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ABSTRACT
The broker mechanism is widely applied to serve for interested
parties to derive long-term policies to reduce costs or gain prof-
its in smart grid. However, brokers are faced with a number of
challenging problems such as balancing demand and supply from
customers and competing with other coexisting brokers to maxi-
mize profits. In this paper, we develop an effective pricing strategy
for brokers in local electricity retail market based on recurrent deep
multiagent reinforcement learning and sequential clustering. We
use real household electricity consumption data to simulate the
retail market for evaluating our strategy. The experiments demon-
strate the superior performance of the proposed pricing strategy
and highlight the effectiveness of our reward shaping mechanism.
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1 INTRODUCTION
Traditional power grid is faced with fundamental changes with
the advent of decentralized power generation technologies and
the increasing number of active electricity customers. One critical
objective of smart grid is to guarantee its stability and reliabil-
ity in terms of the real-time balance between demand and supply.
Nevertheless, with the increasing penetration of renewable energy
resources, existing centralized control mechanisms are unable to
simultaneously accommodate the vast number of small-scale inter-
mittent producers and dynamic changes in demand of customers
in response to price variations [5, 13].

One promising way of maintaining real-time balance in local
tariff market is to apply electricity retail brokers, which offer tariff
contracts for both local consumers and small-scale producers. To
satisfy the demand of the contracted customers, retail brokers are
challenged by optimizing their trading strategies to maximize their
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profits while balancing demand and supply [21]. Power TAC [9], as
a rich, competitive, open-source simulation platform, is commonly
used to design and evaluate various broker strategies. However,
brokers developed on Power TAC mainly purchase electricity from
remote power plants, in which traditional fossil fuel is still the main
generation resource via a wholesale market. Small-scale producers
are usually overlooked in local retail market [10, 18, 19].

In a retail market, as the environment can be modeled as a
Markov decision process (MDP) [14], reinforcement learning tech-
niques have been applied to learn electricity broker strategies for
customers and retailers [1, 3, 13–16]. However, existing works of re-
tail brokers [13, 14, 20] are based on the simple Q-table structure or
a linear function approximation, where features are approximated
as discrete values and may need to be constructed manually which
result in information loss. On the other side, electricity customers
exhibit various electricity consumption or producing patterns. In
[20], its broker framework assigns each type of customers with an
independent pricing agent. However, they use independent SARSA
for different customers and regard the whole broker’s profit as each
agent’s immediate reward during its Q-value update process. It does
not distinguish each agent’s unique contribution to the broker’s
profits and thus does not encourage the learning towards optimal
strategy.

To address above problems, we propose a recurrent deep multia-
gent reinforcement learning (RDMRL) framework augmented with
sequential clustering and reward shaping to coordinate internal
sub-brokers. Experimental results show that superior performance
of our RDMRL broker and highlight the effectiveness of our reward
shaping mechanism.

2 RDMRL FRAMEWORK
Figure 1 shows the structure of our multiagent-based reinforcement
learning framework. Customers with various electricity consump-
tion patterns are clustered into groups, detailed in Section 2.2. Then
an individual recurrent Deep Q-Network (DQN) is employed to
handle the continuous state space explosion problem for each type
of customers detailed in Section 2.1. Finally, a reward shaping mech-
anism (Section 2.3) is proposed to allocate the correct reward signal
for each sub-broker.

2.1 Learning Framework of Sub-brokers
Deep reinforcement learning (DRL) has recently been shown to
master numerous complex problem domains that suffer from the
curse of dimensionality [6, 12]. It is expected to learn more efficient
pricing policies by employing DRL into the broker pricing domain.
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Figure 1: RDMRL broker framework

Meanwhile, we apply recurrent neural units such as Long Short-
Term Memory (LSTM) [7] to capture the temporal information of
the tariff market.

2.2 Clustering Consumers
We cluster consumers according to their temporal electricity con-
sumption patterns by K-Means [11] with Dynamic Time Warping
(DTW) distance criterion [8], which is a state-of-the-art clustering
algorithm for measuring temporal sequence similarity.

2.3 RDMRL Broker with Reward Reshaping
To address themultiagent credit assignment problem [2] of a cooper-
ative multiagent system, we calculate each sub-broker’s individual
credit by difference rewards [17]:

r it = rt − (
∑
j,i

p
j
tψ

j
t,C −

∑
k,i

pkt ψ
k
t,P − Φit ),j ∈ C,k ∈ P (1)

where i represents the customer type charged by sub-broker i , rt is
the broker’s reward,ψ j

t,C denotes consumptions of consumers of
type j at time t ,ψk

t,P denotes outputs of producers of the type k at

time t . Also, p jt and p
k
t are the broker’s current tariff prices for Cj

and Pk respectively. Φit is current imbalance fee:
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where ϕ− and ϕ+ are the imbalance fee for shortsupply and over-
supply respectively.

3 EXPERIMENTS AND ANALYSIS
In this section, we first compare a DQN based broker with a Q-
table based broker by following the settings in [14] to demonstrate
the superior performance of DQN. The other co-existing strategies
are set to be the same as previous work [14]: Balanced Strateдy,
Greedy Strateдy, Random Strateдy and Fixed Strateдy. Table 1
shows the detailed results of the first experiment. We can see the
profit of DQN based BL is 105% higher than Q-table based BL and
its imbalance amount is reduced by 10%.

In the second set of experiments, we compare the RDMRL broker
with two baseline brokers (single-agent recurrent DQN andmultiple

Table 1: Q-table Based BL and Other Brokers’ Total Profits

Broker Profits ShortSupply OverSupply
Tabular −Q 1327482$ -244764kWh 313536kWh

DQN 2721828$ -226826kWh 275564kWh

independent recurrent DQNs) against the same set of competing
brokers as the first experiment. We consider more realistic settings
by introducing real-world data [4] to model consumer consumption
patterns. First, Figure 2 shows the accumulated profits of single
agent broker during the evaluation episodes, which fails to gain
profits because of the single pricing method. The result indicates
that the broker using only one recurrent DQN cannot learn effective
pricing strategies in a realistic retail market with various consumers
of different electricity consumption patterns.

Figure 2: Brokers’ Profits of the evaluation episodes.

Second, Figure 3(a) shows the profits of RDMRL broker. We
can observe that RDMRL broker gains the most profits. Lastly,
Figure 3(b) shows the profits of an incomplete version of RDMRL
broker (denoted as RDMRL’) by removing reward shaping. The
result shows that RDMRL’ using the global reward instead of reward
shaping performs worst.

(a) RDMRL with reward shaping (b) RDMRL’ without reward shaping

Figure 3: Brokers’ profits of the evaluation episodes.

4 CONCLUSIONS
In this paper, we firstly apply recurrent DQN for retail broker
design to learn more accurate and effective pricing strategies in
smart grid domain. Also, we design a multiagent broker framework
with reward shaping to publish tariffs for each group of customers.
Extensive simulations validate the the superior effectiveness of our
broker framework.
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