
AgentSpeak(ER): An Extension of AgentSpeak(L) improving
Encapsulation and Reasoning about Goals

Extended Abstract

Alessandro Ricci
DISI, University of Bologna

Cesena, Italy
a.ricci@unibo.it

Rafael H. Bordini
POLI-PUCRS

Porto Alegre, RS, Brazil
r.bordini@pucrs.br

Jomi F. Hübner
DAS, Federal University of Santa Catarina

Florianópolis, SC, Brasil
jomi.hubner@ufsc.br

Rem Collier
University College of Dublin

Dublin, Ireland
rem.collier@ucd.ie

ABSTRACT
In this paper we introduce AgentSpeak(ER), an extension of the
AgentSpeak(L) language tailored to support encapsulation. The
AgentSpeak(ER) extension aims at improving the style of BDI
agent programming along relevant aspects, including program
modularity and readability, failure handling, and reactive as well
as goal-based reasoning.

CCS CONCEPTS
•Computingmethodologies→ Intelligent agents; • Software
and its engineering → Context specific languages;

KEYWORDS
Agent-Oriented Programming; Agent Programming Languages;
BDI; AgentSpeak(L); Jason; ASTRA; AgentSpeak(ER)
ACM Reference Format:
Alessandro Ricci, Rafael H. Bordini, Jomi F. Hübner, and Rem Collier. 2018.
AgentSpeak(ER): An Extension of AgentSpeak(L) improving Encapsulation
and Reasoning about Goals. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
AgentSpeak(L) was introduced in [8] with the purpose of defining
an expressive, abstract language capturing the main aspects of the
Belief-Desire-Intention architecture [3, 6], featuring a formally de-
fined semantics and an abstract interpreter. The starting point to
define the language was implemented systems such as the Proce-
dural Reasoning System (PRS) [7]. Various Agent Programming
Languages extended AgentSpeak(L) with constructs and mecha-
nisms making it practical from a programming point of view [2, 4].

Along this line, this paper describes a novel extension of the
AgentSpeak(L) model — called AgentSpeak(ER) — featuring plan
encapsulation, i.e. the possibility to define plans that fully encap-
sulate the strategy to achieve the corresponding goals, integrating
both pro-active and reactive behaviour.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15,
2018, Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2 MOTIVATION
The main motivation behind AgentSpeak(ER) comes from the ex-
perience using agent programming languages based on theAgentS-
peak(L)model, Jason and ASTRA in particular. Yet, these issues are
relevant for any language based on the BDI architecture.

In the BDI model, plans are meant to specify some means by
which an agent can satisfy an end [8]. In AgentSpeak(L), a plan
consists of a rule of the kind e : c <- b. The head of a plan consists
of a triggering event e and a context c. The triggering event spec-
ifies why the plan was triggered, i.e., the addition or deletion of a
belief or goal. In the following, we refer to plans triggered by event
goals as g-plans, and plans triggered by belief change (including
percepts) as e-plans. The context specifies what should hold given
the agent’s current mental state if the plan is to be triggered. The
body of a plan is a sequence of actions or (sub-)goals.

In this approach— aswell as in planning, in general — themeans
to achieve a goal (i.e., the plan body) is meant to be fully speci-
fied in terms of the actions the agent should execute and the (sub-
)goals the agent should achieve or test. In practice, when program-
ming such systems, it is often the case that the strategy (the means)
adopted to achieve some goal (the end) naturally includes ractions
— i.e., reacting to events asynchronously perceived from the envi-
ronment, including changes in the beliefs. This reflects more than
just the ability of an agent to change/adapt its course of actions;
it allows the integration of reactivity as a core ingredient of the
strategy to achieve some goal. This revised notion of a plan is not
just a programming feature; it also occurs naturally in human ac-
tivity. For example, a fishermanwith the goal of catching fish waits
for the event of a tug on their line indicating a fish is on the hook.
Reactivity is a key ingredient of many activities that we perform
to achieve specific goals, not only to handle events that represents
errors or unexpected situations (for the current courses of actions).
It follows that this is also an opportunity to extend the plan model
so as to fully encapsulate reactions that are part of the strategy to
achieve the goal, as well as the subgoals that are specific to that
particular goal.

Let us consider the robot cleaning example used to describe
plans in [8]. One of the plans is:

+location(waste,X) : location(robot,X) & location(bin,Y)
<- pick(waste); !location(robot,Y); drop(waste).

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2054

That is, as soon as the robot perceives that there is waste at its lo-
cation, then it can pick it up and bring it to the bin. This e-plan
is an essential brick of the overall strategy to achieve the goal of
cleaning the environment. The problem here is that it is an im-
plicit rather than explicit goal of the agent (since it is an e-plan,
it is executed regardless of the agent currently having the goal of
keeping the environment clean). In practice, we adopt a mainte-
nance goal [5] to clean the environment, which includes reacting
to cleaning up waste when we see it. In the above program, this
notion cannot be represented and remains in the mind of the pro-
grammer/designer; as there is no g-plan for it, there is no explicit
trace in the agent mental structures about this goal. It is the ability
to explicitly implement this type of behaviour that motivates the
work presented in this paper.

3 A TASTE OF AGENTSPEAK(ER)
AgentSpeak(ER) extends the plan model of AgentSpeak(L) beyond
the simple sequence of actions and goals, so as to (i) include the
possibility of specifying reactive behaviour encapsulated within
the plan, by means of e-plans; (ii) require that e-plans are always
defined within the scope of some g-plan (i.e., reactions occur al-
ways in the context of some explicit designed goal to be achieved).
The AgentSpeak(ER) syntax for plans extends AgentSpeak(L) as
follows:

+!goal : context <: goal_cond {
<- ... // main sequence (body actions)

/* encapsulated e-plans */
+e1 : c1 <- ...
+e2 : c2 <-

/* encapsulated g-plans */
+!g1 {

<- ...
+e3 : c3 <- ... // possible old-style plans

}

/* encapsulated plans catching failures */
-!g1 : ... <- ... // handles failures in pursuing g1

}

A plan becomes the scope of (i) a sequence of actions (referred as
body actions), (ii) a set of e-plans, specifying a reactive behaviour
which is active at runtime onlywhen the goal is being pursued, and
(iii) a set of g-plans, specifying plans to achieve subgoals that are
relevant only in the scope of that plan. The e-plans and g-plans are
referred to as sub-plans. The sub-plans may include also reactions
to failures occurring when the plan is executed.

The robot cleaning example becomes:

+!clean_env {
+location(waste,X) : location(robot,X) & location(bin,Y)

<- pick(waste); !location(robot,Y); drop(waste). }

We can give an explicit reason for the reactive behaviour by
encapsulating the e-plan within a g-plan, with an explicit goal
clean_env. This is also a particular case where the body of the
g-plan happens not to have any actions.

Informal semantics of the extended plan model:

• The sub-plans are part of the strategy which can be applied
to achieve the g-plan. Themain sequence (body actions) can
be empty — this is typical of purely reactive behaviour. If an
eventmatches the triggering event of a sub-planwhile the g-
plan is executing (i.e., themain sequence is in execution, and
the sub-plan is applicable according to the context), then
the body of the sub-plan is stacked on top of the stack of
the current (g-plan related) intention. The effect is like an
asynchronous interruption of the main sequence, to execute
the body of the sub-plan first.
• The goal is considered achieved if/when the condition de-
scribed by the goal_cond expression is met. If goal_cond
is not specified, by default the condition is that all actions
of the main sequence have been executed and completed, in
compatibility with the AS model, unless the case in which
the main plan body is empty: in that case the condition is
false by default.
• The body of the plan provides a syntactical and runtime
scope of the sub-plans, that is: variables used in the goal/-
context expressions are visible also to sub-plans; the life-
time/availability of the sub-plans is limited to the time in
which the g-plan is in execution.
• Failures generated by either the main sequence or by sub-
plans generate a -!g event.
• An AgentSpeak(L) plan +!g : c <- a. is an AgentS-
peak(ER) g-plan with no sub-plans.

This extension turns out to bring a number of important benefits
to agent programming based on the BDI model, namely:

• improving the overall readability of the agent source code,
reducing fragmentation and increasing modularity;
• promoting a cleaner goal-oriented programming style by
enforcing encapsulation of reactive plans within goal plans
while still permitting purely reactive behaviour;
• improving intention management, enforcing a one-to-one
relation between intentions and goals — so every intention
is related to a single (top-level) goal;
• improving failure handling, to support management of fail-
ures related to plans for reacting to environment events.

4 FINAL REMARKS
We formalised the main changes required in the existing formal
semantics of AgentSpeak(L) and experimentally evaluated on ini-
tial prototype implementations of AgentSpeak(ER), on top of the
ASTRA and Jason platforms1. Results will be described in a longer
version of this paper.

As with any new programming language, there is much fu-
ture work, including improving the prototype implementations
and comparing performances. More generally, full understanding
and evaluation of a programming language takes many years. We
expect in the long term to use AgentSpeak(ER) in the practical
development of multi-agent systems, both for real-world as well
as academic systems (e.g., for the multi-agent programming con-
test [1]). However, besides the actual programming practice, we

1Available at https://github.com/agentspeakers.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2055

expect AgentSpeak(ER) to contribute to formal work as well. As-
sessing how formal verification of AgentSpeak(ER) systems com-
pares to the original language is also planned as future work.

REFERENCES
[1] Tobias Ahlbrecht, Niklas Fiekas, and Jürgen Dix. 2018. Multi-Agent Program-

ming Contest 2016. International Journal of Agent Oriented Software Engineering
(2018). To appear.

[2] Rafael Bordini and Jomi Hübner. 2006. BDI Agent Programming in AgentS-
peak Using Jason. In CLIMA VI, Francesca Toni and Paolo Torroni (Eds.). LNAI,
Vol. 3900. Springer, 143–164.

[3] Michael E. Bratman, David J. Israel, and Martha E. Pollack. 1988. Plans and
resource-bounded practical reasoning. Computational Intelligence 4 (1988), 349–
355. https://doi.org/10.1111/j.1467-8640.1988.tb00284.x

[4] Rem W. Collier, Sean Edward Russell, and David Lillis. 2015. Reflecting on
Agent Programming with AgentSpeak(L). In PRIMA 2015: Principles and Prac-
tice of Multi-Agent Systems - 18th International Conference, Bertinoro, Italy, Octo-
ber 26-30, 2015, Proceedings (Lecture Notes in Computer Science), Qingliang Chen,

Paolo Torroni, Serena Villata, Jane Yung-jen Hsu, and Andrea Omicini (Eds.),
Vol. 9387. Springer, 351–366.

[5] Simon Duff, James Harland, and John Thangarajah. 2006. On Proactivity and
Maintenance Goals. In Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’06). ACM, New York, NY,
USA, 1033–1040. https://doi.org/10.1145/1160633.1160817

[6] Michael P. Georgeff and Amy L. Lansky. 1987. Reactive Reason-
ing and Planning. In Proceedings of the Sixth National Conference
on Artificial Intelligence - Volume 2 (AAAI’87). AAAI Press, 677–682.
http://dl.acm.org/citation.cfm?id=1863766.1863818

[7] Francois F. Ingrand, Michael P. Georgeff, and Anand S. Rao. 1992. An
Architecture for Real-Time Reasoning and System Control. IEEE Ex-
pert: Intelligent Systems and Their Applications 7, 6 (Dec. 1992), 34–44.
https://doi.org/10.1109/64.180407

[8] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language. In Agents Breaking Away, 7th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands,
January 22-25, 1996, Proceedings (Lecture Notes in Computer Science), Walter Van
de Velde and John W. Perram (Eds.), Vol. 1038. Springer, 42–55.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2056

