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ABSTRACT
The spread of unwanted or malicious content through social me-
dia has become a major challenge. Traditional examples of this
include social network spam, but an important new concern is the
propagation of fake news through social media. A common ap-
proach for mitigating this problem is by using standard statistical
classification to distinguish malicious (e.g., fake news) instances
from benign (e.g., actual news stories). However, such an approach
ignores the fact that malicious instances propagate through the
network, which is consequential both in quantifying consequences
(e.g., fake news diffusing through the network), and capturing de-
tection redundancy (bad content can be detected at different nodes).
An additional concern is evasion attacks, whereby the generators of
malicious instances modify the nature of these to escape detection.
We model this problem as a Stackelberg game between the defender
who is choosing parameters of the detection model, and an attacker,
who is choosing both the node at which to initiate malicious spread,
and the nature of malicious entities. We develop a novel bi-level
programming approach for this problem, as well as a novel solution
approach based on implicit function gradients, and experimentally
demonstrate the advantage of our approach over alternatives which
ignore network structure.
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1 INTRODUCTION
Consider a large online social network, such as Facebook or Twitter.
It enables unprecedented levels of social interaction in the digital
space, as well as sharing of valuable information among individuals.
It is also a treasure trove of potentially vulnerable individuals to
exploit for unscrupulous parties who wish to gain an economic,
social, or political advantage. In a perfect world, the social network
is an enabler, allowing diffusion of valuable information. We can
think of this “benign” information as originating stochastically
from some node, and subsequently propagating over the network
to its neighbors (e.g., through retweeting a news story), then their
neighbors, and so on. But just as the network is a conduit for val-
ueable information, so it is for “malicious” content. However, such
undesirable content can be targeted: first, by selecting an influential
starting point on the network (akin to influence maximization), and
second, by tuning the content for maximal impact. For example, an
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adversary may craft the headline of a fake news story to capture
the most attention. Consider the illustration in Figure 1, where an
attacker crafts a fake news story and shares it with Adam. This
story is then shared by Adam with his friends, and so on.

Figure 1: An example of the propagation of malicious con-
tents.

These are not abstract concerns. Recently, widespread malicious
content (e.g., fake news, antisocial posts) in online social networks
has become a major concern. For example, considering that over
50% adults in the U.S. regard social media as their primary sources
for news [17], the negative impact of fake news can be substantial.
According to Allcott et al. [1] over 37 million news stories that are
later proved fake were shared on Facebook in the last three months
of 2016 U.S. presidential election. In addition to fake news, anti-
social posts in online communities negatively affect other users
and damage community dynamics [9], while social network spam
and phish can defraud users and spread malicious software [11].

Themanagers of online social networks are not powerless against
these threats, and can deploy detection methods, such as statistical
classifiers, to identify and stop the spread of malicious content.
However, such traditional mitigations have not as yet proved ad-
equate. We focus on two of the reasons for this: first, adversaries
can tune content to avoid being detected, and second, traditional
learning approaches do not account for network structure. The im-
plication of network structure mediating both spread and detection
has in turn two consequences: first, we have to account for impact
of detection errors in terms of benign or malicious content subse-
quently propgatating through the network, and second, the fact that
we can potentially detect malicious content at multiple nodes on
the network creates a degree of redundancy. Consequently, while
traditional detection methods use training data to learn a single
“global” classifier of malicious and benign content, we show that
specializing such learning to network structure, and using different
classifiers at different nodes can dramatically improve performance.

To address the problem of malicious content detection on social
networks, we propose two significant modeling innovations. First,
we explicitly model the diffusion process of content over networks
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as a function of content (or, rather, features thereof). This is a gener-
alization of typical network influence models which abstract away
the nature of information being shared. It is also a crucial general-
ization in our setting, as it allows us to directly model the balancing
act by the attacker between increasing social influence and avoiding
detection. Second, we consider the problem of designing a collection
of heterogeneous statistical detectors which explicitly account for net-
work structure and diffusion at the level of individual nodes, rather
than merely training data of past benign and malicious instances.
We formalize the overall problem faced as a Stackelberg game be-
tween a defender (manager of the social network) who deploys a
collection of heterogeneous detectors, and an attacker who opti-
mally chooses both the starting node for malicious content, and the
content itself. This results in a complex bi-level optimization prob-
lem, and we introduce a novel technical approach for solving it, first
considering a naive model in which the defender knows the node
being attacked, which allows us to develop a projected gradient
descent approach for solving this restricted problem, and subse-
quently utilizing this to devise a heuristic algorithm for tackling the
original problem. We show that our approach offers a dramatic im-
provement over both traditional homogeneous statistical detection
and a common adversarial classification approach.

Related Work. A number of prior efforts have considered lim-
iting adversarial influence on social networks. Most of these pit
two influence maximization players against one another, with both
choosing a subset of nodes to maximize the spread of their own
influence (blocking the influence of the other). For example, Cerenet
et al. [7] consider the problem of blocking a “bad” campaign using
a “good” campaign that spreads and thereby neutralizes the “bad”
influence. Similarly, Tsai et al. [26] study a zero-sum game between
two parties with competing interests in a networked environment,
with each party choosing a subset of nodes for initial influence.
Vorobeychik et al. [28] considered an influence blocking game in
which the defender chooses from a small set of security configu-
rations for each node, while the attacker chooses an initial set of
nodes to start a malicious cascade. The main differences between
this prior work and ours is that (a) our diffusion process depends on
the malicious content in addition to network topology, (b) detection
at each node is explicitly accomplished using machine learning
techniques, rather than an abstract small set of configurations, and
(c) we consider an attacker who, in addition to choosing the starting
point of a malicious cascade, chooses the content in part to evade
the machine learning-based detectors. The issue of using hetero-
geneous (personalized) filters was previously studied by Laszka
et al. [19], but this work did not consider network structure or
adversarial evasion.

Our paper is also related to prior research in single-agent in-
fluence maximization and adversarial learning. Kempe et al. [18]
initiated the study of influence maximization, where the goal is to
select a set of nodes to maximize the total subset of network affected
for discrete-time diffusion processes. Rodriguez et al. [16] and Du
et al. [13–15] considered the continuous-time diffusion process to
model information diffusion; we extend this model. Prior adver-
sarial machine learning work, in turn, focuses on the design of a
single detector (classifier) that is robust to evasion attacks [6, 12, 20].

However, this work does not consider malicious content spreading
over a social network.

2 MODEL
We are interested in protecting a set of agents on a social network
from malicious content originating from an external source, while
allowing regular (benign) content to diffuse. The social network is
represented by a graph G = (V ,E), where V is the set of vertices
(agents) and E is the set of edges. An edge between a pair of nodes
represents communication or influence between them. For example,
an edge from i to j may mean that j can see and repost a video
or a news article shared by i . For simplicity, we assume that the
network is undirected; generalization is direct.

We suppose that each message (benign or malicious) originates
from a node on the network (which may differ for different mes-
sages) and then propagates to others. We utilize a finite set of
instances diffusing over the network (of both malicious and benign
content) as a training dataset D. Each instance, malicious or benign,
is represented by a feature vector x ∈ Rn where n is the dimension
of the feature space. The dataset D is partitioned into D+ and D−,
where D+ corresponds to malicious and D− to benign instances.

To analyze the diffusion of benign and malicious content on
social networks in the presence of an adversary, we develop formal
models of (a) the diffusion process, (b) the defender who aims to
prevent the spread of malicious content while allowing benign
content diffuse, (c) the attacker who attempts to maximize the
influence of a malicious message, and (d) the game between the
attacker and defender. We present these next.

2.1 Continuous-Time Diffusion
Given an undirected network with a known topology, we use a
continuous-time diffusion process to model the propagation of con-
tent (malicious or benign) through the social network, extending
Rodriguez et al. [16]. In our model, diffusion will depend not merely
on the network structure, but also on the nature of the item propa-
gating through the network, which we quantify by a feature vector
x as above.

Suppose that the diffusion process for a single message originates
at a node s . First, x is transmitted from s to its direct neighbors. The
time taken by a propagation through an edge e is sampled from
a distribution over time, fe (t ;we ,x ), which is a function of the
edge itself and the entity x , and parametrized by we . The affected
(influenced) neighbors of s then propagate x to their neighbors, and
so on. We assume that an affected agent remains affected through
the diffusion process.

Given a sample of propagation times over all edges, the time ti
taken to affect an agent i is the length of the shortest path between s
and i , where the weights of edges are propagation times associated
with these edges. The continuous-time diffusion process is supplied
with a time window T , which is used to simulate time-sensitive
natures of propagation, for example, people are generally concerned
about a news for several months but not for years. An agent is
affected if and only if its shortest path to s is less than or equal
to T . The diffusion process terminates when the path from s to
every unaffected agent is above T . We define the influence σ (s,x )
of an instance x initially affecting a network node s as the expected
number of affected agents over a fixed time window T .
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Figure 2: Rayleigh distributions with different 1/γ 2.

We assume that the distributions associated with edges are
Rayleigh distributions (illustrated in Figure 2), which have den-
sity function f (t ;γ ) = t

γ 2 e
−t 2/(2γ 2 ) , where t ≥ 0 and γ is the scale

parameter.1 The Rayleigh distribution is commonly used in epi-
demiology and survival analysis [29] and has been recently applied
to model information diffusion in social networks [14, 16]. In order
to account for heterogeneity among mutual interactions of agents,
and to let the influence of a process depend on the content being
diffused, we parameterize the Rayleigh distribution of each edge
by letting 1/γ 2 = wT x , where w is sampled from the uniform dis-
tribution over [0,1]. This parameterization results in the following
density function for an arbitrary edge:

fe (t ;we ,x ) = t (we
T x )e−

1
2 t

2 (we
T x ) . (1)

We denote byW = {we |∀e ∈ E} the joint parametrization of all
edges.

Throughout, we assume that the parametersW are given, and
known to both the defender and attacker. A number of other re-
search studies explore how to learn these parameter vectors from
data [14, 15].
2.2 Defender Model
To protect the network against the spread of malicious content, the
network manager—henceforth, the defender—can deploy statisti-
cal detection, which considers a particular instance (e.g., a tweet
with an embedded link) and decides whether or not it is safe. The
traditional way of deploying such a system is to take the dataset
D of labeled malicious and benign examples, train a classifier, and
use it to detect new malicious content. However, this approach
entirely ignores the fact that a social network mediates the spread
of both malicious and benign entities. Moreover, both the nature
(as captured in the feature vector) and the origin of malicious in-
stances are deliberate decisions by the adversary aiming to maximize
impact (and harm, from the defender’s perspective). Our key inno-
vations are (a) to allow heterogeneous parametrization of classifiers
deployed at different nodes, and (b) to explicitly consider both diffu-
sion and adversarial manipulation during learning. In combination,
this enables us to significantly boost detection effectiveness in social
network settings.

Let Θ = {θ1,θ2, · · · ,θ |V | } be a vector of parameters of detection
models deployed on the network where each θi ∈ Θ represents
the model used for content shared by node i .2 We now extend
our definition of expected influence to be a function of detector

1It is straightforward to allow for alternative distributions, such as Weibull.
2Below, we focus on θi corresponding to detection thresholds as an illustration;
generalization is direct.

parameters, denoting it by σ (i,Θ,x ), since any content x (malicious
or benign) starting at node i which is classified as malicious at a
node j (not necessarily the same as i) will be blocked from spreading
any further.

We define the defender’s utility as

Ud = α
∑
x ∈D−

∑
i ∈V

σ (i,Θ,x ) − (1 − α )
∑
x ∈D+

σ (s,Θ,z (x )), (2)

where s is the starting node targeted by the adversary, which is
subsequently modified by the same adversary into z (x ) (in an at-
tempt to bypass detection) when the original content used by the
adversary is x . The first part of the utility represents the influence
of benign content that the defender wishes to maximize, while the
second part denotes the influence of malicious content that the
defender aims to limit, with α trading off the relative importance
of these two considerations. Observe that we assume that benign
content originates uniformly over the set of nodes, while malicious
origin is selected by the adversary. The defender’s action space is
the set of all possible parameters Θ of the detectors deployed at all
network nodes. Note that, as is typical in machine learning, we are
using the finite labeled dataset D as a proxy for expected utility
with respect to malicious and benign content generated from the
same distribution as the data.

2.3 Attacker Model
The attacker’s decision is twofold: (1) find a node s ∈ V to start
diffusion; and (2) transform malicious content from x (its original,
or ideal, form) into another feature vector z (x ) with the aim of
avoiding detection. The first decision is reminiscent of the influ-
ence maximization problem[18]. The second decision is commonly
known as the evasion attack on classifiers [20, 23]. In our case, the
adversary attempts to balance three considerations: (a) impact, me-
diated by the diffusion of malicious content, (b) evasion, or avoiding
being detected (a critical consideration for impact as well), and (c) a
cost of modifying original “ideal” content into another form, which
corresponds to the associated reduced effectiveness of the trans-
formed content, or effort involved in the transformation.We impose
this last consideration as a hard constraint that | |z (x ) − x | |p ≤ ϵ
for an exogenously specified ϵ , where ∥ · ∥p is the lp norm.

Consider the collection of detectors with parameters Θ deployed
on the network. We say that a malicious instance is detected at a
node i if 1[θi (x ) = 1] = 1, where 1(·) is the 0-1 indicator func-
tion. The optimization problem of the attacker corresponding to an
original malicious instance x ∈ D+ is then:

max
i,z

σ (i,Θ,z)

s .t | |z − x | |p ≤ ϵ

1[θ j (z) = 1] = 0,∀j ∈ V

(3)

where the first constraint is the attacker’s budget limit, while the
second constraint requires that the attack instance z remains unde-
tected. If Problem (3) does not have a feasible solution, the attacker
sends the original malicious instance without any modification.
Consequently, the pair (s,z (x )) in the defender’s utility function
above are the solutions to Problem (3).
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2.4 Stackelberg Game Formulation
We formally model the interaction between the defender and the
attacker as a Stackelberg game in which the defender is the leader
(choosing parameters of node-level detectors) and the attacker the
follower (choosing a node to start malicious diffusion, as well as the
content thereof). We assume that the attacker knows Θ, as well as
all relevant parameters (such asW) before constructing its attack.
The equilibrium of this game is the joint choice of (Θ,s (Θ),z (x ;Θ)),
where s (Θ) and z (x ;Θ) solve Problem (3), thereby maximizing the
attacker’s utility, andΘmaximizes the defender’s utility given s and
z. More precisely, we aim to find a Strong Stackelberg Equilibrium
(SSE), where the attacker breaks ties in the defender’s favor.

We propose finding solutions to this Stackelberg game using the
following optimization problem:

max
Θ

α
∑
x ∈D−

∑
i
σ (i,Θ,x ) − (1 − α )

∑
x ∈D+

σ (s,Θ,z (x ))

s .t . : ∀x ∈ D+ : (s,z (x )) ∈ argmax
j,z

σ (j,Θ,z)

∀x ∈ D+ : | |z (x ) − x | |p ≤ ϵ

∀x ∈ D+ : 1[θk (x ) = 1] = 0,∀k ∈ V

(4)

This is a hierarchical optimization problem, where the upper-level
optimization corresponds to maximizing the defender’s utility. The
constraints of the upper-level optimization are called the lower-
level optimization, which is the attacker’s optimization problem.

The optimization problem (4) is generally intractable for several
reasons. First, Problem (4) is a bilevel optimization problem [10],
which is hard even when the upper- and lower-level problems are
both linear [10]. The second difficulty lies in maximizing σ (i,Θ,x )
(the attacker’s problem), as the objective function does not have
an explicit closed-form expression. In what follows, we develop a
principled approach to address these technical challenges.

3 SOLUTION APPROACH
We start by making a strong assumption that the defender knows
the node being attacked. This will allow us to make considerable
progress in transforming the problem into a significantly more
tractable form. Subsequently, we relax this assumption, develop-
ing an effective heuristic algorithm for computing the SSE of the
original problem.

First, we utilize the tree structure of a continuous-time diffusion
process to convert (4) into a tractable bilevel optimization. We then
collapse the bilevel optimization into a single-level optimization
problem by leveraging Karush-Kuhn-Tucker (KKT) [5] conditions.
The assumption that the defender knows the node being attacked
allows us to solve the resulting single-level optimization problem
using projected gradient descent.

3.1 Collapsing the Bilevel Problem
A continuous-time diffusion process proceeds in a breadth-first-
search fashion. It starts from an agent i trying to influence each of
its neighbors. Then its neighbors try to influence their neighbors,
and so on. Notice that once an agent becomes affected, it is no
longer affected by others. Themain consequence of this propagation
process is that it results in a propagation tree rooted at i , with

its structure intimately connected to the starting node i . This is
where we leverage the assumption that the defender knows the
starting node of the attack: in this case, the tree structure can be
pre-computed, and fixed for the optimization problem.

We divide the agents traversed by the tree into several layers in
terms of their distances to the source, where each layer is indexed
by l . Since the structure of the tree depends on i , l is a function of
i , l (i ). An example of the influence propagation tree is depicted in
Figure 3, where the first layer consists of {j,k , · · · ,д}. The number
next to each edge represents theweight sampled from the associated
distribution.

We define a matrix Al ∈ R
Nl×n where Nl is the number of

agents in layer l and n is the feature dimension of x . Each row of Al
corresponds to the parametrization vector w of an edge in layer l
(an edge is in layer l if one of its endpoint is in layer l − 1 while the
other is in layer l ; the source is always in layer zero). For example, in
Figure 3, A1 = [wT

i j ;w
T
ik ; · · · ;w

T
iд]. The product of Alx is a vector

in RNl , where each element corresponds to the parameter 1/γ 2 of
an edge in layer l .

Figure 3: A example continuous-time diffusion process.
Recall that a sample of random variables from Rayleigh distri-

butions associated with edges corresponds to a sample of weights
associated with these edges. With a fixed time window T , small
edge weights result in wider diffusion of the content over the social
network. For example, in Figure 3 if the number next to each edge
represents a sample of weights, then with T = 1 the propagation
starting from i can only reach agents j and k . However, if we assume
that in another sample ti,j ,ti,k ,ti,д all become 0.1, then with the
same time window the propagation can reach every agent in the net-
work. Consequently, the attacker’s goal is to increase 1/γ 2 = wT

e x
for each edge e . This suggests that in order to increase 1/γ 2 the
attacker can modify the malicious instance x such that the inner
products between x and the parameter vectors we of edges are
large. Consequently, we can formulate the attacker’s optimization
problem with respect to malicious content z for a given original
feature vector x as

max
z

∑
l

kl 1
TAlz

s .t . | |z − x | |p ≤ ϵ

1[θk (z) = 1] = 0,∀k ∈ V .

(5)

The attacker aims to make 1/γ 2 for each edge as large as possible,
which is captured by the objective function 1TAlz, where 1 ∈ RNl

is a vector with all elements equal to one. Intuitively, this means
the attacker is trying to maximize on average the parameter 1/γ 2 of
every edge at layer l . Here, [k1,k2, · · · ,kl ] is a vector of decreasing
coefficients that provides more flexibility to modeling the attacker’s
behavior: they are used to re-weight the importance of each layer.
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For example, setting k1 = e0,k2 = e−1, · · · ,kl = e−l models the
attacker who tries to make malicious instances spread wider at the
earlier layers of the diffusion.

We now use similar ideas to convert the upper-level optimization
problem of (4) into a more tractable form. Suppose that the node
being attacked is s (and known to the defender). Then the defender
wants the detection model at j to accurately identify both malicious
and benign contents. This is achieved by the two indicator func-
tions inside 1 and 2 in the reformulated objective function of the
defender (6):

max
Θ

α
∑
x ∈D−

∑
j
1[θ j (x ) = 0]

∑
l

kl c
T
l,jAlx︸                                            ︷︷                                            ︸

1

− (1 − α )
∑
x ∈D+

1[θs (z (x )) = 0]
∑
l

kl c
T
l,sAlz (x )︸                                                       ︷︷                                                       ︸

2

(6)

Notice that this expression includes a vector cl,j ∈ RNl that does
not appear in (5). cl,j is a function of Θ and x , for a given node j
which triggers diffusion (which we omit below for clarity):

cl,j =



1[θl1 (x ) = 0]
1[θl2 (x ) = 0]

...

1[θlNl (x ) = 0].



(7)

Slightly abusing notation, we let li ,i ∈ [1,2, · · · ,Nl ] denote the
ith agent in layer l . The term kl cTl,jAlx in 1 can be expanded as
follows:

kl c
T
l,jAlx

= kl
[
1[θl1 (x ) = 0], . . . ,1[θlNl (x ) = 0]

]


wT
l1
x

...

wT
lNl

x



= kl

(
1[θl1 (x ) = 0]wT

l1
x + · · · + 1[θlNl (x ) = 0]wT

lNl
x

)
,

(8)

noting again that l and Nl depend on j, the starting node of the
diffusion process. From the expression (8), the defender tries to find
Θ that minimizes the impact of false positives while maximizing
the impact of true negatives. This is because if each benign instance
x ∈ D− is correctly identified (false-positive rates are zero and
true-negative rates are one), the summation at the second line of
expression (8) will attain its maximum possible value.

In addition to facilitating the propagation of benign contents,
the defender wants to limit the propagation of malicious contents,
which is embodied in 2 . The equations in 2 are similar to those
in 1 , except that the summation is over malicious contents D+,
and 2 is accounting for the false negatives. In this case, cl,s is a
function of z (x ), the adversarial feature vector which transforms x
into another, z.

We now re-formulate the problem (4) as a new bilevel optimiza-
tion problem (9). The upper-level problem corresponds to the de-
fender’s strategy (6), and the lower-level problem to the attacker’s

optimization problem (5). Here, s is again the node chosen by the
attacker.

min
Θ

(1 − α )
∑
x ∈D+

1[θs (x ) = 0]
∑
l

kl c
T
l,sAlz (x )

− α
∑
x ∈D−

∑
j
1[θ j (x ) = 0]

∑
l

kl c
T
l,jAlx

s .t : ∀x ∈ D+ : z (x ) ← argmax
z

∑
l

kl 1
TAlz

s .t . ∀x ∈ D+ : | |z (x ) − x | |p ≤ ϵ

∀x ∈ D+ : 1[θk (z (x )) = 1] = 0,∀k ∈ V

∀x ∈ D+ : z (x ) ⪰ 0,

(9)

where the last constraint ensures that wT z (x ) ≥ 0 for all attacks
z (x ).

The final step, inspired by [24, 25], is to convert (9) into a single-
level optimization problem via the KKT [5] conditions of the lower-
level problem. With appropriate norm constraints (e.g., l2 norm)
and a convex relaxation of the indicator functions (i.e., convex
surrogates of the indicator functions), the lower-level problem of
(9) is convex. A convex optimization problem can be equivalently
represented by its KKT conditions[8]. The single-level optimization
problem then becomes:

min
Θ

F̂d

s .t . ∀x :

∂z

(
−

∑
l

kl c
T
l,sAlz + λд(z,x ) + µ

Th(z,Θ) − ηT z

)
= 0

λд(z,x ) = 0,λ ≥ 0
д(z,x ) ≤ 0
η ⊙ (−z) = 0,η ⪰ 0
h(z,Θ) = 0

(10)

where F̂d is the objective function of Problem (9), and λ, µ, η are
vectors of lagrangian multipliers. д(z,x ) = | |z − x | |p − ϵ ≤ 0 is the
attacker’s budget constraint.h(x ,Θ) is the set of equality constraints
1[θ j (z) = 1] = 0,∀j ∈ V . η ⊙ (−z) is the Hadamard (elementwise)
product between η and (−z) .

3.2 Projected Gradient Descent
In this section we demonstrate how to solve the single-level opti-
mization obtained above by projected gradient descent. The key
technical challenge is that we don’t have an explicit representation
of the gradients with respect to the defender’s decision Θ, as these
are indirectly related via the optimal solution to the attacker’s opti-
mization problem. We derive these gradients based on the implicit
function of the defender’s utility with respect to Θ.

We begin by outlining the overall iterative projected gradient
descent procedure. In iteration t we update the parameters of de-
tection models by taking a projected gradient step:

Θ(t+1) = ProjAd

(
Θ(t ) − βt∇ΘF̂d

���Θ=Θ(t )

)
(11)
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where Ad is the feasible domain of Θ and βt is the learning rate.
With Θ(t+1) we solve for z (t+1) , which is the optimal attack for a
fixed Θ(t+1) . ∇ΘF̂d is the gradient of the upper-level problem.

Expanding ∇ΘF̂d using the chain rule and still using s as the
initially attacked node, we obtain

∇ΘF̂d = (1 − α ) 1 − α 2

1 =
∑
x ∈D+

[
∂1[θs (z (x )) = 0]

∂Θ

∑
l

kl c
T
l,sAlz (x )+

1[θs (z (x )) = 0]
∂[

∑
l kl c

T
l,sAlz (x )]

∂Θ︸                   ︷︷                   ︸
(a)

]

2 =
∑
x ∈D−

∑
j

[
∂1[θ j (x ) = 0]

∂Θ

∑
l

kl c
T
l,jAlx+

1[θ j (x ) = 0]
∂[

∑
l kl c

T
l,jAlx]

∂Θ︸               ︷︷               ︸
(b)

]

(12)

In both 1 and 2 we note that ∂1[θ j (x )=0]
∂Θ is dependent on the

specific detection models. We will give a concrete example of their
derivation in Section 3.5.

In
∑
l kl c

T
l,sAlz (x ) there are two terms that are functions of Θ:

cl,s and z (x ). Consequently, (a) can be expanded as:

(a) =
∑
l

kl

[
∂cl,s
∂Θl

Alz (x ) +

[
∂z (x )

∂Θl

]T
ATl cl,s

]
. (13)

Note that only the detection models of those agents at layer l have
contribution to cl,s . Thus,

∂cl ,s
∂Θl

is a Jacobian matrix with dimension
Nl ×Nl , where Nl is the number of agents at layer l and Θl denotes
the detection models of those Nl agents. Since cl,s is also dependent
on the specific detection models of agents, we defer its derivation
to Section 3.5.

∂z (x )
∂Θl

is a n × Nl Jacobian matrix and is the main difficulty
because we do not have an explicit function of the attacker’s optimal
decision z (x ) with respect to Θl . Fortunately, the constraints in (10)
implicitly define z (x ) in terms of Θ:

f (Θ,z,λ,µ,η) =


∂z

(
−

∑
l kl c

T
l,sAlz + λд(z,x ) + µ

Th(z,Θ) − ηT z

)
λд(z,x )

µTh(z,Θ)
η ⊙ (−z)



(14)

Θ and the attacked malicious instance z satisfy f (Θ,z,λ,µ,η) = 0.
The Implicit Function Theorem[31] states that if f (Θ,z,λ,µ,η) is
continuous and differentiable and the Jacobian matrix

[
∂f
∂z
|
∂f
∂λ
|
∂f
∂µ
|
∂f
∂η

]

has full rank, there is a unique implicit function I (Θ) = (z,λ,µ,η).
Moreover, the derivative of ∂I

∂Θ is:

∂I

∂Θ
= −

[
∂f
∂z |

∂f
∂λ |

∂f
∂µ |

∂f
∂η

]−1 (
∂f
∂Θ

)
. (15)

∂f
∂z is the Jacobian matrix of f (Θ,z,λ,µ,η) with respect to z, and
so on. ∂z

∂Θ ∈ R
n×N is the first n rows of ∂I

∂Θ , where
∂z
∂Θl

can be
column-wise indexed by the nodes at layer l .

(b) can be similarly expanded as we had done for (a), except that
the attacker does not modify benign content, so that x ∈ D− is no
longer a function of Θ:

(b) =
∑
l

∑
j
kl

[
∂cl,j
∂Θl

Alx

]
. (16)

The full projected gradient descent approach is given by Algo-
rithm 1.

Algorithm 1 Find Defense Strategy
1: Input: agent j
2: Initialize: Θ(0) ,λ,µ,η,β0
3: for t = 1 · · ·k do

4: Θ(t+1) = ProjAd

(
Θ(t ) − βt∇ΘF̂d

���Θ=Θ(t )

)
5: end for
6: return Θ(k+1)

3.3 Optimal Attack
So far, we had assumed that the network node being attacked is
fixed. However, the ultimate goal is to allow the attacker to choose
both the node s , and the modification of the malicious content z. We
begin our generalization by first allowing the attacker to optimize
these jointly.

The full attacker algorithm which results is described in Algo-
rithm 2.

Algorithm 2 Optimal Attack Strategy
1: Input: Θ,x
2: Initialize: ret = []
3: for i = 1 · · · |V | do
4: x (i ) ← Solve (5)
5: Ûa (i ) ← Optimal objective value of (5)
6:

(
i,z (i,x ),Ûa (i )

)
appended to ret

7: end for
8: z,s ← OptimalTuple(ret)
9: return z,s

Recall that the tree structure of a propagation is dependent on
the agent being attacked, which makes the objective function of (5)
a function of the agent being attacked. Thus, for a given fixedΘ, the
attacker iterates through each agent i and solves the problem (5),
assuming the propagation starts from i , resulting in associated util-
ity Ûa (i ) and an attacked instance z (i,x ). Then i , z (i,x ), and Ûa (i )
are appended into a list of a 3-tuples (the sixth step in Algorithm
2). When the iteration completes the attacker picks the optimal
3-tuple in terms of utility (eighth step in Algorithm 2, where the
function OptimalTuple(ret) finds the optimal 3-tuple from the list
ret). The node s and the corresponding attack instance z in this
optimal 3-tuple become the optimal attack.
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3.4 SSE Heuristic Algorithm
Now we take the final step, relaxing the assumption that the at-
tacker chooses a fixed node to attack which is known to the de-
fender prior to choosing Θ. Our main observation is that fixing
s in the defender’s algorithm above allows us to find a collection
of heterogeneous detector parameters Θ, and we can evaluate the
actual utility of the associated defense (i.e., if the attacker optimally
chooses both s and z in response) by using Algorithm 2. We use
this insight to devise a simple heuristic: iterate over all potential
nodes s that can be attacked, compute the associated defense Θ(s )
(using the optimistic definition of defender’s utility in which s is
assumed fixed), then find the actual optimal attack in response for
each x ∈ D+. Finally, choose the Θ(s ) which has the best actual
defender utility.

This heuristic algorithm is described in Algorithm 3.

Algorithm 3 Optimal Defense Strategy

1: Input: G = (V ,E),W ,D
2: for j = 1 · · · |V | do
3: Θj ← Apply Algorithm 1
4: ∀x ∈ D+ : (s,z (x )) ← Apply Algorithm 2
5: Ûd (j ) ← DefenderUtility(Θj , (s,z (x )))
6: end for
7: j ← argmaxj Ûd (j )
8: return Θj

The fifth step in the algorithm includes the function Defend-
erUtility, which evaluates the defender’s utility Ûd (j ). Note that
the input argument s of this function is used to determine the tree
structure of the propagation started from s .

Recall that Algorithm 1 solves (10), which depends on the specific
detection model to compute the relevant gradients. Therefore, in
what follows, we present a concrete example of how to solve (10)
where detection models are logistic regressions. Specifically, we
illustrate how to derive the two terms, ∂1[θ j (z )=0]

∂Θ and ∂cl ,j
∂Θl

that
depend on particular details of the detection model.

3.5 Illustration: Logistic Regression
We consider the logistic regression model used for detection at
individual nodes to illustrate the ideas developed above. For a node
i , its detection model has two components: the logistic regression

1
1+e−ϕT x

, where ϕ is the weight vector of the logistic regression
and x the instance propagated to i , and a detection threshold θi
(which is the parameter the defender will optimize). An instance is
classified as benign if 1

1+e−ϕT x
≤ θi . Thus (slightly abusing notation

as before), θi (x ) , 0 (x is classified as malicious) if 1
1+e−ϕT x

≥ θi .
With the specific forms of the detection models we can derive

∂1[θ j (x )=0]
∂Θ and ∂cl

∂Θl
(omitting the node index s or j for clarity).

A technical challenge is that the indicator function 1(·) is not
continuous or differentiable, which means that it’s difficult to char-
acterize its derivative with respect to Θ. However, observe that
for logistic regression θ j (x ) = 0

(
1

1+e−ϕT x
≤ θ j

)
is equivalent to

log
( θ j
1−θ j

)
≥ ϕT x . Therefore we use log

( θ j
1−θ j

)
− ϕT x as a surro-

gate function for 1[·]. Then ∂1[θ j (x )=0]
∂Θ is a N -dimension vector

with the jth element equal to 1
θ j−θ 2

j
. The cl vector then becomes:

cl =



log
( θl1
1−θl1

)
− ϕT x

log
( θl2
1−θl2

)
− ϕT x

...



(17)

and ∂cl
∂Θl

becomes a Nl × Nl diagonal matrix:

∂cl
∂Θl

=



1
θl1−θ

2
l1
. . .

1
θNl −θ

2
Nl



(18)

With equations (12)-(16), ∂cl
∂Θl

and ∂1[θ j (x )=0]
∂Θ , we can now calcu-

late ∇ΘF̂d . Since the thresholds θi ∈ [0,1], the defender’s action
space is [0,1]N . When updating Θ by (11) we therefore project it
back to [0,1]N in each iteration.

4 EXPERIMENTS
In this section we experimentally evaluate our proposed approach.
We used the Spam dataset [22] from UCI machine learning reposi-
tory as the training dataset for the logistic regression model. The
Spam dataset contains 4601 emails, where each email is represented
by a 57-dimension feature vector. We divided the dataset into three
disjoint subsets: D ′ used to learn the logistic regression (tuning
the weight vectors with thresholds setting to 0.5) as well as other
models to which we compare, Dtrain used in Algorithm 3 to find
the optimal defense strategy, and Dtest to test the performance of
the defense strategy. The sizes of D ′, Dtrain, and Dtest are 3681, 460,
and 460, respectively. They are all randomly sampled from D.

Our experiments were conducted on two synthetic networks
with 64 nodes: Barabasi-Albert preferential attachment networks
(BA) [2] and Watts-Strogatz networks (Small-World) [30]. BA is
characterized by its power-law degree distribution, where connec-
tivity is heavily skewed towards high-degree nodes. The power-law
degree distribution, P (k ) ∼ k−r , gives the probability that a ran-
domly selected node has k neighbors. The degree distributions of
many real-world social networks have previously been shown to
be reasonably approximated by the power-law distribution with
r ∈ [2.1,2.4] [3]. Our experiments for BA were conducted across
two sets of parameters: r = 2.1 and r = 2.3.

The Small-World topology is well-known for balancing short-
est path distance between pairs of nodes and local clustering in a
way as to qualitatively resemble real networks [27]. In our experi-
ments we consider two kinds of Small-World networks. The first
has average length of shortest path equal to 5.9 and local clustering
coefficient equal to 0.144. In this case the local clustering coeffi-
cient is close to what had been observed in large-scale Facebook
friendship networks [27]. The second one has average shortest path
length of 5 and local clustering coefficient of 0.08, where the local
clustering coefficient is close to that for the electric power grid of
the western United States [30].

Our node-level detectors use logistic regression, with our algo-
rithm producing the threshold for these. The trade-off parameter
α was set to 0.5 and the time window T was set to 1. We applied
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standard pre-processing techniques to transform each feature to
lie between zero and one. The attacker’s budget is measured by
squared l2 norm and the budget limit ϵ is varied from 0.001 to 0.01.
We compare our strategy with three others based on traditional
approaches: Baseline, Re-training, and Personalized-single-threshold;
we describe these next.

Baseline: This is the typical approach which simply learns a
logistic regression on training data, sets all thresholds to 0.5, and
deploys this model at all nodes.

Re-training: The idea of re-training, common in adversarial
classification, is to iteratively augment the original training data
with attacked instances, re-training the logistic regression each
time, until convergence [4, 21]. The logistic regressions deployed
at the nodes are homogeneous, with all thresholds being 0.5.

Personalized-single-threshold: This strategy is only allowed
to tune a single agent’s threshold. It has access to Dtrain that in-
cludes unattacked emails. The strategy iterates throught each node
i and finds its optimal threshold. The optimality is measured by the
defender’s utility as defined in (2), where the expected influence of
an instance is estimated by simulating 1000 propagations started
from i . Then the strategy picks the node with largest utility and
sets its optimal threshold.

As stated earlier, network topologies and parameter vectors as-
sociated with edges are assumed to be known by both the defender
and the attacker. The attacker has full knowledge about the defense
strategy, including the weight vectors of logistic regressions as well
as their thresholds. As in the definition of Stackelberg game, the
evaluation procedure lets the defender first choose its strategy Θ∗,
and then the attacker computes its best response, which chooses
the initial node for the attack s and transformations of malicious
content z aimed at evading the classifier. Finally the defender’s util-
ity is calculated by (2), where the expected influence is estimated by
simulating 1000 propagations originating from s for each malicious
instance z.

The experimental results for BA (r = 2.1) and Small-World (aver-
age length of shortest path=5.9 and local clustering coefficient=0.144)
are shown in Figure 4, and the experimental results for BA (r = 2.3)
and Small-World (average length of shortest path=5 and local clus-
tering coefficient=0.08) are shown in Figure 5.

Figure 4: The performance of each defense strategy. Each
bar is averaged over 10 random topologies. Left: BA. Right:
Small-world)

As we can observe from the experiments, our algorithm out-
performs all of the alternatives in nearly every instance; the sole
exception is when the attacker budget is 0.001, which effectively
eliminates the adversarial component from learning. For larger bud-
gets, our algorithm remarkably robust even as other algorithms per-
form quite poorly, so that when ϵ = 0.01, there is a rather dramatic

Figure 5: The performance of each defense strategy. Each
bar is averaged over 10 random topologies. Left: BA. Right:
Small-world)

gap between our approach and all alternatives. Not surprisingly,
the most dramatic differences can be observed in the BA topology:
with the large variance in the degree distribution of different nodes,
our heterogeneous detection is particularly valuable in this setting.
In contrast, the degradation of the other methods on Small-World
topologies is not quite as dramatic, although the improvement of-
fered by the proposed approach is still quite pronounced. Among
the alternatives, it is also revealing that personalizing thresholds re-
sults in second-best performance: again, takng account of network
topology is crucial; somewhat surprisingly, it often outperforms
re-training, which explicitly accounts for adversarial evasion, but
not network topology.

5 CONCLUSION
We address the problem of adversarial detection of malicious con-
tent spreading through social networks. Traditional approaches use
with a homogeneous detector or a personalized filtering approach.
Both ignore (and thus fail to exploit knowledge of) the network
topology, and most filtering approaches in prior literature ignore
the presence of an adversary.We present a combination of modeling
and algorithmic advances to systematically address this problem.
On the modeling side, we extend diffusion modeling to allow for de-
pendence on the content propagating through the network, model
the attacker as choosing both the malicious content, and initial
target on the social network, and allow the defender to choose het-
erogeneous detectors over the network to block malicious content
while allowing benign diffusion. On the algorithmic side, we solve
the resulting Stackelberg game by first representing it as a bilevel
program, then collapsing this program into a single-level program
by exploiting the problem structure and applying KKT conditions,
and finally deriving a projected gradient descent algorithm using
explicit and implicit gradient information. Our experiments show
that our approach dramatically outperforms, homogeneous classifi-
cation, adversarial learning, and heterogeneous but non-adversarial
alternatives.
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