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ABSTRACT
During training, model-free reinforcement learning (RL) systems
can explore actions that lead to harmful or costly consequences.
Having a human “in the loop” and ready to intervene at all times can
prevent these mistakes, but is prohibitively expensive for current
algorithms.We explore how human oversight can be combined with
a supervised learning system to prevent catastrophic events during
training. We demonstrate this scheme on Atari games, with a Deep
RL agent being overseen by a human for four hours. When the class
of catastrophes is simple, we are able to prevent all catastrophes
without affecting the agent’s learning (whereas an RL baseline fails
due to catastrophic forgetting).
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1 INTRODUCTION
AI systems are increasingly applied to complex tasks that involve
interaction with humans. During training, such systems are poten-
tially dangerous, as they haven’t yet learned to avoid actions that
would cause serious harm. A crucial safeguard against this danger
is human intervention. Self-driving cars are overseen by human
drivers, who take control when they predict the AI system will
perform badly. These overseers frequently intervene, especially in
self-driving systems at an early stage of development [4].

Even systems that pose no physical danger to humans can still
cause unintended harm, such as chatbots making offensive state-
ments [8], or news feed algorithms spreading misinformation [5].
If human operators had monitored these systems in real-time, these
bad outcomes could have been avoided. Yet having human opera-
tors watch every action of these would be prohibitively costly in
human labor.
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Figure 1: Oversight in HIRL. At (1) human overseer (or
Blocker imitating human) can block unsafe actions a replac-
ing them with safe actions a∗. At (2) overseer delivers a neg-
ative reward r∗ for unsafe actions.

We present Human Intervention Reinforcement Learning (HIRL),
a scheme for efficiently applying human intervention to RL sys-
tems. As a proof of concept, we show that the technique prevents
artificially defined catastrophes in Atari games while significantly
reducing the amount of human labor required.

1.1 Formal Specification of HIRL
We model the RL agent’s environment as a Markov Decision Pro-
cess (MDP). The environment is an MDP specified by a tupleM =
(S,A,T,R,γ ), where S is the state space, A is the action space,
T : S × A × S 7→ [0, 1] is the transition function, R : S × A 7→ R
is the reward function, and γ is the discount factor.

Our scheme, HIRL (Human Intervention RL), is as follows:
(i) Human Oversight Phase Fresh RL agent starts learning in

the environment. The human controls the interface between
the RL agent and environmentM , constantly watching over
the agent and blocking any catastrophic actions before they
happen. More precisely, at each timestep the human observes
the current state s and the agent’s proposed action a. If (s,a) is
catastrophic, the human marks the action as catastrophic and
sends a safe action a∗ to the environment instead. The human
also replaces the new reward r = R(s,a∗) with a penalty r∗

(Figure 1). We store each state-action (s,a) and a binary label
for whether or not the human blocked it.
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Figure 2: In Pong (left) it’s a catastrophe if agent (green) en-
ters Catastrophe Zone at the bottom of the screen. In Space
Invaders (right), it’s a catastrophe if agent shoots their de-
fensive barriers (pink box).

(ii) Blocker training: With the game paused, the dataset gath-
ered in step 1 is used to train a “Blocker”, a classifier trained by
supervised learning to imitate the human’s blocking decisions.
The threshold for the sigmoid is chosen based on gathered
examples of catastrophes to try to ensure Blocker has no false
negatives.

(iii) Blocker Oversight Phase: Blocker takes over from human
and RL agent continues to learn, with no human supervision
involved. The Blocker never stops overseeing the agent, which
prevents catastrophes even if the agent exhibits random explo-
ration or catastrophic forgetting [6]. Note that the Blocker’s
task is not a standard classification task because the distribu-
tion on state-action pairs shifts as the agent learns [1].

2 EXPERIMENTS
To explore HIRL in an environment without real risk, we trained
AI agents to play modified Atari games while avoiding a set of
outcomes we artificially defined as catastrophes. These catastrophes
are defined in Fig 2. 1

Our experiments used the OpenAI Gym implementation of Atari
Learning Environment [2, 3], modified to allow interactive blocking
of actions by a human. We used open-source implementations [9]
of A3C with an LSTM policy [7] and Double DQN [10]. 2

The human oversight phase produced training data for 4.5 hours.
We then trained a Blocker consisting of a convolutional neural net-
work (CNN) on the training set of human interventions to minimize
the standard cross-entropy loss.

3 SUMMARY OF RESULTS
HIRL succeeded in preventing catastrophes in Pong and Space
Invaders, where the agent had zero catastrophes and achieved im-
pressive performance on the game. Without oversight, the agent
has more than ten thousand catastrophes in each game.

1Videos showing examples of the catastrophic events and behaviour of the agent
are available at https://www.youtube.com/playlist?listP̄Ljs9WCnnR7PCn_Kzs2-
1afCsnsBENWqor
2Code for our experiments is available at https://github.com/gsastry/human-rl
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Figure 3: Average reward and cumulative catastrophes over
time (mean and standard error). The Reward Shaping base-
line isn’t blocked from catastrophes but gets big negative re-
wards for causing them.

To show that blocking is necessary for HIRL towork, we compare
against a Human-trained Reward Shaping baseline where the agent
is only receives the reward penalty for taking a catastrophic action
but is not blocked. Figure 3 shows that the Reward Shaping agent
does learn to reduce the number of catastrophes over the course of
training, due to the " sisyphean curse" of reinforcement learning
[6]. Once the agent learns to avoid a catastrophe, the agent only
sees new experiences where the catastrophic action is never tried.
Due to catastrophic forgetting, this means that the agent eventually
forgets that the action is bad and will explore it again. Our approach
avoids this problem because the blocker is fixed during the blocker
oversight phase. Our results also show that blocking the agent does
not make the game harder for Deep RL to learn compared to the
Reward Shaping baseline, as the agent’s reward improved faster in
the blocking case.

HIRL also succeeded at the goal of reducing the amount of hu-
man supervision time needed to perform the task safely. For space
invaders, it took 4 hours to label approximately 40000 frames. At
this rate it would have taken 125 hours to supervise the 5 million
frames of training that the agent took to reach its final level of per-
formance, if we had required human oversight through the whole
training process.

4 CONCLUSION
We demonstrate that HIRL can avoid artificially defined catastro-
phes in Atari game environments, by training a supervised learning
algorithm to take over supervision of the RL agent from a human.
Our approach allows for high standards of safety without requiring
constant human supervision. We are optimistic that future work
can explore how to make HIRL more data efficient, and apply it to
more complex environments.
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