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ABSTRACT
The diffusion of fake news has become a crucial problem in recent

years. One way to battle it is to propagate the corresponding real

news. To achieve this goal, we find a set of individuals who are

likely to receive the fake news so that they can test its credibility,

and when they propagate the corresponding real news, it is likely to

reach a large number of individuals. For this problem, we propose

a polynomial time greedy algorithm (AFC) which provides (1 −
1/e −ϵ )-approximation. We further optimize the runtime of AFC by

developing a fast graph-pruning heuristic (RAFC) that performs as

well as AFC in checking the spread of fake news. Our experiments

on real-world networks demonstrate that our approach outperforms

popular methods in social network analysis literature.
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1 INTRODUCTION
Online Social Networks have become prime sources of sharing

news. Often times “fake news”, a made-up story propagates into the

network and becomes accepted as “news”. Spreading of misinfor-

mation poses a major challenge to the society as it may influence

people’s opinions and cause panic. A possible remedy is to prop-

agate the corresponding real news in the network [2, 4]. Several

works [2, 4] take the competing cascades approach, where they at-

tempt to ensure that an individual who receives an opinion from a

given set S is also likely to receive the alternate opinion from the

selected set I . It is implicitly assumed that nodes in I are already
aware of the alternate opinion to be propagated. Note that in the

case of containment of fake news, the alternate opinion (real news)

cannot be determined unless the individuals in I are also aware

of what the fake news to be countered is. For instance, suppose
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(a) Competing Cascades: Two sets at-

tempting to influence a node

(b) FActCheck: A subset of those aware

of the fake news can influence a node

Figure 1: Fundamental distinction between FActCheck and
Competing Cascades. FActCheck enforces the constraint
that the news must pass through the set I .

person A is propagating the news saying “NASA predicts an aster-

oid hitting Earth in 48 hours”. When person B receives this, only

then can she counter it with the news that NASA has released no

such statement. The competing cascades approach is thus not very

effective in this problem setting as it does not enforce that I must

receive news from S first (See Figures 1(a) and 1(b)).

To address this limitation, we propose a fundamental departure

from the competing cascade approach by proposing the following

problem: Given a set S of fake news initiators in a network, we wish

to find a set of nodes I such that a) the fake news from S is likely

to reach I , and b) many other nodes are reachable from I (See Fig-
ure 1(b)). We refer to this problem of checking the activation of fake

news as FActCheck. We propose a polynomial time algorithm called

Approximate FactCheck (AFC) with (1 − 1/e − ϵ )-approximation

guarantee (Section 2). We also propose a heuristic called Reduced

Approximate FActCheck (RAFC) that provides a quality similar to

AFC while reducing the runtime significantly

Problem Definition. Let X
Z
−→ Y be the event of news flowing

from X to Y through a node in Z under some diffusion model. Let

S be the set of fake news initiators. We wish to maximize σ (S , I ) =

E
(∑

u∈V \S I(S
I
−→ u)

)
, where I is the indicator function. We define

this problem as Fake news Activation Checking (FActCheck).

Definition 1.1 (FActCheck). Given a graphG (V ,E), a seed-set S , a
model of diffusionM and an integer k , find I ⊂ V \ S , |I | = k , that
maximizes σ (S , I ).

It can be shown that this is equivalent to maximizing P (S
I
−→ t ),

where t is a randomly selected node. Henceforth, we proceed with

Independent Cascade Model (ICM) as the model of diffusion due to

its popularity since its introduction [3].
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2 PROPOSED ALGORITHM FOR FActCheck
Our algorithm is based on generation of “Pruned Reverse Reachable"

sets (PRR) which is the set of all nodes that connect at least one

node in S to a randomly selected node, in one instance of live-edge

graph (the graph obtained by keeping an edge (i, j ) with probability

p (i, j )). By construction, if ∃v ∈ I which is present in the Pruned

RR, then I(S
I
−→ t ) = 1. Therefore, if A is a randomly generated

Pruned RR, then P (S
I
−→ t ) = E(I(S

I
−→ t )) = E(I( |A ∩ I | > 0)).

This probability can be estimated by generating θ number of

Pruned RRs, where θ is “very large". Once, θ Pruned RRs have been

generated, we can apply greedy selection of nodes that result in

largest marginal gain, to construct the desired set. The number of

Pruned RRs θ that need to be generated is the same as the number of

times setA needs to be sampled so that greedy selection of I guaran-
tees a (1− 1/e − ϵ )-approximation for the optimal value of E(I( |A∩

I |)). This is given by θ =
n(2+2

√
2ϵ/3) (log (nk)+log n+log log2 n)

2ϵ2OPT [6],

where n = |V \ S | and OPT is the optimal value of nP (S
I
−→ t ).

We refer to this method of generating θ PRRs and applying greedy

algorithm to solve FActCheck as Approximate FActCheck (AFC).

Graph Reduction. One drawback of using AFC for FActCheck

is that due to small size ofOPT and large graph size, the number of

PRRs required may be very high as θ ∝ n/OPT . To address this, we
propose to first reduce the size of the graph before applying AFC

to obtain a reasonable solution in less time.

Theorem 2.1. LetVS be the set of nodes that are reachable from S
in at least r instances of a live-edge graph in R = α logn/µ randomly
generated instances for some α . Assuming r ≤ logn, with probability
1 − δ , P (∪v∈V \VS (S → v )) < µ, where δ = α r

(r−1)!(1−µ )r
(log n)r

nα −1 .

We simulate the diffusion process starting with the source S ,
α logn/µ times. All nodes that are reached in at least r simulations

are added to VS . Then, we run AFC on GS , the graph induced by

VS (where |VS \ S | = nS ≤ n) which is a smaller than V . We refer

to this algorithm as Reduced AFC (RAFC).

3 EXPERIMENTS
Setup. The probability of influence for edge (u,v ) was set to

p (u,v ) = 1/dv , where dv =
∑
j weiдht (v, j ) is the sum of the outgo-

ing edge weights. The seedset S was set to the 50 nodes with highest
out-degree (

∑
v p (u,v )). Datasets are summarized in Table 1.

Quality of Reduction. We performed a series of experiments

to measure the effect of reduction on the execution time and qual-

ity of the results obtained, i.e., σ (S , I ). For RAFC, we used µ =
0.1,0.01,0.001, . . . to reduce the graph size. For LJ, no significant

reduction in size was obtained for µ = 0.01 and higher and there-

fore, only the result for µ = 0.1 has been reported. Table 1 shows the

comparison of reduction in σ (S , I ) vs speedup obtained by RAFC

compared to AFC. HEPT being a small dataset did not show a sig-

nificant speedup. Maximum speedup was seen in Twitter dataset

(102x) without much compromise in quality.

Baselines. (i) Outdegree (
∑
j∈V \S p (v, j )), (ii) PageRank [5], (iii)

PPR (Personalized PageRank) [5] where random walk starts from a

random node in S , (iv) FSBC (Fixed Source Betweenness Centrality)

Table 1: Datasets and details of graph reduction obtained

Dataset HEPT[1] Twitter
1

LJ
2

# of nodes 15,233 3,919,215 4,847,571

# of edges 62,774 5,399,949 68,475,391

Quality

reduction,

speedup

µ = 0.1 2.54%, 1.81x 3.8%, 102x -

µ = 0.01 2.37%, 1.37x 0.07%, 17.2x -

µ = 0.001 0.75%, 0.48x -0.4%, 2.30x -0.03%, 2.45x
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Figure 2: Comparison of σ (S , I ) vs |I | for different methods
when the source is known.

- where we only count shortest path with source in S and edge

weights are − log(p (i, j )), (v) SmartDegree - calculated for node v
as

∑
u∈S p (u,v )

∑
j∈V \S p (v, j ).

Comparison with Baselines. We computed σ (S , I ) obtained
using these methods along with our methods by running 10,000

simulations. The size of I was varied from 1 to 50. Figure 2 shows

σ (S , I ) achieved by all the methods on LJ. Results on other datasets

have been omitted due to brevity, as they produced similar trends.

Performance of RAFC was always found to be close to AFC. These

methods outperformed the baselines by significant margins.

4 CONCLUSIONS
We have proposed Fake news Activation Checking (FActCheck)

problem to address the challenge posed by fake news propagation

in online social networks. Under Independent Cascade Model, we

have given a polynomial time algorithm (AFC) with (1 − 1/e − ϵ )-
approximation guarantee. Since the runtime of AFC increases with

the size of the graph, we have developed a heuristic (RAFC) that

reduces the size of the graph by removing nodes that are likely to

have low probability of activation, before applying AFC. Experi-

ments have demonstrated that RAFC produces similar quality to

AFC, while providing significant speed-up in runtime. Our methods

were compared against popular centrality measures from social

network literature. Both AFC and RAFC outperform the baselines

by a large margin on several real-life networks.
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