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ABSTRACT

In the peer assessment problem, a set of agents give eval-
uations to each other, and we are going to combine these
peer assessments together to construct an overall evalua-
tion. In this paper, we propose a geometric least squares
method (GLS) to find an aggregate scoring overall agents
for the peer assessment problem. Our method is based on
the following observation. Since each agent has a missing
score that should be given by itself, we consider the miss-
ing score as a variable and then each agent can be regarded
as a line in an n-dimensional vector space. The final aggre-
gate scores of the agents can be regarded as points on a line
vector, called the projection vector. Thus, we treat the peer
assessment problem as an optimization problem of selecting
a projection vector with minimum total squared distance to
all the lines representing the agents. We will see that this
aggregate method has some advantages compared with the
simple average method. One advantage is that, when the s-
cores given by each agent (even ignoring the magnitude of
the agent) are close to a groundtruth, the new method finds
the groundtruth with the highest expectation.
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1 INTRODUCTION

The peer assessment problem has been well known for many
years in social choice [1]. In the setting, each agent is both a
candidate and a voter, and each agent is asked to assign nu-
meric scores from its own point of view regarding the overall
performance of other agents. The object is to get a combined
overall evaluation of the agents. This problem has many im-
portant application scenarios [2, 7–12] and has been exten-
sively studied in the literature [4, 5, 12, 13]. Peer assessments
suffer from several fundamental problems, such as, how to
set an incentive or define a mechanism to ensure that agents
report their evaluations truthfully; after gaining the scores,
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how to aggregate the scores into a coherent assessment; and
so on. In this paper, we focus on aggregating scores for the
peer assessment problem.

A related problem is to obtain an aggregate rank of the
agents based on the rankings given by the agents. For rank
aggregation problems, there are some famous protocols, such
as Kemeny [3] and Condorcet [16], which is to minimize the
number of disagree pairs.

However, for score aggregation problems, there are few
well-known protocols used to evaluate the aggregation re-
sults. Not all score aggregation problems in real life can
be changed to rank aggregation problems, for example, to
compute GPA of students. Most of references focus on the
mechanism designs or how to normalize the scores. After do-
ing these, they simply apply the sum-up or weight sum-up
method to aggregate. In this paper, we study the aggregate
models based on the given scores from agents and build a
protocol for peer assessments inspired by the idea in [14].

2 THE PROBLEM AND DEFINITIONS

In the peer assessment problem, there is a set of agents
N = {1, 2, . . . , n}. Each agent j ∈ N has evaluated each
other agent i ∈ N \ {j} by giving a nonnegative score sij .
We need to aggregate the n evaluations into a final overal-
l vector of scores for the agents. The evaluation given by
an agent i can be denoted by a column vector {s1i, s2i, . . . ,
s(i−1)i, -, s(i+1)i, . . . , sni}T . Here we use “-” to denote the
missing score at the ith site. All the evaluations form a ma-
trix Sn×n, called the score matrix. In the score matrix Sn×n,
all the elements on the diagonal are “-” denoting missing ele-
ments. We may also view each missing element as a variable
and use ti to denote them.

3 THE MODEL AND ALGORITHM

We consider the peer assessment problem from the geomet-
ric perspective. We look at the n-dimensional vector space
A with base vectors, denoted by e1, e2, . . . , en, representing
the n agents. Each agent has a missing score that should
be given by itself and we view it as a variable. Thus, each
agent can be represented by a line li in the n-dimensional
vector space A and this line li is parallel with the base vec-
tor ei corresponding to itself. The final aggregate result is a
vector, denoted by e and the final score for each agent i is
the ith element of e. The aggregation problem can be inter-
preted as a geometric problem to “project” n lines li in an
n-dimensional vector space A to n points in a 1-dimensional
unit vector space e/||e||2. We still need to give the precise
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definition of “project”. We say a line li projects onto a point
ci on a vector space e′ if and only if ci is a point on e′ that
minimizes the distance from ci to the line li.

The average method is, for each agent, to use the average
of its n − 1 scores given by other agents as its aggregate s-
core. In the geometric model, the average method is exactly
to project the n lines onto n points on the 1-dimensional vec-
tor space e′ = (1/

√
n, 1/

√
n, . . . , 1/

√
n). See Figure 1 for an

illustration. However, why should we always select this diag-
onal vector space to be projected onto? Our idea is to select
an “overall optimal” vector space to be projected onto. Thus,
we consider the peer assessment problem as an optimization
problem of selecting a projection vector e′ such that the to-
tal squared distance from e′ to the n lines li is minimized.
We will call this method the geometric least squares method
(GLS). Next, we describe the detailed steps.
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e3
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Figure 1: An illustration for the projection

A line in an n-dimensional vector space A can be repre-
sented by a parameter function l = et + p, where t is the
parameter, p is the original point (the point with t = 0 on
the line) and e is a vector deciding the direction of the line.

Recall that ei is the base vector with the ith element
being 1 and all other elements being 0. Let pi denote the
point (si1, si2, . . . , si(i−1), 0, si(i+1), . . . , sin). The n lines li
representing the n agents will be denoted by

li = eiti + pi, i ∈ {1, 2, . . . , n},
where ti are the variables. We will denote the vector e to be
projected onto as a line l0 going through the original point
0 = (0, 0, . . . , 0): e = l0 = e0t0 + 0, where t0 is the variable.

The distance dist(l′i, l
′
j) between two lines l′i = vit

′
i + qi

and l′j = vjt
′
j + qj in a high-dimensional space is defined to

be the minimum distance between any two points lying on
the lines, which can be computed by

dist(l′i, l
′
j) = min

t′i,t
′
j

||l′i − l′j ||2 = min
t′i,t

′
j

||vit
′
i − vjt

′
j + qi − qj ||2.

Directed computation shows that

dist(l0, li) = ||pie
T
0 e0 − eie

T
0 e0e

T
i pi

1− (e0eT
i )

2
− pi||2.

The object of GLS is to find a line l0 minimizing the total
squared distance between l0 and the n lines li

E =

n∑
i=1

dist2(l0, li) =

n∑
i=1

||pie
T
0 e0 − eie

T
0 e0e

T
i pi

1− (e0eT
i )

2
− pi||22.

Thus, it is to find a unit vector e0 satisfying

e0 = argmin
l0

E = argmin
l0

n∑
i=1

dist2(l0, li).

We only need to solve the above optimization problem.
Let e0 = (e01, e02, . . . , e0n). When E achieves the minimum
value, the derivatives of E with respect to e0 is zero. Thus,
the partial derivatives of E with respect to each component
of e0 is zero, i.e., ∂E

∂e0i
= 0, i ∈ {1, 2, . . . , n}.

By solving the above function set, we can get the pro-
jection vector e0. However, the solution is too complex to
obtain an explicit expression directly. There exists some nu-
merical methods to solve these kinds of partial derivatives
and implements of them are available in most famous mathe-
matical softwares. We implemented the algorithm in Matlab
and the code is available online [15].

4 PROPERTY ANALYSIS

Relations With Maximum Likelihood Estimate
The object of GLS is to optimize the total squared distance.
This criteria has a good meaning in probabilistic semantics.

Assume that there is a groundtruth score vector ĉi for
each agent i. The actual score of agent i given by agent j
is an error estimation of the jth element of ĉi. The actually
score vector ci of agent i is

ci = ĉi + εi,

in which εi is the error vector. For groundtruth, we assume
that all the agents agree with each other consistently ignor-
ing the magnitude, i.e., the groundtruth score vectors for all
agents satisfy the linear relationship.

Property 1. Under the above assumption, if the error
obeys the Gaussian distribution, then to minimize the total
squared distance is equal to maximize the likelihood function.

It is reasonable to assume the error obeys the Gaussian
distribution, because the Center Limit Theorem shows if an
error is the sum of many small, independent error sources,
the total error will be about Normally distributed (Gaussian
distribution) [6].

A Stable Property

Property 2. Given a consistent score matrix. If any a-
gent changes its given scores by multiplying them by a pos-
itive constant γ, then the new final aggregate score vector
obtained by our method is a constant multiple of the old one.

This property says that the relationship of the agents in
the final aggregate score vector will not change if one agent
amplifies or shrinks its magnitude without changing the re-
lationship of the agents in its given scores. This provides an
incentive for agents to avoid grading all others low.
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