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ABSTRACT
This paper studies a variation of stochastic multi-armed bandit
(MAB) problem where the agent knows a prior knowledge named
Near-optimal Mean Reward (NoMR). We show that the cumulative
regret of this bandit variation has a lower bound of Ω (1/∆), where
∆ is the gap between the optimal and the second optimal mean
reward. An algorithm called NoMR-Bandit is proposed to this
variation, and we demonstrate that the cumulative regret of NoMR-
Bandit has a uniform upper bound of O (∆). It is concluded that
NoMR-Bandit is optimal in terms of the order of regret bounds.
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1 INTRODUCTION
The stochastic multi-armed bandit problem with knowing optimal
mean reward has been studied in the last decays [2, 3, 5, 7]. In their
settings, the agent only knows the exact optimal mean reward. But
in more cases, the optimal mean reward cannot be exactly acquired.
For example, in on-line web ad services, the mean reward of a
recommended item is click through rate which is an important
heuristic information to the recommender system [4]. Furthermore,
the near-optimal item click through rate of a user can be associated
with his/her demographic characteristics [1], but this click rate is
an estimation. The recommendation engine can use this estimated
rate as a prior knowledge to speed up learning.

There have been some algorithms to deal the bandits with know-
ing the prior knowledge. GCL∗ [7] and APT [5] are two determin-
istic algorithms, they take the optimal mean reward as the prior
knowledge and the regret bound of them are logarithmically re-
lated to the time step. However, they can not handle the problem
when the prior knowledge is less than the optimal mean reward.
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BPR [3] and BL [2] are two randomized algorithms, they take the
optimal mean reward and the gap between the optimal and the
second optimal mean reward as the prior knowledge. They achieve
uniform upper bounds, but they also have the same problem with
that of GCL∗ and APT. VZ [8] is a randomized algorithm, it takes
the near-optimal mean reward as the prior knowledge and achieves
a uniform upper bound. But its exploration is inefficient because it
does not use the prior knowledge during exploration phase.

To achieve an efficient exploration and a uniform upper bound,
this paper proposes a novel parameter-free stochastic bandit al-
gorithm in the setting when the agent knows NoMR before. The
key idea of our method (named NoMR-Bandit) is that we design
a bimodal function with NoMR during exploration phase to en-
courage an accurate exploration. Specifically, instead of uniform
exploration, NoMR-Bandit prefers to explore those arms whose
estimated mean reward are small or close to NoMR. We give the
lower bound of the bandit problem with NoMR (Ω(1/∆)) and the
associated upper bound of NoMR-Bandit (O(∆)).

2 PROBLEM FORMULATION
2.1 Stochastic Bandits with Knowing NoMR
In stochastic multi-armed bandit problem, the reward of each arm
i ∈ {1, 2, ...,K} in the arm set A corresponds to an unknown
probability distribution νi . At each time step t = 1, 2, ...n, the agent
selects an arm It from the arm set and receives a reward rIt drawn
from νIt (independent from the past). Denote by µi the mean reward
of arm i and define

µ∗ = max
i ∈A

µi and i∗ ∈ argmax
i ∈A

µi .

Without loss of generality, we assume that for each arm i ∈ A,
µi ∈ [0, 1]. Let Ti (n) =

∑n
t=1 1It=i denote the number of times the

agent selected the arm i in the n rounds. The estimated µ̂i of each
arm at round n is defined as

µ̂i =
1

Ti (n)
·

n∑
t=1

rIt · 1It=i .

Without loss of generality, during the learning process, we as-
sume the largest estimated mean reward is µ̂1.

Definition (NoMR). The near-optimal mean reward η is a real
value between the optimal and the second optimal mean reward. η
is defined as

µ∗ − ∆ < η ≤ µ∗.
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Here we define the gap δ as the difference value between the
optimal mean reward µ∗ and the near-optimal mean reward η,

δ = µ∗ − η.

And with the definition of η, δ ∈ [0,∆).
Objective Let ∆i = µ∗ − µi denote the gap between the opti-

mal arm i∗ and arm i , and let ∆ = mini ∆i . The objective in this
bandit setting is to design an arm choosing policy to minimize the
cumulative regret which is defined as

Rn = nµ
∗ − E

n∑
t=1

µIt =
K∑
i=1

∆iE[Ti (n)],

where E[Ti (n)] is the expectation of Ti (n).

2.2 Lower bound
This result is analyzed based on a simple two-armed case where
the reward distribution is assumed as normal distribution because
it remains the same order for all families of distributions [6].

Here we denote by ν = ν1 ⊗ ν2 the product distribution that
generates the rewards from νj when pulling arm j ∈ {1, 2}.

Theorem 2.1. Let ν0 = N(η − ∆0, 1) ⊗ N(η + ∆1, 1) and ν1 =
N(η + ∆1, 1) ⊗ N(η − ∆0, 1) where ∆0 ∈ [0,η] and ∆1 ∈ [0, 1 − η].
Then for any policy and any n ≥ 1, the lower bound of Rn of proposed

setting can be divided into two cases.

For δ ∈ (0,∆), which means µ∗ − ∆ < η < µ∗,

max(Rn (ν0),Rn (ν1)) ≥
1

4(∆0 + ∆1)
.

For δ = 0, which means η = µ∗, there exists c ∈ (0, 1] and a bandit
problem with the smallest gap ∆ and the known optimal mean reward,

Rn ≥
log(n/139)

2∆ .

3 OUR METHOD
3.1 NoMR-Bandit
NoMR-Bandit receives the prior knowledge η and the number of
arms K of the bandit problem as input. First, the agent pulls each
arm of the game once. At time t > K , NoMR-Bandit checks that if
the arm set St = {i : µ̂i ≥ η} is empty. If it is not empty, then the
agent takes Exploitation strategy, it pulls the arm with the largest
estimated mean reward in St ; otherwise, it makes Exploration ac-
cording to the distribution in Algorithm 1.

It is important to define a a bimodal function in the exploration
of NoMR-Bandit

ψ (x) =

(
x ·

x − η

η

)2
+C,

where C is an adaptive real value which ensures
∑K
i=1 pi,t = 1 at

time step t . This is a differentiable function and it has a fantastic
property that it will be smaller when the variable x is close to 0 or η.
This makes the exploration distribution different from the previous
for the reason that it encourages both the arms with small estimated
mean reward and those estimated mean rewards are close to the
prior knowledge η. This exploration strategy is more reasonable
than those strategies with uniform exploration or just exploring
the arms with small estimated mean reward.

Algorithm 1: NoMR-Bandit
Input: NoMR η, number of arms K

1 At the first K round:
2 Choose each arm and, receive the reward rIt
3 for t = K + 1, ..., n do
4 Define the arm set St = {i : µ̂i ≥ η }
5 if St , ∅ then
6 Pull arm It = i with the largest µ̂i in St

7 else
8 Select It randomly an arm according to
9 pi,t = c

ψ (µ̂i )
, where

10 c =
∑K
j=1

1
ψ (µ̂j )

, ψ (µ̂i ) =
(
µ̂i ·

µ̂i−η
η

)2
+C

11 Observe reward rIt ∼ νIt and update µ̂i
Output: The optimal arm i∗ := argmaxi∈A µ̂i

3.2 Upper bound
Theorem 3.1. For K > 0 and n > K and let the priori knowledge η

satisfies µ∗ − ∆ < η ≤ µ∗. Under the fact thatψ (x) is a differentiable
function with an infimum infx ψ (x) = C . The upper bound of Rn of

NoMR-Bandit can also be divided into two cases.

For 0 < δ < ∆, Rn is bounded by

(K − 1)η
2

2 +
∑
i,i∗

{
∆i +

∆i
C

[
4ψ (δ )
δ2

+

∫ ∞

δ

2ψ ′(x)

e
x2
2 − 1

dx

]}
,

For δ = 0, Rn is bounded by

(K − 1)η
2

2 +
∑
i,i∗

{
∆i +

∆i
C

n∑
t=1
Eψ (µ̂1)

}
.

Specifically, ifψ (x) defined asψ (x) = x2 ·
(
x−η
η

)2
, the upper bound

can be further concluded as following.

For 0 < δ < ∆, Rn is bounded by

(K − 1)η
2

2 + ω
∑
i,i∗

∆i ,

where ω = 1 + 1
C ·η2

[
(δ − η)2 + 4e−δ 2

(δ2 + 1)
]
.

For δ = 0, Rn is bounded by

(K − 1)η
2

2 +
∑
i,i∗

{
∆i +

v · ∆i
C

log(n)
}
,

where v = E
(
rI1=i∗

)2
.

4 CONCLUSION
This paper studies the bandit problem where the agent knows a
prior knowledge named NoMR. First, we show the lower bound of
this bandit setting and then a novel algorithm NoMR-Bandit is
proposed with a uniform upper bound. It is concluded that NoMR-
Bandit is optimal in terms of the order of regret bounds.
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