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ABSTRACT
In this paper, we investigate the complexity of Constructive Con-
trol by Adding/Deleting Votes (CCAV/CCDV) for r -approval,
Condorcet, Maximin and Copelandα in k-axes and k-candidate par-
tition single-peaked elections. In general, we prove that CCAV and
CCDV for most of the voting correspondences mentioned above are
NP-hard even when k is a very small constant. Exceptions are CCAV
and CCDV for Condorcet and CCAV for r -approval in k-axes single-
peaked elections, which we show to be fixed-parameter tractable
with respect to k . In addition, we give a polynomial-time algorithm
for recognizing 2-axes elections, resolving an open question.
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1 PRELIMINARIES
An election is a tuple E = (C,ΠV ), where C is a set of candidates
andΠV a multiset of votes, each of which is defined as a linear order
over C. For a vote π and a candidate c , let π (c) denote the position
of c in π . In particular, the first-ranked candidate has position 1,
the second-ranked candidate has position 2, and so forth. We use
N (c, c ′) to denote the number of votes ranking c above c ′. For two
candidates c and c ′, we say c beats c ′ if N (c, c ′) > N (c ′, c), and
c ties c ′ if N (c, c ′) = N (c ′, c). For C ⊆ C and a vote π ∈ ΠV ,
πC is π restricted to C , i.e., for c, c ′ ∈ C , π (c) < π (c ′) implies
πC (c) < πC (c ′). Let ΠCV = {πC | π ∈ ΠV }. Hence, (C,ΠCV ) is the
election (C,ΠV ) restricted to C .

An election (C,ΠV ) is single-peaked if there is a linear order ◁ of
C, called an axis, such that for every vote π ∈ ΠV and every three
candidates a,b, c ∈ C with a◁b ◁c or c ◁b ◁a, π (c) < π (b) implies
π (b) < π (a). An election (C,ΠV ) is k-axes single-peaked if there
are k axes ◁1, . . . ,◁k such that every π ∈ ΠV is single-peaked
with respect to at least one of these axes. In addition, (C,ΠV ) is

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

k-candidate partition (CP) single-peaked if there is a k-partition
(C1, . . . ,Ck ) of C such that (Ci ,ΠCiV ), 1 ≤ i ≤ k , is single-peaked.

A voting correspondence φ is a function that maps an election
E = (C,ΠV ) to a non-empty subsetφ(E) of C. We call the elements
in φ(E) the winners of E with respect to φ. In this paper, we study
the following voting correspondences [6, 11, 14].

r -Approval Each vote approves exactly the top-r ranked candi-
dates. Winners are those with the most approvals. We study
only the case where r is a constant.

Borda The Borda score of a candidate c ∈ C is defined as∑
c ′∈C\{c } N (c, c ′). Winners are the ones with the highest

Borda score.
Copelandα (0 ≤ α ≤ 1) For a candidate c , let B(c) (resp. T (c))

be the set of candidates beaten by c (resp. tie with c). The
Copelandα score of c is |B(c)|+α · |T (c)|. Copelandα winners
are those with the highest Copelandα score.

Maximin The Maximin score of a candidate c is defined as
minc ′∈C\{c } N (c, c ′). Maximin winners are the ones with
the highest Maximin score.

A candidate is the Condorcet winner if it beats all other candi-
dates [25]. We slightly abuse the term Condorcet by considering it
as the following voting correspondence: if the Condorcet winner
exists, it is the unique winner; otherwise, all candidates win.

For a voting correspondence φ, we study the following problems.

Constructive Control by Adding Votes (CCAV)

Given: An election (C, ΠV ), a distinguished candidate p ∈ C, a
multiset ΠW of votes, and a positive integer ℓ.

Question: Is there ΠW ⊆ ΠW such that |ΠW | ≤ ℓ and p wins
(C, ΠV ∪ ΠW ) with respect to φ?

Constructive Control by Deleting Votes (CCDV)

Given: An election (C, ΠV ), a distinguished candidate p ∈ C, and
a positive integer ℓ.

Question: Is there ΠV ⊆ ΠV such that |ΠV | ≤ ℓ and p wins the
election (C, ΠV \ ΠV ) with respect to φ?

We study CCAV and CCDV in k-CP/axes elections. This means
that for CCAV, (C,ΠV ∪ ΠW ) in the input is a k-CP/axes election,
and for CCDV, (C,ΠV ) in the input is a k-CP/axes election.

2 OUR CONTRIBUTION
The complexity of CCAV and CCDV in general elections was ini-
tially studied by Bartholdi III, Tovey, and Trick [1]. Since then, the
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CCAV CCDV
SP (k ≥ 2)-axes (k ≥ 2)-CP general SP (k ≥ 2)-axes (k ≥ 2)-CP general

r -Approval P [12] FPT k = 2 : P [24] r ≤ 3 : P [15] P [12] r ≤ 2 : P [15] r ≤ 2 : P [15] r ≤ 2 : P [15]
k ≥ 3, r ≥ 4 : NP-h r ≥ 4 : NP-h [15] r ≥ 3 : Open r ≥ 3 : NP-h r ≥ 3 : NP-h [15]

Borda NP-h [21] NP-h [19] NP-h [21] NP-h [17]

Condorcet P [3] FPT k = 2 : Open NP-h [1] P [3] FPT k = 2 : Open NP-h [1]
k ≥ 3 : NP-h k ≥ 3 : NP-h

Copelandα ∈[0,1) Open NP-h NP-h [22] NP-h [11] Open NP-h NP-h [22] NP-h [11]
Copeland1 P [3] NP-h NP-h [11] P [3] NP-h NP-h [11]
Maximin P [3] NP-h NP-h [10] P [3] NP-h NP-h [10]

Table 1: Complexity of CCAV and CCDV. Here, “P” stands for “polynomial-time solvable”, “NP-h” for “NP-hard”, and “SP” for
“single-peaked”. Our results are in boldface. FPT results are with respect to k . The FPT results for Condorcet hold only when
k axes of the given election are given, while the FPT result for r -approval holds even without knowing the k-axes in advance.

complexity of CCAV and CCDV for a number of voting correspon-
dences has been investigated (see [13] for a survey). It is known
that in general elections CCAV and CCDV for Borda, Condorcet,
Maximin and Copelandα are NP-hard [1, 10, 11, 16]. Lin [15] de-
rived dichotomy results for r -approval with respect to the values of
r : CCAV is NP-hard iff r ≥ 4, and CCDV is NP-hard iff r ≥ 3. In con-
trast, when restricted to single-peaked elections, CCAV and CCDV
for all aforementioned voting correspondences, except Borda and
Copelandα where 0 ≤ α < 1, are polynomial-time solvable [3, 12].
CCAV and CCDV for Borda in single-peaked elections were recently
shown to be NP-hard by Yang [21]. To the best of our knowledge,
the complexity of CCAV and CCDV for Copelandα for 0 ≤ α < 1
still remains open so far.

Yang and Guo [22–24] studied CCAV and CCDV in elections
with single-peaked width k and k-peaked elections. Generally, an
election has single-peaked width k if the candidates can be divided
into groups, each of size at most k , such that every vote ranks all
candidates in each group consecutively and, moreover, considering
each group as a single candidate results in a single-peaked election.
An election isk-peaked if there is an axis◁ such that for every vote π
there is a k-partition of ◁ such that π restricted to each component
of the partition is single-peaked. Yang and Guo [22] proved that
CCAV and CCDV for Copelandα , where 0 ≤ α < 1, in elections
with single-peaked width k are NP-hard for every k ≥ 2. Erdélyi,
Lackner, and Pfandler [8] proved that every election with single-
peaked width k is a k ′-CP election for some k ′ ≤ k . It then follows
that CCAV and CCDV for Copelandα , where 0 ≤ α < 1, are NP-
hard in k-CP elections for every k ≥ 2. For Copeland1 and Maximin,
Yang and Guo [22] proved that CCAV and CCDV in elections with
single-peaked k is polynomial-time solvable if k = 2, but become
NP-hard for every k ≥ 3. Then, from the relation between nearly
single-peaked elections studied in [8], it follows that CCAV and
CCDV for Copeland1 and Maximin are NP-hard in k-CP elections
for every k ≥ 3. We complete the final gap by showing that CCAV
and CCDV for Copeland1 and Maximin remain NP-hard in 2-CP
elections. For Condorcet, Yang and Guo [22] proved that CCAV and
CCDV are fixed-parameter tractable (FPT) with respect to the single-
peaked width. In contrast, we show that the problems are NP-hard
in k-CP elections for every k ≥ 3. Concerning k-peaked elections,
Yang and Guo [23] obtained the following results: for Condorcet,
Maximin and Copelandα , where 0 ≤ α ≤ 1, CCAV is NP-hard in

3-peaked elections and CCDV is NP-hard in 4-peaked elections 1.
As k-CP elections are a special case of k-peaked elections, our study
fills several gaps left in [23] and shows NP-hardness results for even
special cases of 2-peaked elections.

Yang and Guo [24] also derived dichotomy results for CCAV
and CCDV for r -approval in k-peaked elections, with respect to
the values of k and r . Particularly, they showed that CCAV for
r -approval in 2-peaked elections is polynomial-time solvable if r
is a constant, but becomes NP-hard if r is not a constant. As 2-CP
elections are 2-peaked elections, their polynomial-time algorithm
applies to CCAV for r -approval in 2-CP elections for all constants
r . In addition, they proved that CCAV for r -approval in k-peaked
elections for k ≥ 3 and r ≥ 4 is NP-hard. We strengthen this result
by showing that the problem is NP-hard in k-CP elections for every
k ≥ 3 and r ≥ 4. Moreover, Yang and Guo proved that CCDV for
r -approval in 2-peaked elections is NP-hard iff r ≥ 3. We strengthen
their result by showing that CCDV for r -approval remains NP-hard
in k-CP elections for every r ≥ 3 and k ≥ 2.

In addition, we study CCAV and CCDV in k-axes elections. We
prove that CCAV for r -approval and Condorcet, and CCDV for
Condorcet are FPT with respect to k . However, CCAV and CCDV
for Maximin and Copelandα , 0 ≤ α ≤ 1, turn out to be NP-hard for
every k ≥ 2 and 0 ≤ α ≤ 1.

Table 1 summarizes our results and some related previous results.
Finally, we study the complexity of determining whether an elec-

tion is a k-axes election. It is known that for k = 1, the problem
is polynomial-time solvable [2, 7, 9]. Erdélyi, Lackner, and Pfan-
dler [8] proved that the problem is NP-hard for every k ≥ 3. We
complement these results by showing that determining whether an
election is a 2-axes election is polynomial-time solvable, filling the
last complexity gap of the problem with respect to k .

Theorem 2.1. Determining whether an election is a 2-axes election
is polynomial-time solvable.

Many other problems pertaining to voting in nearly single-
peaked elections have also been studied in the literature, see, e.g., [4,
5, 20, 23, 26] and references therein for further details. Moreover,
voting problems in other restricted elections such as single-crossing
elections have also been investigated recently, see, e.g., [18].

1Precisely, they achieved W[1]-hardness results with respect to the solution size.
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