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ABSTRACT
Imitation learning algorithms learn viable policies by imitating an
expert’s behavior when reward signals are not available. Gener-
ative Adversarial Imitation Learning (GAIL) is a state-of-the-art
algorithm for learning policies when the expert’s behavior is avail-
able as a fixed set of trajectories.We evaluate in terms of the expert’s
cost function and observe that the distribution of trajectory-costs
is often more heavy-tailed for GAIL-agents than the expert at a
number of benchmark continuous-control tasks. Thus, high-cost
trajectories, corresponding to tail-end events of catastrophic failure,
are more likely to be encountered by the GAIL-agents than the ex-
pert. This makes the reliability of GAIL-agents questionable when
it comes to deployment in risk-sensitive applications like robotic
surgery and autonomous driving. In this work, we aim to minimize
the occurrence of tail-end events by minimizing tail risk within the
GAIL framework. We quantify tail risk by the Conditional-Value-at-
Risk (CVaR) of trajectories and develop the Risk-Averse Imitation
Learning (RAIL) algorithm. We observe that the policies learned
with RAIL show lower tail-end risk than those of vanilla GAIL.
Thus, the proposed RAIL algorithm appears as a potent alternative
to GAIL for improved reliability in risk-sensitive applications.
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1 INTRODUCTION
In this paper, we study the reliability of imitation learning algo-
rithms when it comes to learning solely from a fixed set of trajec-
tories demonstrated by an expert with no interaction between the
agent and expert during training. Risk sensitivity is integral to hu-
man learning, but much of the literature on imitation learning has
been developed with average-case performance at the centre, over-
looking tail-end events. The Generative Adversarial Imitation Learn-
ing (GAIL) algorithm [2] provides state-of-the-art performance at
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Figure 1: Histograms of the costs of 250 trajectories gener-
ated by the expert and GAIL agents for the task Humanoid-
v1, from OpenAI Gym. The inset shows a zoomed-in view
of the tail of the distribution (the region beyond 2σ of the
mean). The GAIL agent produces tails heavier than the ex-
pert, which makes its reliability questionable for deploy-
ment in risk-sensitive applications.

several benchmark control tasks, including those in Table 1. Addi-
tionally, this method is not prone to the issue of compounding error
and it is also scalable to large environments. However, we studied
the distributions of trajectory-costs (according to the expert’s cost
function) for the GAIL agents and experts at different control tasks
and observed that the distributions for GAIL are more heavy-tailed
than the expert (see Figure 1), where the tail corresponds to oc-
currences of high trajectory-costs. Since high trajectory-costs may
correspond to events of catastrophic failure, GAIL agents are not
reliable in risk-sensitive applications.

In order to quantify tail risk, we use Conditional-Value-at-Risk
(CVaR) [3]. The heavier the tail, the higher the value ofCVaR. Chow
et al. [1] developed policy gradient and actor-critic algorithms for
mean-CVaR optimization for learning policies in the classic RL
setting. We take inspiration from this work and a) formulate the
Risk-Averse Imitation Learning (RAIL) algorithm which optimizes
CVaR in addition to the original GAIL objective; b) evaluate RAIL
at a number of benchmark control tasks and demonstrate that it
obtains policies with lesser tail risk at test time than GAIL.

2 PROPOSED FRAMEWORK
GAIL optimizes the following objective:

arдmin
π

max
D
Eπ [loд(D)] + EπE [loд(1 − D)] − H (π ) (1)

where, the agent’s policy, π : S → A, acts as a generator of state-
action pairs and D : S × A → (0, 1) is a discriminative binary
classifier which predicts the likelihood of a given a state-action pair
having originated from the generator. We define the trajectory-cost
variable Rπ (ξ |c(D)) in the context of GAIL as:
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Rπ (ξ |c(D)) =
Lξ −1∑
t=0

γ tc(D(st ,at )) (2)

where c(·) is an order-preserving function. Following [3], the ob-
jective of CVaR optimization of Rπ (ξ |c(D)) is defined as:

min
π ,ν

max
c

Hα (Rπ (ξ |c(D)),ν ) (3)

where Hα (Z ,ν ), for any random variable Z , is given by:

Hα (Z ,ν ) ≜ {ν + 1
1 − α

E
[
(Z − ν )+

]
}; (x)+ =max(x , 0) (4)

Integrating this with the GAIL objective of equation 1, we have:

min
π ,ν

max
D

{
− H (π ) + Eπ [loд(D)] + EπE [loд(1 − D(s,a))]

+ λCVaR Hα (Rπ (ξ |c(D)),ν )
}

(5)

3 EVALUATION
We compare the tail risk of policies learned by GAIL and RAIL
for a set of continuous control tasks listed in Table 1 that were
simulated in MuJoCo [5]. Given an agent A’s policy πA we roll
out N = 50 trajectories from it and estimate the metrics in Table
1 for comparison. Following [2], we model the generator (policy),
discriminator and value function with multi-layer perceptrons of
the architecture: observationDim - fc_100 - tanh - fc_100
- tanh - outDim. If f is the tail risk metric, in order to compare
the tail risk of an agent with respect to the expert, E, we define
percentage-relative f as follows:

f (A|E) = 100 × f (E) − f (A)
| f (E)| % (6)

The higher these numbers, the lesser is the tail risk of agent A.
We define Gain in Reliability (GR) as the difference in percentage
relative tail risk between RAIL and GAIL agents.

GR-f = f (RAIL|E) − f (GAIL|E) (7)

Table 1: Values of percentage relative tail risk measures and
gains in reliability on using RAIL over GAIL for the differ-
ent continuous control tasks. RAIL shows a remarkable im-
provement over GAIL in both the metrics.

Environment Dimensionality GR-VaR0.9 GR-CVaR0.9Obs Action (%) (%)

Reacher-v1 11 2 38.61 60.57
Hopper-v1 11 3 52.94 89.00
HalfCheetah-v1 17 6 13.46 21.60
Walker-v1 17 6 1.66 25.13
Humanoid-v1 376 17 67.19 72.78

4 DISCUSSION
Wemake the following observations about the performance of RAIL
after detailed experimentation (please refer to the full paper [4] for
an extended discussion)1 :

1All code and hyperparameters available at https://github.com/Santara/RAIL

Figure 2: Convergence of mean trajectory-cost. RAIL con-
verges almost as fast as GAIL at all the continuous-control
tasks in discussion, and at times, even faster.

• RAIL obtains superior performance than GAIL at both tail
risk measures – VaR0.9 and CVaR0.9 – across a wide range
of continuous-control tasks, without increasing the sample
complexity or degrading the mean performance of GAIL.

• The applicability of RAIL is not limited to environments
in which the distribution of trajectory-cost is heavy-tailed
for GAIL. In the absence of a heavy tail, minimization of
CVaRα of the trajectory cost aids in learning better policies
by contributing to the minimization of the mean and stan-
dard deviation of trajectory cost [3, 4]. Thus we can use RAIL
instead of GAIL irrespective of whether the distribution of
trajectory costs is heavy-tailed for GAIL or not.

• RAIL converges almost as fast as GAIL at all the continuous-
control tasks in discussion, and at times, even faster (see
Figure 2 for some sample learning curves).

• Scalability is one of the salient features of GAIL. The success
of RAIL in learning a viable policy for Humanoid-v1 suggests
that RAIL preserves the scalability of GAIL.

In conclusion, our study establishes that RAIL is a superior choice
than GAIL for learning low-risk policies via imitation learning in
complex, risk-sensitive environments. We plan to test RAIL on
fielded robotic applications in the future.
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