
Detection of Intelligent Agent Behaviors Using Markov Chains
Extended Abstract

Riccardo Sartea
University of Verona

Department of Computer Science
Verona, Italy

riccardo.sartea@univr.it

Alessandro Farinelli
University of Verona

Department of Computer Science
Verona, Italy

alessandro.farinelli@univr.it

ABSTRACT
We consider the problem of detecting the behavior of intelligent
agents operating in stochastic environments. In particular, we focus
on a scenario where we are given two models for agent behaviors
and we are interested in detecting whether one model appears
within the other model. We use Markov chains to represent the
behavioral models of the agents and we propose to extract the
long-run probabilities as features that can be used to detect if one
model is contained in the other. Results show that our approach is
capable of detecting known strategies for agents interacting within
classical games and to categorize malware behaviors.

ACM Reference Format:
Riccardo Sartea and Alessandro Farinelli. 2018. Detection of Intelligent
Agent Behaviors Using Markov Chains. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Markov models are a powerful tool to represent probability distri-
bution in stochastic processes, such as how an intelligent agent
makes decisions in face of uncertainty. An interesting problem then
is to detect whether a known strategy for a player appears in a
given game evolution. This kind of problem has many practical
applications for real multi-agent systems, and malware defense is
one of the most interesting and significant.

In more detail, malware analysis is a crucial topic for cyberse-
curity with much ongoing research. The challenge is to be able
to group similar malware in order to employ known countermea-
sures. Offline analysis and detection techniques allow to extract
valuable information about threats that can be used to empower
online detection tools, e.g., antivirus or intrusion detection systems.
The most studied approaches can be divided in static [4, 8, 13]
and dynamic [3, 5, 9, 14], along with some hybrid solutions. Static
techniques analyze the binary code of a program without actually
executing it, whereas dynamic techniques execute a program in a
controlled environment studying the observed behavior. Interesting
works in the context of multi-agent applications are [6, 12], where
the analysis is formalized as a stochastic game between an analyzer
agent and a malware agent, i.e. Active Malware Analysis (AMA).
The result is a malware behavioral model, based on Markov chains,
representing the dynamics of the analysis game. Malware models

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Behavioral malware model example

can then be compared and grouped in order to identify similar
malware on the basis of their observed behavior.

In this work we design a prototype framework aimed at detect-
ing the presence of a given behavior inside the behavioral model
of an intelligent agent. A behavior is seen as the specification of
how an agent moves from one state to another of a Markov chain,
expressed by the chain’s transition function. We empirically evalu-
ate our approach in two scenarios: first, we consider the problem
of detecting known strategies in classical games, and in particular
we consider the well known iterated Rock Paper Scissors (RPS).
Then, we focus on a concrete cybersecurity scenario by analyzing
real malware samples. Results show that our approach is able to
successfully detect given behaviors in both scenarios.

2 EXTRACTION OF FEATURES
The behavioral models extracted by AMA are a composition of
Markov chains, one for each analyzer action appearing in the
model [6]. An example is visible in Figure 1, where the chains
correspond to sendSms and startCall. Vertices represent the states
of the interaction and are labeled with malware API calls. Edges
connect two consecutive API calls of an execution trace, and are
labeled with transition probabilities conditioned by the actions
executed by the analyzer.

We are interested in comparing models based on Markov chains,
especially in cases where a model may be contained within another.
There is a lot of work on the study and comparison of Markov chain
properties, such as the parameters of long-run distributions [1, 10,
11] or properties of absorbing Markov chains [2]. The structure
of the models we take into account though, are a composition of
multiple Markov chains, and all of them have to be considered at
the same time. Moreover, they are not guaranteed to have at least
one stationary distribution or to be absorbing for example.

The procedure we propose makes use of Theorem 2.1 that allows
to compute the probability of reaching every state of a Markov
chain starting from every possible other one.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2064



Theorem 2.1. Let P be the transition matrix of a Markov chain,
and letu be the probability vector which represents the starting distri-
bution. Then the probability that the chain is in state si after n steps
is the ith entry of the vector

un = uPn

Given a behavior D to detect and a behavioral model M , we
compute the long-run probabilities of going from each state si ∈ SM
to each other state sj ∈ SM . These values are then projected on the
edges of modelD if (si , sj ) ∈ ED . The result is a modelD ′ where the
probability distribution on the outgoing edges between a state and
its neighbors in D has been extracted from the paths connecting
such states in the model M . The probability values labeling the
edges of D ′ are then used as features to train a classifier capable of
detecting if the behavior D appears in other models. Algorithm 1
details the described procedure. Notice that in line 3 we use the
sum operator with Theorem 2.1 in order to consider the probability
of reaching a state in 1, ...,T steps, and not exactly T .

Algorithm 1 Extract Features
Input:

D - n × n model to detect
M - k × k model to search for the presence of D

Output:
Detection features F

1: F ← [] ▷ Empty array
2: for each chain c ∈ D do
3: P =

∑T
n=1M

n
c ▷ Compute the long-run behavior

4: D ′ ← null n × n matrix
5: for i ← 1 to k do ▷ Project over D
6: for j ← 1 to k do
7: if si , sj exist in D as sl , sm ∧ Dl,m , 0 then
8: D ′l,m ← Pi, j

9: D ′ ← Normalize(D ′) ▷ Normalize rows
10: F ← F + Flatten(D ′) ▷ Concatenate D ′ to F

11: return F

3 EMPIRICAL EVALUATION
The main goal of the empirical evaluation is to prove the effective-
ness of our approach in extracting the long-run probabilities as
features useful to detect given behaviors. We divide the empirical
analysis in two types of experiments: in the first one we focus on
players interacting within the iterated RPS, whether in the second
experiment we analyze real Android malware families trying to
identify malicious behaviors. Algorithm 1 has been used to extract
the features from all the models generated, i.e. every model has
been used alternately as D while using all the others as M , and
to train a classifier. For all the experiments the classifier used is a
Support Vector Machine (SVM) based on a Radial Basis Function
(RBF) kernel. The quality of the classification has been evaluated
with a stratified k-fold cross validation with k = 5 and repeated 10
times. Results are reported by average accuracy, precision, recall,
and F1-score along with the standard error of the mean.

As first testing setting we simulated the game of the iterated RPS
between two playersA and B. Hence, we design 4 possible behaviors

Table 1: Player’s strategy detection for the iterated RPS

Accuracy Precision Recall F1-score
Tit-for-tat 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Counter 0.92±0.01 0.78±0.03 0.98±0.01 0.86±0.02
Mirror 0.93±0.01 0.79±0.03 0.99±0.01 0.87±0.02
Random 0.93±0.01 0.79±0.03 0.99±0.01 0.88±0.02

Table 2: Malware family identification

Accuracy Precision Recall F1-score
ZSone 0.92±0.01 0.93±0.02 0.94±0.02 0.92±0.01
GoldDream 0.97±0.01 1.00±0.00 0.89±0.03 0.93±0.02
SMSRep. 0.92±0.01 0.90±0.02 0.97±0.01 0.93±0.01
TigerBot 0.97±0.01 1.00±0.00 0.90±0.03 0.93±0.02

for one of the players, i.e., player B, while player A chooses its
actions following a randomly generated probability distribution.
During the game simulation, the behavioral model of player B is
observed and represented with Markov chains. Every strategy has
been played 10 times in an iterated RPS of length 100, obtaining
40 behavioral models for player B. Results in Table 1 show that
the classifiers trained with features extracted by observing the
simulations reach a reasonable accuracy. This allows to effectively
detect given known strategies of players interacting in amulti-agent
context such as classical games.

In our second experimental setting we analyzed a dataset com-
posed by four existing Android malware families of spyware and
bots, for a total of 40 samples, 10 for each family: ZSone, Gold-
Dream, SMSReplicator, and TigerBot [7]. It is worth mentioning
that the ZSone family is composed by two subfamilies of 5 samples
each, meaning that the malicious behavior is slightly different be-
tween the two subgroups. The aim is to use our proposed approach
in order to be able to identify the correct family of the malware
samples analyzed. Results reported in table 2 show that ZSone and
SMSReplicator families have lower accuracy compared to the oth-
ers. This fact is a consequence of the ZSone composition in two
subfamilies: the behavioral differences within this class are greater
w.r.t. the others, making it harder to classify correctly and confus-
ing the samples with SMSReplicator, the most similar other class.
Howerver, the overall results are promising.

4 CONCLUSIONS
Weproposed a technique to detect given behaviors based onMarkov
chains. The procedure extracts the long-run probabilities of the
states to be used as features for training a classifier to detect if
a given behavior is contained in a target model. The empirical
evaluation shows that our solution allows to search for the existence
of known strategies for players interacting within a game such as
the iterated RPS, and to categorize malware.

ACKNOWLEDGMENTS
Research reported in this publication was partially supported by
University of Verona and Cythereal Inc. under Joint Projects 2017
Initiative (JPVR17ZMAL).

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2065



REFERENCES
[1] Persi Diaconis and Laurent Saloff-Coste. 1993. Comparison Theorems for Re-

versible Markov Chains. Ann. Appl. Probab. 3, 3 (08 1993), 696–730. https:
//doi.org/10.1214/aoap/1177005359

[2] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. 2014. De-
signing Fast Absorbing Markov Chains. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI’14). AAAI Press, 849–855.
http://dl.acm.org/citation.cfm?id=2893873.2894005

[3] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. 2013. Structural
Detection of Android Malware Using Embedded Call Graphs. In Proceedings of
the 2013 ACM Workshop on Artificial Intelligence and Security (AISec ’13). ACM,
New York, NY, USA, 45–54. https://doi.org/10.1145/2517312.2517315

[4] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. 2013. Fast Location of
Similar Code Fragments Using Semantic ’Juice’. In Proceedings of the 2Nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop (PPREW ’13).
ACM, New York, NY, USA, Article 5, 6 pages. https://doi.org/10.1145/2430553.
2430558

[5] Guozhu Meng, Yinxing Xue, Zhengzi Xu, Yang Liu, Jie Zhang, and Annamalai
Narayanan. 2016. Semantic Modelling of Android Malware for Effective Malware
Comprehension, Detection, and Classification. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2016). ACM, New York,
NY, USA, 306–317. https://doi.org/10.1145/2931037.2931043

[6] Riccardo Sartea and Alessandro Farinelli. 2017. A Monte Carlo Tree Search
approach to Active Malware Analysis. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-17. 3831–3837. https:
//doi.org/10.24963/ijcai.2017/535

[7] Riccardo Sartea, Mila Dalla Preda, Alessandro Farinelli, Roberto Giacobazzi, and
Isabella Mastroeni. 2016. Active Android Malware Analysis: An Approach Based
on Stochastic Games. In Proceedings of the 6th Workshop on Software Security,

Protection, and Reverse Engineering (SSPREW ’16). ACM, New York, NY, USA,
Article 5, 10 pages. https://doi.org/10.1145/3015135.3015140

[8] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip Porras, and Wenke
Lee. 2008. Eureka: A Framework for Enabling Static Malware Analysis.
Springer Berlin Heidelberg, Berlin, Heidelberg, 481–500. https://doi.org/10.
1007/978-3-540-88313-5_31

[9] Donghwi Shin, Kwangwoo Lee, and Dongho Won. 2011. Malware Variant De-
tection and Classification Using Control Flow Graph. Springer Berlin Heidelberg,
Berlin, Heidelberg, 174–181. https://doi.org/10.1007/978-3-642-24106-2_23

[10] Christopher C. Strelioff, James P. Crutchfield, and Alfred W. Hübler. 2007. In-
ferring Markov chains: Bayesian estimation, model comparison, entropy rate,
and out-of-class modeling. Phys. Rev. E 76 (Jul 2007), 011106. Issue 1. https:
//doi.org/10.1103/PhysRevE.76.011106

[11] Luke Tierney. 1994. Markov Chains for Exploring Posterior Distributions. The
Annals of Statistics 22, 4 (1994), 1701–1728. http://www.jstor.org/stable/2242477

[12] Simon A. Williamson, Pradeep Varakantham, Ong Chen Hui, and Debin Gao.
2012. Active Malware Analysis Using Stochastic Games. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems -
Volume 1 (AAMAS ’12). International Foundation for Autonomous Agents and
Multiagent Systems, 29–36. http://dl.acm.org/citation.cfm?id=2343576.2343580

[13] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. 2014.
DroidMiner: Automated Mining and Characterization of Fine-grained Malicious
Behaviors in Android Applications. Springer International Publishing, Cham,
163–182. https://doi.org/10.1007/978-3-319-11203-9_10

[14] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). ACM, New York, NY, USA, 1105–1116. https:
//doi.org/10.1145/2660267.2660359

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2066

https://doi.org/10.1214/aoap/1177005359
https://doi.org/10.1214/aoap/1177005359
http://dl.acm.org/citation.cfm?id=2893873.2894005
https://doi.org/10.1145/2517312.2517315
https://doi.org/10.1145/2430553.2430558
https://doi.org/10.1145/2430553.2430558
https://doi.org/10.1145/2931037.2931043
https://doi.org/10.24963/ijcai.2017/535
https://doi.org/10.24963/ijcai.2017/535
https://doi.org/10.1145/3015135.3015140
https://doi.org/10.1007/978-3-540-88313-5_31
https://doi.org/10.1007/978-3-540-88313-5_31
https://doi.org/10.1007/978-3-642-24106-2_23
https://doi.org/10.1103/PhysRevE.76.011106
https://doi.org/10.1103/PhysRevE.76.011106
http://www.jstor.org/stable/2242477
http://dl.acm.org/citation.cfm?id=2343576.2343580
https://doi.org/10.1007/978-3-319-11203-9_10
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/2660267.2660359

	Abstract
	1 Introduction
	2 Extraction Of Features
	3 Empirical Evaluation
	4 Conclusions
	Acknowledgments
	References



