been found in multi-agent argumentation [1, 4] and in the

collective annotation of linguistic corpora [21].

However, since agents are asked to give complete opinions over

the issues, there are limitations on what they can express. For

instance, if some agent wishes to express that they want to accept

exactly one out of three issues, they would be forced to choose

between submitting either ballot (100), (010) or (001), thus not fully

representing their original more complex opinion.
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In the model we propose here, agents can express their individual

goals as propositional formulas and then an option is collectively

chosen. Propositional goals are a compact way to represent dichoto-

mous preferences over alternatives described by binary variables.

Social choice with dichotomous preferences has been widely stud-

ied as a possible solution to the computational barriers affecting

classical preference aggregation (see, e.g., the survey by Elkind et al.

[8]). However, to the best of our knowledge, it has not been applied

to combinatorial domains such as those of goal aggregation.

We define goal aggregation rules inspired from the literature in

judgment aggregation [7] and logic-based belief merging [13, 14].

Since in the literature on social choice theory aggregation rules are

typically studied with the axiomatic method, we define an initial

set of axioms that will serve to study characterization results for

our rules. From a computational perspective, we want to study

the chosen rules by determining the complexity of computing the

outcome, a problem known in the literature aswinner determination.
We provide a characterization for one of the generalizations of

issue-wise majority rule, and we establish complexity bounds for

determining the outcome for some of our rules.

2 FRAMEWORK
A set N = {1, . . . ,n} of agents has to take a collective decision

over a set of propositional variables I = {1, . . . ,m} representing
the issues at stake. The individual goal γi of agent i is a consistent
propositional formula of language LI over the atoms in I and

closed under standard propositional connectives. An interpretation
is a function v : I → {0, 1} associating to each variable a binary

value. We also interpretv as the binary vector (v(1), . . . ,v(m)). The
set Mod(φ) = {v | v |= φ} consists of all the models of formula φ.

We let vi (j) = (m1

i j ,m
0

i j ) indicate all the choices of agent i for
issue j in the different models of her goal, where mx

i j = |{v ∈
Mod(γi ) | v(j) = x}| for x ∈ {0, 1}. The issues on which the

agents have to take a decision are logically independent from one

another (i.e., we assume no integrity constraints). By collecting

for each agent i her individual goal γi we obtain a goal-profile Γ =
(γ1, . . . ,γn ). A goal-based voting rule F : (LI )n → P({0, 1}m ) \ ∅
is a function taking as input n consistent goal formulas submitted

by the agents and returning a set of models as a collective outcome.

In case the output set is not a singleton we call the rule irresolute.
For resolute rules, we indicate with F (Γ)j = {1} (respectively, {0})
the acceptance (respectively, rejection) of issue j ∈ I by rule F .
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2.1 Aggregation Rules
The conjunction rules return all the models in common among the

individual goals, and a chosen default model if there are none.

Conjv (Γ) =
{

Mod(γ1 ∧ · · · ∧ γn ) if non-empty

{v} for v ∈ {0, 1}m otherwise

The threshold rules are comparable to quota rules in judgment

aggregation [7]. Let µφ : Mod(φ) → R be a function associating to

each model v of φ some weight µφ (v). Then:

TrShµ (Γ)j = {1} iff
( ∑
i ∈N

(wi ·
∑

v ∈Mod(γi )

v(j) · µγi (v))
)
≥ qj

such that 0 ≤ qj ≤ n + 1 for all j ∈ I is the quota of issue j,
where for each v ∈ Mod(γi ) we have µγi (v) , 0 and wi ∈ [0, 1] is
the individual weight of agent i . For readability, we omit vector

(q1, . . . ,qm ), with the quotas for the issues, from the name of TrShµ .
We call EQuota rule the TrShµ rules having µγi (v) = 1

|Mod(γi ) |
andwi = 1 for allv ∈ Mod(γi ) and i ∈ N . Since

∑
v ∈Mod(γi ) µγi (v) =

1 for all i ∈ N , the number of models of a goal formula is irrelevant

and agents have an equal impact on the outcome.

Finally, we introduce three alternative definitions of the majority

rule. The first one is the EMaj (resolute) rule, which is an EQuota
rule having qj = ⌈n

2
⌉ for all j ∈ I. The second version of majority

is irresolute and it compares for each issue the number of accep-

tances with the number of rejections, weighting each model of an

individual goal in the same way as in EQuota rules:

TrueMaj(Γ) = Πj ∈IM(Γ)j
where for all j ∈ I

M(Γ)j =
{

{x} if

∑
i ∈N

mx
i j

|Mod(γi ) | >
∑
i ∈N

m1−x
i j

|Mod(γi ) |
{0, 1} otherwise

Thus, for each issue j ∈ I we compute the value ofM(Γ)j by setting
it to {1} (respectively, {0}) if strictly more than half of the agents

accept (respectively, reject) issue j, and to {0, 1} if exactly half

of the agents accept/reject. The third version of majority is 2sMaj,
defined asMaj(Maj(γ1), . . . ,Maj(γn )), where the strict majority rule

is applied first to the models of each individual goal and then again

to the result obtained in the first step.

3 AXIOMATIC CHARACTERIZATION
The axiomatic method in social choice theory evaluates aggregation

rules by first defining some general properties (axioms) and then

proving whether or not aggregation rules satisfy them. We define

adaptations of known axioms for rules aggregating goals.

(A) An anonymous aggregation rule F is such that for any pro-

file Γ and any permutation σ : N → N , we have that

F (γ1, . . . ,γn ) = F (γσ (1), . . . ,γσ (n)).
(I) An independent aggregation rule F is such that for any two

profiles Γ and Γ′, for all j ∈ I and for all i ∈ N , we have

that vi (j) = v ′
i (j) implies F (Γ)j = F (Γ′)j .

(N) A neutral aggregation rule F is such that for all profiles Γ,
for all two issues j,k ∈ I, and for all agents i ∈ N we have

that vi (j) = vi (k) implies F (Γ)j = F (Γ)k .
(U) A unanimous aggregation rule F is such that for all profiles Γ

and for all j ∈ I, ifmx
i j = 0 for all i ∈ N then F (Γ)j = {1−x}.

(PR) Profiles Γ and Γ′ are comparable if and only if for all i ∈ N
we have that |Mod(γi )| = |Mod(γ ′i )|. An aggregation rule

satisfies positive responsiveness if for all comparable profiles

Γ and Γ′ = (γ1, . . . ,γ ′i , . . . , γn ), for all issues j ∈ I and for

all i ∈ N , ifm
′x
i j ≥ mx

i j for x ∈ {0, 1}, then [F (Γ)j = {x} or
F (Γ)j = {0, 1}] implies F (Γ′)j = {x}.

(E) An aggregation rule F is egalitarian if and only if for all pro-

files Γ, if we construct a profile Γ′with |N ′ | = lcm(|Mod(γ1)|,
. . . , |Mod(γn )|), and for all i ∈ N and each v ∈ Mod(γi )

we have
|N′ |

|N | · |Mod(γi ) | agents in N ′
voting v in Γ′, then

F (Γ) = F (Γ′).
(D) An aggregation rule satisfies duality when for all profiles Γ

and for all issues j ∈ I, if F (Γ)j = {x} then F (Γ)j = {1 − x},
where Γ is such that vi (j) = (m1

i j ,m
0

i j ) = (m0

i j ,m
1

i j ) for all
j ∈ I and i ∈ N .

Following the seminal result of May [19], where an axiomatiza-

tion of the majority rule in the context of voting over two alterna-

tives is provided, we also axiomatically characterize TrueMaj, the
most intuitive among our proposed generalizations of majority.

Theorem 3.1. For arbitrary N and I, a goal-aggregation rule
satisfies (E), (I), (A), (N), (PR), (U) and (D) if and only if it is TrueMaj.

4 COMPUTATIONAL COMPLEXITY
The winner determination problem asks how hard it is to compute

the outcome of aggregation rules [2, 6, 11, 17]. For resolute rules

we define it as follows (and analogously for irresolute rules):

WinDet(F )
Input: profile Γ, issue j
Question: Is it the case that F (Γ)j = {1}?

For a special case of TrShµ we get completeness for the class np.

Theorem 4.1. WinDet(TrShµ ) is np-complete, for µγi (v) = 1

constant andwi = 1 for all i ∈ N .

Let pp be the complexity class Probabilistic Polynomial Time.

Let TrueMaj∗ be a resolute version of TrueMaj that in case of equal

support for issue j returns 0 in the outcome.

Theorem 4.2. ProblemsWinDet(EMaj),WinDet(TrueMaj∗) and
WinDet(2sMaj) are pp-hard.

Since Γ contains formulas, if a rule has to manipulate the models

to compute the outcome some form of satisfiability is needed — thus

starting from the complexity class np. Asking agents to provide the

models of their goals would lower the complexity of some results,

but the input would become demanding for the agents and also of

exponential size in the number of issues in the worst case.

5 CONCLUSIONS
We presented a framework to handle the aggregation of individual

goals in a multi-agent setting. We defined a number of procedures

taking as input the consistent goal formulas of the agents and

returning a collective decision in the form of a set of valuations

for the issues at stake. We introduced three alternative definitions

of the majority rule and characterized one of them axiomatically.

We also studied computationally the problem of determining the

outcome for some of our proposed rules.
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