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1 EXTENDED ABSTRACT

Real world interactions are full of coordination problems [2, 3, 8,
14, 15] and thus constructing agents that can solve them is an
important problem for artificial intelligence research. One of the
simplest, most heavily studied coordination problems is the matrix-
form, two-player Stag Hunt. In the Stag Hunt, each player makes
a choice between a risky action (hunt the stag) and a safe action
(forage for mushrooms). Foraging for mushrooms always yields a
safe payoff while hunting yields a high payoft if the other player
also hunts but a very low payoff if one shows up to hunt alone.
This game has two important Nash equilibria: either both players
show up to hunt (this is called the payoff dominant equilibrium) or
both players stay home and forage (this is called the risk-dominant
equilibrium [7]).

In the Stag Hunt, when the payoff to hunting alone is sufficiently
low, dyads of learners as well as evolving populations converge
to the risk-dominant (safe) equilibrium [6, 8, 10, 11]. The intuition
here is that even a slight amount of doubt about whether one’s
partner will show up causes an agent to choose the safe action. This
in turn causes partners to be less likely to hunt in the future and
the system trends to the inefficient equilibrium.

We are interested in the problem of agent design: our task is to
construct an agent that will go into an initially poorly understood
environment and make decisions. Our agent must learn from its
experiences to update its policy and maximize some scalar reward.
However, there will also be other agents which we do not control.
These agents will also learn from their experiences. We ask: if the
environment has Stag Hunt-like properties, can we make changes
to our agent’s learning to improve its outcomes? We focus on
reinforcement learning (RL), however, many of our results should
generalize to other learning algorithms.
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In this paper, we show that adding prosociality - making our
agent get reward from others receiving reward - is a simple strategy
for improving coordination. In the full version of this paper we show
show analytically that in matrix Stag Hunt we can improve the prob-
ability of dyads of agents converging to the good equilibrium even
if we can only make a single agent prosocial. We experimentally
generalize these insights in a domain where analytical solutions are
difficult: Markov games with Stag Hunt-like structure and learning
via function approximation (deep reinforcement learning).

We consider 3 different grid-world games: Markov Stag Hunt,
Harvest and Escalation (Figure 1). In each of these games two agents
move on a 5x5 grid and can move in any of the 4 cardinal directions.
In the Markov Stag Hunt the grid is populated with a Stag and 2
plants. Moving over a plant gives either agent 1 point and causes
the plant to disappear and re-appear in another part of the board.
Moving over the Stag causes an agent to lose g points but if both
agents move over the stag simultaneously they each gain 5 points
and the stag disappears and re-appears randomly elsewhere on the
board. In each time period the stag moves towards the closest agent
to it, although the stag can never catch an agent who continues to
move away from it.

In the Harvest game at each time step a plant can appear ran-
domly somewhere on the board (up to 4 plants can be on the board
at a time). Each plant is born small, becomes mature and then dies.
Players can move over plants to pick them up. Players receive 1
point if they up a young plant, however waiting until each plant
becomes mature and picking it up yields 2 points to both players.

In the Coordinated Escalation game a special marker appears on
one of the squares. If the agents step on the square together, they
both receive one point, at which point an adjacent square lights up.
If the agents step together onto the next square, they receive 1 point.
If at any time an agent breaks the streak (eg. by stepping off the
path), the other agent receives a penalty of some multiplier times
the current length of the streak, and the game ends. The current
streak length T is observed (encoded in the state). This game has
many equilibria, where both agents play to keep streaks of size T
but no more with risk escalating at each time step (as the reward
from further escalation is always 1 but the cost from one’s partner
failing to continue the pattern increases linearly).

We also consider a version of Escalation where agents must learn
from raw pixels. We use methods employed in [13] to adapt Atari
Pong to construct Escalation Pong. In Escalation Pong each agent
controls a player, each time the ball is hit both agents receives a
reward of 1, however if an agent drops the ball (allows it to pass)
then the other agent receives a reward of —k where k is proportional
to the number of times the ball has been hit back and forth. The
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game can end stochastically at any time period and also ends when
any player drops the ball.

Each of these games has, at a high level, the basic Stag Hunt
property that there exists a strategy which guarantees a safe payoff
and a risky strategy which only works if one’s partner commits
to it. However, unlike in the matrix Stag Hunt, these strategies
are no longer single labeled actions, but rather complex policies
which map the state of the world to an action to be taken. See the
full paper for a more in depth description of the games as well as
parameters that we vary in our experiments.

We compare the performance (here in terms of payoff to our
agent) from situations where both agents are selfish, both agents are
prosocial, and where only our agent is prosocial. In all conditions,
both agents start with randomly initialized policies and learn via
deep RL by playing with each other (see full paper for deep RL
training details). Figure 1 shows a sample of our main results: the
intuition from the matrix game replicates in these more complex
environments. Giving just a single agent social preferences can
help lead both agents to coordinate on payoff-dominant strategies
in these more complex Stag Hunt-like games.

Other aspects of the game play important roles in setting the
potential benefits and costs of choosing a prosocial strategy and we
discuss these at length in the full paper (available on arxiv). We also
discuss extending our main results to the case of Stag Hunt games
played on simple networks. In addition, we discuss the relationship
between prosociality and other types of learning modifications that
have been proposed in the literature. These include optimism in the
form of lenient learning [10, 12] or Frequency Maximum Q-learning
[9] and potential-based reward shaping [1, 4, 5].
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Figure 1: The intuitions from the 2 x 2 Stag Hunt general-
ize to more complex Markov games. Lines reflect average
payoffs over replicates smoothed over 1000 episode blocks.
Error bars reflect standard errors estimated using indepen-
dent replicates.
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